Skip to main content
Log in

Black carrot polyphenols: effect of processing, storage and digestion—an overview

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Black carrots represent a valuable source of polyphenols, in particular anthocyanins and phenolic acids, and has attracted the attention of the scientific community especially due to the unique profile of anthocyanin compounds, which are well distinguished for their role in health promotion and prevention of chronic diseases. Black carrots are often not consumed as such, instead they are processed into other products. In general, processed products of black carrot are stored for long term and the polyphenols are susceptible to degradation during storage. In addition, it is also important to determine how the digestion process affects polyphenols as this will, in turn, affect their bioavailability. Accordingly, the potential health-promoting effects of black carrot polyphenols depend on their processing history and their stability during storage as well as their absorption in the gastrointestinal tract. In this perspective, this review provides an overview of the findings on the effects of processing, storage and digestion on black carrot polyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACN:

Anthocyanin

HCA:

Hydroxycinnamic acid

LDH:

Lactate dehydrogenase

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PA:

Phenolic acids

ROS:

Reactive oxygen species

SHIME:

Simulator of the human intestinal microbial ecosystem

TFC:

Total flavonoid content

TPC:

Total phenolic content

References

  • Alasalvar C, Al-Farsi M, Quantick PC et al (2005) Effect of chill storage and modified atmosphere packaging (MAP) on antioxidant activity, anthocyanins, carotenoids, phenolics and sensory quality of ready-to-eat shredded orange and purple carrots. Food Chem 89:69–76

    Article  CAS  Google Scholar 

  • Algarra M, Fernandes A, Mateus N et al (2014) Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. J Food Compos Anal 33:71–76

    Article  CAS  Google Scholar 

  • Arscott SA, Tanumihardjo SA (2010) Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Compr Rev Food Sci Food Saf 9:223–239

    Article  CAS  Google Scholar 

  • Bolca S, Van de Wiele T, Possemiers S (2013) Gut metabotypes govern health effects of dietary polyphenols. Curr Opin Biotechnol 24:220–225

    Article  CAS  PubMed  Google Scholar 

  • Carvalho D, Dominguez A, Neto DO et al (2014) Combination of sowing date with deficit irrigation for improving the profitability of carrot in a tropical environment (Brazil). Sci Hortic 179:112–121

    Article  Google Scholar 

  • Charron CS, Kurilich AC, Clevidence BA et al (2009) Bioavailability of anthocyanins from purple carrot juice: effects of acylation and plant matrix. J Agric Food Chem 57:1226–1230

    Article  CAS  PubMed  Google Scholar 

  • Christensen LP, Kreutzmann S (2007) Determination of polyacetylenes in carrot roots (Daucus carota L.) by high-performance liquid chromatography coupled with diode array detection. J Sep Sci 30:483–490

    Article  CAS  PubMed  Google Scholar 

  • Cos P, Vlietinck AJ, Berghe DV et al (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 106:290–302

    Article  CAS  PubMed  Google Scholar 

  • Day L, Seymour RB, Pitts KF et al (2009) Incorporation of functional ingredients into foods. Trends Food Sci Technol 20:388–395

    Article  CAS  Google Scholar 

  • Degirmencioglu N, Gurbuz O, Sahan Y (2016) The monitoring, via an in vitro digestion system, of the bioactive content of vegetable juice fermented with Saccharomyces cerevisiae and Saccharomyces boulardii. J Food Process Pres 40:798–811

    Article  CAS  Google Scholar 

  • Dereli U, Turkyilmaz M, Yemis O et al (2015) Effects of clarification and pasteurization on the phenolics, antioxidant capacity, color density and polymeric color of black carrot (Daucus carota L.) juice. J Food Biochem 39:528–537

    Article  CAS  Google Scholar 

  • EFSA Panel on Dietetic Products Nutrition, Allergies (2011) Guidance on the scientific requirements for health claims related to gut and immune function. EFSA J 9:1984–1995

    Article  Google Scholar 

  • EFSA Panel on Food Additives and Nutrient Sources added to Food (2013) Scientific opinion on the re-evaluation of anthocyanins (E 163) as a food additive. EFSA J 11:3145–3195

    Article  Google Scholar 

  • Ekinci FY, Baser GM, Özcan E et al (2016) Characterization of chemical, biological, and antiproliferative properties of fermented black carrot juice, shalgam. Eur Food Res Technol 242:1–14

    Article  Google Scholar 

  • Ersus Bilek S, Yılmaz FM, Özkan G (2017) The effects of industrial production on black carrot concentrate quality and encapsulation of anthocyanins in whey protein hydrogels. Food Bioprod Process 102:72–80

    Article  CAS  Google Scholar 

  • Ersus S, Yurdagel U (2007) Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng 80:805–812

    Article  CAS  Google Scholar 

  • Erten H, Tanguler H, Canbas A (2008) A traditional Turkish lactic acid fermented beverage: shalgam (salgam). Food Rev Int 24:352–359

    Article  CAS  Google Scholar 

  • Esatbeyoglu T, Rodriguez-Werner M, Schlösser A et al (2016) Fractionation of plant bioactives from black carrots (Daucus carota subspecies sativus varietas atrorubens Alef.) by adsorptive membrane chromatography and analysis of their potential anti-diabetic activity. J Agric Food Chem 64:5901–5908

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Bhandari B (2010) Encapsulation of polyphenols—a review. Trends Food Sci Technol 21:510–523

    Article  CAS  Google Scholar 

  • Felgines C, Talavera S, Texier O et al (2006) Absorption and metabolism of red orange juice anthocyanins in rats. Br J Nutr 95:898–904

    Article  CAS  PubMed  Google Scholar 

  • Fernandes I, De Freitas V, Reis C et al (2012) A new approach on the gastric absorption of anthocyanins. Food Funct 3:508–516

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Herrera P, Pérez-Rodríguez ML, Aguilera-Delgado T et al (2016) Anthocyanin profile of red fruits and black carrot juices, purees and concentrates by HPLC-DAD-ESI/MS-QTOF. Int J Food Sci Technol 51:2290–2300

    Article  CAS  Google Scholar 

  • Gertsch J (2009) How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J Ethnopharmacol 122:177–183

    Article  PubMed  Google Scholar 

  • Gizir AM, Turker N, Artuvan E (2008) Pressurized acidified water extraction of black carrot [Daucus carota ssp. sativus var. atrorubens Alef.] anthocyanins. Eur Food Res Technol 226:363–370

    Article  CAS  Google Scholar 

  • Gras CC, Bogner H, Carle R et al (2016) Effect of genuine non-anthocyanin phenolics and chlorogenic acid on color and stability of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) anthocyanins. Food Res Int 85:291–300

    Article  CAS  PubMed  Google Scholar 

  • Grassmann J, Schnitzler WH, Habegger R (2007) Evaluation of different coloured carrot cultivars on antioxidative capacity based on their carotenoid and phenolic contents. Int J Food Sci Nutr 58:603–611

    Article  CAS  PubMed  Google Scholar 

  • Guldiken B, Boyacioglu D, Capanoglu E (2016) Optimization of extraction of bioactive compounds from black carrot using response surface methodology (RSM). Food Anal Methods 9:1876–1886

    Article  Google Scholar 

  • Iliopoulou I, Thaeron D, Baker A et al (2015) Analysis of the thermal degradation of the individual anthocyanin compounds of black carrot (Daucus carota L.): a new approach using high-resolution proton nuclear magnetic resonance spectroscopy. J Agric Food Chem 63:7066–7073

    Article  CAS  PubMed  Google Scholar 

  • Kalt W (2005) Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci 70:R11–R19

    Article  CAS  Google Scholar 

  • Kamiloglu S, Pasli AA, Ozcelik B et al (2015a) Colour retention, anthocyanin stability and antioxidant capacity in black carrot (Daucus carota) jams and marmalades: effect of processing, storage conditions and in vitro gastrointestinal digestion. J Funct Foods 13:1–10

    Article  CAS  Google Scholar 

  • Kamiloglu S, Pasli AA, Ozcelik B et al (2015b) Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chem 186:74–82

    Article  CAS  PubMed  Google Scholar 

  • Kamiloglu S, Capanoglu E, Bilen FD et al (2016a) Bioaccessibility of polyphenols from plant-processing byproducts of black carrot (Daucus carota L.). J Agric Food Chem 64:2450–2458

    Article  CAS  PubMed  Google Scholar 

  • Kamiloglu S, Toydemir G, Boyacioglu D et al (2016b) A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit Rev Food Sci Nutr 56:S110–S129

    Article  CAS  PubMed  Google Scholar 

  • Kamiloglu S, Grootaert C, Capanoglu E et al (2017a) Anti-inflammatory potential of black carrot (Daucus carota L.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA. hy926 cells. Mol Nut Food Res 61:1600455

  • Kamiloglu S, Ozkan G, Isik H et al (2017b) Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: an in vitro digestion study with a standardized static model. LWT Food Sci Technol 77:475–481

    Article  CAS  Google Scholar 

  • Kammerer D, Carle R, Schieber A (2003) Detection of peonidin and pelargonidin glycosides in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 17:2407–2412

    Article  CAS  PubMed  Google Scholar 

  • Kammerer D, Carle R, Schieber A (2004a) Characterization of phenolic acids in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 18:1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Kammerer D, Carle R, Schieber A (2004b) Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. Eur Food Res Technol 219:479–486

    Article  CAS  Google Scholar 

  • Khandare V, Walia S, Singh M et al (2011) Black carrot (Daucus carota ssp. sativus) juice: processing effects on antioxidant composition and color. Food Bioprod Process 89:482–486

    Article  CAS  Google Scholar 

  • Kirca A, Ozkan M, Cemeroglu B (2007) Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem 101:212–218

    Article  CAS  Google Scholar 

  • Kocher G, Brar A, Dhillon T (2016) Fermentative production of alcoholic beverage from black carrot. Agric Res J 53:138–140

    Article  Google Scholar 

  • Koley TK, Singh S, Khemariya P et al (2014) Evaluation of bioactive properties of Indian carrot (Daucus carota L.): a chemometric approach. Food Res Int 60:76–85

    Article  CAS  Google Scholar 

  • Kurilich AC, Clevidence BA, Britz SJ et al (2005) Plasma and urine responses are lower for acylated vs nonacylated anthocyanins from raw and cooked purple carrots. J Agric Food Chem 53:6537–6542

    Article  CAS  PubMed  Google Scholar 

  • Lazcano CA, Yoo KS, Pike LM (2001) A method for measuring anthocyanins after removing carotenes in purple colored carrots. Sci Hortic 90:321–324

    Article  CAS  Google Scholar 

  • Lee EJ, Yoo KS, Patil BS (2011) Total carotenoid, anthocyanin, and sugar contents in sliced or whole purple (cv. Betasweet) and orange carrots during 4-week cold storage. Hortic Environ Biotechnol 52:402–407

    Article  CAS  Google Scholar 

  • Leja M, Kaminska I, Kramer M et al (2013) The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods Hum Nutr 68:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger BT, Barnes DM, Reed JD (2008) Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem 56:3554–3560

    Article  CAS  PubMed  Google Scholar 

  • Minihane AM, Vinoy S, Russell WR et al (2015) Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr 114:999–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montilla EC, Arzaba MR, Hillebrand S et al (2011) Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars antonina, beta sweet, deep purple, and purple haze. J Agric Food Chem 59:3385–3390

    Article  CAS  PubMed  Google Scholar 

  • Murali S, Kar A, Mohapatra D et al (2015) Encapsulation of black carrot juice using spray and freeze drying. Food Sci Technol Int 21:604–612

    Article  CAS  PubMed  Google Scholar 

  • Nayak B, Liu RH, Tang J (2015) Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—a review. Crit Rev Food Sci Nutr 55:887–918

    Article  CAS  PubMed  Google Scholar 

  • Netzel M, Netzel G, Kammerer DR et al (2007) Cancer cell antiproliferation activity and metabolism of black carrot anthocyanins. Innov Food Sci Emerg Technol 8:365–372

    Article  CAS  Google Scholar 

  • Nicoli M, Anese M, Parpinel M (1999) Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol 10:94–100

    Article  CAS  Google Scholar 

  • Novotny JA, Clevidence BA, Kurilich AC (2012) Anthocyanin kinetics are dependent on anthocyanin structure. Br J Nutr 107:504–509

    Article  CAS  PubMed  Google Scholar 

  • Olejnik A, Rychlik J, Kidon M et al (2016) Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa. Food Chem 190:1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Ozen G, Akbulut M, Artik N (2011) Stability of black carrot anthocyanins in the Turkish delight (lokum) during storage. J Food Process Eng 34:1282–1297

    Article  CAS  Google Scholar 

  • Padayachee A, Netzel G, Netzel M et al (2013) Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion. Food Funct 4:906–916

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kang S, Jeong DY et al (2015) Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation. Genes Nut 10:1–14

    Article  Google Scholar 

  • Park S, Kang S, Jeong DY et al (2016) Black carrots fermented with Lactobacillus plantarum or Aspergillus oryzae prevent cognitive dysfunction by improving hippocampal insulin signalling in amyloid-β infused rats. J Funct Foods 25:354–366

    Article  CAS  Google Scholar 

  • Passamonti S, Vrhovsek U, Vanzo A et al (2003) The stomach as a site for anthocyanins absorption from food. FEBS Lett 544:210–213

    Article  CAS  PubMed  Google Scholar 

  • Patras A, Brunton NP, O’Donnell C et al (2010) Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 21:3–11

    Article  CAS  Google Scholar 

  • Poudyal H, Panchal S, Brown L (2010) Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. Br J Nutr 104:1322–1332

    Article  CAS  PubMed  Google Scholar 

  • Reyes LF, Cisneros-Zevallos L (2007) Degradation kinetics and colour of anthocyanins in aqueous extracts of purple-and red-flesh potatoes (Solanum tuberosum L.). Food Chem 100:885–894

    Article  CAS  Google Scholar 

  • Rothwell JA, Medina-Remon A, Perez-Jimenez J et al (2015) Effects of food processing on polyphenol contents: a systematic analysis using Phenol-Explorer data. Mol Nutr Food Res 59:160–170

    Article  CAS  PubMed  Google Scholar 

  • Sadilova E, Carle R, Stintzing FC (2007) Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol Nutr Food Res 51:1461–1471

    Article  CAS  PubMed  Google Scholar 

  • Sadilova E, Stintzing FC, Kammerer DR et al (2009) Matrix dependent impact of sugar and ascorbic acid addition on color and anthocyanin stability of black carrot, elderberry and strawberry single strength and from concentrate juices upon thermal treatment. Food Res Int 42:1023–1033

    Article  CAS  Google Scholar 

  • Schwarz M, Wray V, Winterhalter P (2004) Isolation and identification of novel pyranoanthocyanins from black carrot (Daucus carota L.) juice. J Agric Food Chem 52:5095–5101

    Article  CAS  PubMed  Google Scholar 

  • Singh PP, Saldana MD (2011) Subcritical water extraction of phenolic compounds from potato peel. Food Res Int 44:2452–2458

    Article  CAS  Google Scholar 

  • Siro I, Kapolna E, Kapolna B et al (2008) Functional food. Product development, marketing and consumer acceptance—a review. Appetite 51:456–467

    Article  PubMed  Google Scholar 

  • Sun T, Simon PW, Tanumihardjo SA (2009) Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (Daucus carota L.) of various colors. J Agric Food Chem 57:4142–4147

    Article  CAS  PubMed  Google Scholar 

  • Suzme S, Boyacioglu D, Toydemir G et al (2014) Effect of industrial juice concentrate processing on phenolic profile and antioxidant capacity of black carrots. Int J Food Sci Technol 49:819–829

    Article  CAS  Google Scholar 

  • Talavera S, Felgines C, Texier O et al (2003) Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J Nutr 133:4178–4182

    Article  CAS  PubMed  Google Scholar 

  • Turker N, Erdogdu F (2006) Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (Daucus carota var. L.). J Food Eng 76:579–583

    Article  CAS  Google Scholar 

  • Turker N, Aksay S, Ekiz HI (2004) Effect of storage temperature on the stability of anthocyanins of a fermented black carrot (Daucus carota var. L.) beverage: shalgam. J Agric Food Chem 52:3807–3813

    Article  CAS  PubMed  Google Scholar 

  • Turkyilmaz M, Ozkan M (2012) Kinetics of anthocyanin degradation and polymeric colour formation in black carrot juice concentrates during storage. Int J Food Sci Technol 47:2273–2281

    Article  CAS  Google Scholar 

  • Turkyilmaz M, Yemis O, Ozkan M (2012) Clarification and pasteurisation effects on monomeric anthocyanins and percent polymeric colour of black carrot (Daucus carota L.) juice. Food Chem 134:1052–1058

    Article  CAS  PubMed  Google Scholar 

  • Wallace TC, Giusti MM (2008) Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. J Food Sci 73:C241–C248

    Article  CAS  PubMed  Google Scholar 

  • Witrowa-Rajchert D, Bawol A, Czapski J et al (2009) Studies on drying of purple carrot roots. Drying Technol 27:1325–1331

    Article  Google Scholar 

  • Wright OR, Netzel GA, Sakzewski AR (2013) A randomized, double-blind, placebo-controlled trial of the effect of dried purple carrot on body mass, lipids, blood pressure, body composition, and inflammatory markers in overweight and obese adults: the QUENCH Trial 1. Can J Physiol Pharmacol 91:480–488

    Article  CAS  PubMed  Google Scholar 

  • Zozio S, Pallet D, Dornier M (2011) Evaluation of anthocyanin stability during storage of a coloured drink made from extracts of the Andean blackberry (Rubus glaucus Benth.), açai (Euterpe oleracea Mart.) and black carrot (Daucus carota L.). Fruits 66:203–215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Capanoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamiloglu, S., Van Camp, J. & Capanoglu, E. Black carrot polyphenols: effect of processing, storage and digestion—an overview. Phytochem Rev 17, 379–395 (2018). https://doi.org/10.1007/s11101-017-9539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-017-9539-8

Keywords

Navigation