Skip to main content

Advertisement

Log in

The effects of environmental stress on global agricultural landownership

  • Original Paper
  • Published:
Population and Environment Aims and scope Submit manuscript

Abstract

The adverse effects of climate change are likely to harm agricultural livelihoods and food supplies worldwide. Faced with challenges resulting from increasingly unpredictable weather patterns, some farmers might abandon their occupations. Existing research has found that drier than usual weather reduces landownership rates through these pathways. Such trends could be disruptive at a population level, threatening a country’s economic and political stability. We analyze subnational agricultural landownership data that cover 50 countries on four continents between 2004 and 2017. Our Demographic and Health Surveys (DHS) dataset speaks to the experiences of 1,123,714 households. Our predictor of environmental stress is the growing season standardized precipitation-evapotranspiration index, which measures deviations from local weather patterns dating back to 1901. We find that drier than average growing season weather is associated with declining landownership rates. For every dry growing season before a DHS survey, the agricultural landownership rate falls by 2.51%. This effect is most robust in African countries, which was the focus of a recent study on this topic, and we offer several plausible interpretations of these regional differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Replication files for the analysis producing our results are available on the corresponding authors Harvard dataverse page.

Notes

  1. There is a problematic data generating process in Peru, where DHS gathered data 6 times between 2004 and 2012. One- or two-year intervals for measuring the dependent variable results in overlapping measurement of the key environmental stress-independent variable. While the landownership question was asked in Peru, it is the only country that we exclude from our analysis.

References

  • Abbott, J. (2019). ‘No other option’: Climate change driving many to flee Guatemala. Migration | Al Jazeera. Retrieved February 2, 2022, from https://www.aljazeera.com/features/2019/5/13/no-other-option-climate-change-driving-many-to-flee-guatemala

  • Abel, G. J., Brottrager, M., Cuaresma, J. C., & Muttarak, R. (2019). Climate, conflict and forced migration. Global Environmental Change, 54, 239–249.

    Article  Google Scholar 

  • Afifi, T., Liwenga, E., & Kwezi, L. (2014). Rainfall-induced crop failure, food insecurity and out-migration in Same-Kilimanjaro. Tanzania. Climate and Development, 6(1), 53–60.

    Article  Google Scholar 

  • Agbonlahor, M., & Phillip, D. O. A. (2015). Deciding to settle: Rural-rural migration and agricultural labour supply in southwest Nigeria. The Journal of Developing Areas, 49(1), 267–284.

    Article  Google Scholar 

  • Al, Jazeera. (2021). Climate now a worse crisis than war for Afghanistan’s farmers. Gallery News | Al Jazeera. Retrieved February 2, 2022, from https://www.aljazeera.com/gallery/2021/10/26/photos-afghanistan-climate-change-farmers-cop26-agriculture

  • Amrhein, V., Greenland, S., & McShane, B. (2019). Scientists rise up against statistical significance. Nature, 567, 305–307.

    Article  Google Scholar 

  • Atiah, W. A., Amekudzi, L. K., Akum, R. A., Quansah, E., Antwi-Agyei, P., & Danuor, S. K. (2021). Climate variability and impacts on maize (Zea Mays) yield in Ghana, West Africa. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.4199

  • Ayeb-Karlsson, S. (2020). When the disaster strikes: Gendered (im)mobility in Bangladesh. Climate Risk Management., 29, 100237.

    Article  Google Scholar 

  • Baffour-Ata, F., Antwi-Agyei, P., Nkiaka, E., Dougill, A. J., Anning, A. K., & Kwakye, S. O. (2021). Effect of climate variability on yields of selected staple food crops in northern Ghana. Journal of Agriculture and Food Research, 6, 100205.

    Article  Google Scholar 

  • Beine, M., & Parsons, C. (2015). Climatic factors as determinants of international migration. The Scandinavian Journal of Economics, 117(2), 723–767.

    Article  Google Scholar 

  • Berlemann, M., & Steinhardt, M. F. (2017). Climate change, natural disasters, and migration—A survey of the empirical evidence. Cesifo Economic Studies, 63(4), 353–385.

    Article  Google Scholar 

  • Besag, J. E. (1972). Nearest-neighbour systems and the auto-logistic model for binary data. Journal of the Royal Statistical Society: Series B (methodological), 34(1), 75–83.

    Google Scholar 

  • Black, R., Arnell, N. W., Adger, W. N., Thomas, D., & Geddes, A. (2013). Migration, immobility and displacement outcomes following extreme events. Environmental Science & Policy, 27(1), S32–S43.

  • Black, R., Bennett, S. R. G., Thomas, S. M., & Beddington, J. R. (2011). Migration as adaptation. Nature, 478, 447–449.

  • Black, R., & Collyer, M. (2014). Populations ‘trapped’ at times of crisis. Forced Migration Review, 45, 52–56.

    Google Scholar 

  • Bohra-Mishra, P., Oppenheimer, M., & Hsiang, S. M. (2014). Nonlinear permanent migration response to climate variations but minimal response to disasters. Proceedings of the National Academy of Sciences, 111(27), 9780–9785.

    Article  Google Scholar 

  • Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., & Ballabio, C. (2020). Land use and climate change impacts on global soil erosion by water (2015–2070). Proceedings of the National Academy of Sciences, 117(36), 21994–22001.

  • Brzoska, M., & Fröhlich, C. (2016). Climate change, migration and violent conflict: Vulnerabilities, pathways and adaptation strategies. Migration and Development, 5(2), 190–210.

    Article  Google Scholar 

  • Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature, 527(7577), 235–239.

    Article  Google Scholar 

  • Carasik, L. (2017). Investing in murder: Honduran farmers sue World Bank’s lending arm for fueling land conflict. World Policy Journal, 34(2), 24–30.

    Article  Google Scholar 

  • Cattaneo, C., Beine, M., Fröhlich, C. J., Kniveton, D., Martinez-Zarzoso, I., Mastrorillo, M., & Schraven, B. (2019). Human migration in the era of climate change. Review of Environmental Economics and Policy, 13(2), 189–206.

  • Cattaneo, C., & Bosetti, V. (2017). Climate-induced international migration and conflicts. Cesifo Economic Studies, 63(4), 500–528.

    Article  Google Scholar 

  • Cattaneo, C., & Peri, G. (2016). The migration response to increasing temperatures. Journal of Development Economics, 122, 127–146.

    Article  Google Scholar 

  • Dasgupta, S., Hossain, M. M., Huq, M., & Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44(8), 815–826.

    Article  Google Scholar 

  • De Haas, H. (2005). International migration, remittances and development: Myths and facts. Third World Quarterly, 26(8), 1269–1284.

    Article  Google Scholar 

  • De Jong, G. (2000). Expectations, gender, and norms in migration decision-making. Population Studies, 54(3), 307–319.

    Article  Google Scholar 

  • Deininger, K. (2003). Land policies for growth and poverty reduction. World Bank Policy Research Report. World Bank and Oxford University Press.

    Google Scholar 

  • Démurger, S. (2015). Migration and families left behind: Families that stay behind when a member migrates do not clearly benefit. Institute of Labor Economics (IZA) working paper. University of Bonn. Accessed, 12/1/2022. Available: https://wol.iza.org/uploads/articles/144/pdfs/migration-and-families-left-behind.pdf?v=1

  • DHS (2021). The DHS program spatial data repository. Funded by USAID. spatialdata.dhsprogram.com. [Accessed August, 19, 2021].

  • Do, Q. T., & Iyer, L. (2009). Geography, poverty and conflict in Nepal. Journal of Peace Research, 47(6), 735–748.

    Article  Google Scholar 

  • Douma, P. (2006). Poverty, relative deprivation and political exclusion as drivers of violent conflict in Sub Saharan Africa. ISYP Journal on Science and World Affairs, 2(2), 59–69.

    Google Scholar 

  • Falco, C., Galeotti, M., & Olper, A. (2019). Climate change and migration: Is agriculture the main channel? Global Environmental Change, 59, 101995.

    Article  Google Scholar 

  • Fan, C. C. (2021). Householding and split households: Examples and stories of Asian migration to cities. Cities, 113, 103147.

    Article  Google Scholar 

  • Findley, S. E. (1994). Does drought increase migration? A study of migration from rural Mali during the 1983–1985 drought. The International Migration Review, 28(3), 539–553.

    Google Scholar 

  • Frelat, R., Lopez-Ridaura, S., Giller, K. E., Hererro, M., Douxchamps, S., Djurfeldt, A. A., & van Wijk, M. T. (2015). Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proceedings of the National Academy of Sciences, 113(2), 458–463.

  • Gray, C. L., & Mueller, V. (2012). Natural disasters and population mobility in Bangladesh. Proceedings of the National Academy of Sciences., 109(16), 6000–6005.

    Article  Google Scholar 

  • Griffith, D. A. (2003). Spatial filtering. Spatial Autocorrelation and Spatial Filtering (pp. 91–130). Springer.

    Chapter  Google Scholar 

  • Gröschl, J., & Steinwachs, T. (2017). Do natural hazards cause international migration? Cesifo Economic Studies, 63(4), 445–480.

    Article  Google Scholar 

  • Guri, F., Kapaj, I., Musabelliu, B., Meço, M., Topulli, E., Keco, R., ... & y Paloma, S. G. (2015). Characteristics of farming systems in Albania (No. JRC95833). Joint Research Centre (Seville site).

  • Gustin, G. (2020). Ravaged by drought, a Honduran village faces a choice: Pray for rain or migrate. Inside Climate News. Retrieved February 17, 2022, from https://insideclimatenews.org/news/08072019/climate-change-migration-honduras-drought-crop-failure-farming-deforestation-guatemala-trump/

  • Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 1–18.

    Article  Google Scholar 

  • Hasegawa, T., Sakurai, G., Fujimori, S., Takahashi, K., Hijioka, Y., & Masui, T. (2021). Extreme climate events increase risk of global food insecurity and adaptation needs. Nature Food, 2, 587–595.

    Article  Google Scholar 

  • Hazell, P., Poulton, C., Wiggins, S., & Dorward, A. (2010). The future of small farms: Trajectories and policy priorities. World Development, 38(10), 1349–1361.

    Article  Google Scholar 

  • Herlihy, P. H., & Tappan, T. A. (2019). Recognizing indigenous miskitu territory in Honduras. Geographical Review, 109(1), 67–86.

    Article  Google Scholar 

  • Hoffmann, R., Dimitrova, A., Muttarak, R., Cuaresma, J. C., & Peisker, J. (2020). A meta-analysis of country-level studies on environmental change and migration. Nature Climate Change, 10(10), 904–912.

    Article  Google Scholar 

  • Ide, T., Brzoska, M., Donges, J. F., & Schleussner, C. F. (2020). Multi-method evidence for when and how climate-related disasters contribute to armed conflict risk. Global Environmental Change, 62, 102063.

    Article  Google Scholar 

  • IPCC. (2021) Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.

  • Jayne, T. S., Chamberlin, J., & Headey, D. D. (2014). Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis. Food Policy, 48, 1–17.

    Article  Google Scholar 

  • Jowit, J. (2008). Drought land ‘will be abandoned’. The Guardian, 1 November. Available: https://www.theguardian.com/environment/2008/nov/02/climate-change-desertification-water-drought

  • Kabubo-Mariara, J., & Karanja, F. K. (2007). The economic impact of climate change on Kenyan crop agriculture: A Ricardian approach. Global and Planetary Change, 57(3–4), 319–330.

    Article  Google Scholar 

  • Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters, 7(3), 034032.

    Article  Google Scholar 

  • Lee, E. S. (1966). A theory of migration. Demography, 3(1), 47–57.

    Article  Google Scholar 

  • Leiber, M., Chin-Hong, P., Kelly, K., Dandu, M., & Weiser, S. D. (2020). A systematic review and meta-analysis assessing the impacts of droughts, flooding, and climate variability on malnutrition. Global Public Health, 17(1), 68–82.

    Article  Google Scholar 

  • Lerman, Z. (2006). The impact of land reform on rural household incomes in Transcaucasia. Eurasian Geography and Economics, 47(1), 112–123.

    Article  Google Scholar 

  • Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87.

    Article  Google Scholar 

  • Lindgren, F., & Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63(19), 1–25.

    Article  Google Scholar 

  • Linke, A. M., & Tollefsen, A. F. (2021). Environmental stress and agricultural landownership in Africa. Global Environmental Change, 67, 102237.

    Article  Google Scholar 

  • Linke, A. M., Witmer, F. D., O’Loughlin, J., McCabe, J. T., & Tir, J. (2018). The consequences of relocating in response to drought: Human mobility and conflict in contemporary Kenya. Environmental Research Letters, 13(9), 094014.

    Article  Google Scholar 

  • Lowder, S. K., Sanchez, M. V., & Bertini, R. (2021). Which farms feed the world and has farmland become more concentrated? World Development, 142, 105455.

    Article  Google Scholar 

  • Lowder, S. K., Skoet, J., & Raney, T. (2016). The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Development, 87, 16–29.

    Article  Google Scholar 

  • Malik, S. M. (2011). An empirical investigation of the relationship between food insecurity, landlessness, and violent conflict in Pakistan. Pakistan Institute of Development Economics. Working paper 71. Islambad, Pakistan. Accessed 20 June 2022. Available: https://core.ac.uk/download/pdf/6489617.pdf

  • McLeman, R., & Gemenne, F. (Eds.). (2018). Routledge handbook of environmental displacement and migration. Routledge

    Google Scholar 

  • Missirian, A., & Schlenker, W. (2017). Asylum applications respond to temperature fluctuations. Science, 358(6370), 1610–1614.

    Article  Google Scholar 

  • Mueller, V., Gray, C., & Kosec, K. (2014). Heat stress increases long-term human migration in rural Pakistan. Nature Climate Change, 4(3), 182–185.

    Article  Google Scholar 

  • Mulungu, K., & Tembo, G. (2015). Effects of weather variability on crop abandonment. Sustainability, 7(3), 2858–2870.

  • Nébié, E. K. I., & West, C. T. (2019). Migration and land-use/land-cover change in Burkina Faso: A comparative case study. Journal of Political Ecology, 26(1), 614–632.

    Google Scholar 

  • Nordkvelle, J., Rustad, S. A., & Salmivalli, M. (2017). Identifying the effect of climate variability on communal conflict through randomization. Climatic Change, 141, 627–639.

    Article  Google Scholar 

  • Park, Y. M., & Kim, Y. (2014). A spatially filtered multilevel model to account for spatial dependency: Application to self-rated health status in South Korea. International Journal of Health Geographics, 13(1), 1–10.

    Article  Google Scholar 

  • Pérez-Hoyos, A. (2018): Global crop and rangeland masks. European Commission, Joint Research Centre PID: http://data.europa.eu/89h/jrc-10112-10005

  • Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6(1), 1–9.

    Article  Google Scholar 

  • Rembold, F., Meroni, M., Urbano, F., Csak, G., Kerdiles, H., Pérez-Hoyos, A., & Negre, T. (2019). ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis. Agricultural Systems, 168, 247–257.

  • Riosmena, F., Nawrotzki, R., & Hunter, L. (2018). Climate migration at the height and end of the great Mexican emigration era. Population Development Review, 44, 455–488.

    Article  Google Scholar 

  • Rodríguez, G. (2011). Bajo Aguán, Honduras: History of rural poverty turns dramatically violent in region where wealthy landowners impose their will. Accessed 9 June, 2022. Available: https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=10928&context=noticen

  • Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B, 71(2), 319–392.

    Article  Google Scholar 

  • Samberg, L. H., Gerber, J. S., Ramankutty, N., Herrero, M., & West, P. C. (2016). Subnational distribution of average farm size and smallholder contributions to global food production. Environmental Research Letters, 11(12), 124010.

    Article  Google Scholar 

  • Schutte, S., Vestby, J., Carling, J., & Buhaug, H. (2021). Climatic conditions are weak predictors of asylum migration. Nature Communications, 12(1), 1–10.

    Google Scholar 

  • Stuch, B., Alcamo, J., & Schaldach, R. (2019). Projected climate change impacts on mean and year-to-year variability of yield of key smallholder crops in sub-Saharan Africa. Climate and Development, 13(3), 268–282.

    Article  Google Scholar 

  • Suhrke, A. (1994). Environmental degradation and population flows. Journal of International Affairs, 47(2), 473–496.

    Google Scholar 

  • Sultan, B., Defrance, D., & Iizumi, T. (2019). Evidence of crop production losses in West Africa due to historical global warming in two crop models. Scientific Reports, 9(1), 1–15.

    Article  Google Scholar 

  • Thein, S., Diepart, J. C., Moe, H., & Allaverdian, C. (2018). Large-scale land acquisitions for agricultural development in Myanmar: A review of past and current processes. Mekong Region Land Governance report. Accessed 8 June, 2022, Available: https://www.mrlg.org/publications/large-scale-land-acquisitions-for-agricultural-development-in-myanmar-a-review-of-past-and-current-processes/

  • U.S. Environmental Protection Agency. (2021). Climate change indicators in the United States: Sea level. Accessed March, 2022. Available: https://www.epa.gov/climate-indicators/climate-change-indicators-sea-level

  • United Nations. (2016). The UNCCD: Securing life on land (2016–2017). United Nations Convention to Combat Desertification. Accessed December, 2022. Available: https://www.unccd.int/resources/publications/unccd-securing-life-land-2016-2017

  • Vestby, J. (2019). Climate variability and individual motivations for participating in political violence. Global Environmental Change, 56, 114–123.

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718.

    Article  Google Scholar 

  • Wrathall, D. J., Bury, J., Carey, M., Mark, B., McKenzie, J., Young, K., & Rampini, C. (2014). Migration amidst climate rigidity traps: Resource politics and social-ecological possibilism in Honduras and Peru. Annals of the American Association of Geographers, 104, 292–304.

Download references

Funding

This study has been supported by the Research Council of Norway (grant no. 268135/E10CROP).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Andrew Linke and Matthew Shawcraft. The first draft of the manuscript was written by both authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrew Linke.

Ethics declarations

Competing interests

The authors declare claim no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 545 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linke, A., Shawcroft, M. The effects of environmental stress on global agricultural landownership. Popul Environ 45, 19 (2023). https://doi.org/10.1007/s11111-023-00429-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11111-023-00429-0

Keywords

Navigation