Skip to main content

Advertisement

Log in

Interfacial proton-coupled electron transfer in metal oxide semiconductor photocatalysis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Metal oxide semiconductor-based photo(electro)catalysis has drawn increasing attention due to its prominent applications in solar energy conversion and environmental remediation. The photogenerated valence-band hole and conduction-band electron diffuse to the metal oxide/solution interface and trigger subsequent chemical conversions involving multiple proton-coupled electron (hole) transfer (PCET) steps to reconstruct chemical bonds. We review herein our recent work on regulating such PCET processes in photocatalytic oxygen reduction and water oxidation. The reaction thermodynamics, kinetics, and PCET pathways can be tuned by controlling the crystal facet and surface structure. Reductive conversion of organic halides by PCET on pristine or modified TiO2 as well as its unique kinetic features are also discussed. Such mechanistic fundamentals of interfacial reactions could guide development of photocatalysts with improved efficiency and desired selectivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 5358 (1972)

    Article  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 1 (1995)

    Article  Google Scholar 

  3. M. Kitano, M. Matsuoka, M. Ueshima, M. Anpo, Appl. Catal. A Gen. 325, 1 (2007)

    Article  CAS  Google Scholar 

  4. Y. Qu, X. Duan, Chem. Soc. Rev. 42, 7 (2013)

    Article  Google Scholar 

  5. N. Serpone, A.V. Emeline, S. Horikoshi, V.N. Kuznetsov, V.K. Ryabchuk, Photochem. Photobiol. Sci. 11, 7 (2012)

    Article  Google Scholar 

  6. H. Tada, T. Kiyonaga, S.-I. Naya, Chem. Soc. Rev. 38, 7 (2009)

    Article  Google Scholar 

  7. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 19 (2014)

    Article  Google Scholar 

  8. X. Chen, C. Li, M. Gratzel, R. Kostecki, S.S. Mao, Chem. Soc. Rev. 41, 23 (2012)

    Google Scholar 

  9. F. Wen, C. Li, Acc. Chem. Res. 46, 11 (2013)

    Article  Google Scholar 

  10. M.A. Henderson, I. Lyubinetsky, Chem. Rev. 113, 6 (2013)

    Article  Google Scholar 

  11. Q. Guo, C. Zhou, Z. Ma, Z. Ren, H. Fan, X. Yang, Chem. Soc. Rev. 45, 13 (2016)

    Article  Google Scholar 

  12. X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43, 1 (2014)

    Article  Google Scholar 

  13. X. Lang, W. Ma, C. Chen, H. Ji, J. Zhao, Acc. Chem. Res. 47, 2 (2014)

    Article  Google Scholar 

  14. Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photon. 6, 8 (2012)

    Article  Google Scholar 

  15. E. Grabowska, M. Diak, M. Marchelek, A. Zaleska, Appl. Catal. B Environ. 156–157 (2014)

  16. M. Kapilashrami, Y. Zhang, Y.-S. Liu, A. Hagfeldt, J. Guo, Chem. Rev. 114, 19 (2014)

    Article  Google Scholar 

  17. P.S. Kumar, J. Sundaramurthy, S. Sundarrajan, V.J. Babu, G. Singh, S.I. Allakhverdiev, S. Ramakrishna, Energy Environ. Sci. 7, 10 (2014)

    Google Scholar 

  18. L. Liu, X. Chen, Chem. Rev. 114, 19 (2014)

    Google Scholar 

  19. W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, ChemSusChem 7, 3 (2014)

    Article  Google Scholar 

  20. S. Rawalekar, T. Mokari, Adv. Energy Mater. 3, 1 (2013)

    Article  Google Scholar 

  21. N. Serpone, J. Phys. Chem. B 110, 48 (2006)

    Article  Google Scholar 

  22. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, J. Mater. Chem. A 3, 6 (2015)

    Google Scholar 

  23. J.N. Schrauben, R. Hayoun, C.N. Valdez, M. Braten, L. Fridley, J.M. Mayer, Science 336, 6086 (2012)

    Article  Google Scholar 

  24. C. Chen, T. Shi, W. Chang, J. Zhao, ChemCatChem 7, 5 (2015)

    Google Scholar 

  25. X. Pang, C. Chen, H. Ji, Y. Che, W. Ma, J. Zhao, Molecules 19, 10 (2014)

    Google Scholar 

  26. H. Sheng, H. Ji, W. Ma, C. Chen, J. Zhao, Angew. Chem. Int. Ed. 52, 37 (2013)

    Article  Google Scholar 

  27. Y. Zhang, H. Zhang, H. Ji, W. Ma, C. Chen, J. Zhao, J. Am. Chem. Soc. 138, 8 (2016)

    Google Scholar 

  28. C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 11 (2010)

    Google Scholar 

  29. Y. Zhang, Z. Zhou, C. Chen, Y. Che, H. Ji, W. Ma, J. Zhang, D. Song, J. Zhao, ACS Appl. Mater. Interfaces 6, 15 (2014)

    Google Scholar 

  30. Y. Zhang, S. Jiang, W. Song, P. Zhou, H. Ji, W. Ma, W. Hao, C. Chen, J. Zhao, Energy Environ. Sci. 8, 4 (2015)

    Google Scholar 

  31. H. Sheng, H. Zhang, W. Song, H. Ji, W. Ma, C. Chen, J. Zhao, Angew. Chem. Int. Ed. 54, 20 (2015)

    Google Scholar 

  32. Y. Zhao, W. Ma, Y. Li, H. Ji, C. Chen, H. Zhu, J. Zhao, Angew. Chem. Int. Ed. 51, 13 (2012)

    Google Scholar 

  33. X. Pang, W. Chang, C. Chen, H. Ji, W. Ma, J. Zhao, J. Am. Chem. Soc. 136, 24 (2014)

    Article  Google Scholar 

  34. P. Salvador, J. Phys. Chem. C 111, 45 (2007)

    Article  Google Scholar 

  35. J. Chen, Y.-F. Li, P. Sit, A. Selloni, J. Am. Chem. Soc. 135, 50 (2013)

    Article  Google Scholar 

  36. Y.-F. Li, A. Selloni, ACS Catal. 6, 7 (2016)

    Google Scholar 

  37. B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, J. Am. Chem. Soc. 134, 9 (2012)

    Google Scholar 

  38. O. Zandi, T.W. Hamann, Nat. Chem. 8, 8 (2016)

    Article  Google Scholar 

  39. B. Iandolo, A. Hellman, Angew. Chem. Int. Ed. 53, 49 (2014)

    Article  Google Scholar 

  40. M.J. Knapp, K. Rickert, J.P. Klinman, J. Am. Chem. Soc. 124, 15 (2002)

    Article  Google Scholar 

  41. D.R. Weinberg, C.J. Gagliardi, J.F. Hull, C.F. Murphy, C.A. Kent, B.C. Westlake, A. Paul, D.H. Ess, D.G. McCafferty, T.J. Meyer, Chem. Rev. 112, 7 (2012)

    Article  Google Scholar 

  42. M. Setvin, U. Aschauer, J. Hulva, T. Simschitz, B. Daniel, M. Schmid, A. Selloni, U. Diebold, J. Am. Chem. Soc. 138, 30 (2016)

    Article  Google Scholar 

  43. M.A. Henderson, W.S. Epling, C.H.F. Peden, C.L. Perkins, J. Phys. Chem. B 107, 2 (2003)

    Article  Google Scholar 

  44. J. Matthiesen, S. Wendt, J.Ø. Hansen, G.K.H. Madsen, E. Lira, P. Galliker, E.K. Vestergaard, R. Schaub, E. Lægsgaard, B. Hammer, F. Besenbacher, ACS Nano 3, 3 (2009)

    Article  Google Scholar 

  45. Y. Du, N.A. Deskins, Z. Zhang, Z. Dohnalek, M. Dupuis, I. Lyubinetsky, J. Phys. Chem. C 114, 40 (2010)

    Google Scholar 

  46. Y. He, A. Tilocca, O. Dulub, A. Selloni, U. Diebold, Nat. Mater. 8, 7 (2009)

    Article  Google Scholar 

  47. T.D. Bui, A. Kimura, S. Ikeda, M. Matsumura, J. Am. Chem. Soc. 132, 24 (2010)

    Article  Google Scholar 

  48. J. Blomquist, L.E. Walle, P. Uvdal, A. Borg, A. Sandell, J. Phys. Chem. C 112, 42 (2008)

    Article  Google Scholar 

  49. Z. Zhao, Z. Li, Z. Zou, J. Phys. Chem. C 116, 13 (2012)

    Google Scholar 

  50. S. Kohtani, E. Yoshioka, K. Saito, A. Kudo, H. Miyabe, J. Phys. Chem. C 116, 33 (2012)

    Article  Google Scholar 

  51. K. Imamura, K. Hashimoto, H. Kominami, Chem. Commun. 48, 36 (2012)

    Article  Google Scholar 

  52. A. Molinari, A. Maldotti, R. Amadelli, Chem. Eur. J. 20, 25 (2014)

    Article  Google Scholar 

  53. A. Kierkegaard, L. Balk, U. Tjärnlund, C.A. de Wit, B. Jansson, Environ. Sci. Technol. 33, 10 (1999)

    Article  Google Scholar 

  54. A. Li, C. Tai, Z. Zhao, Y. Wang, Q. Zhang, G. Jiang, J. Hu, Environ. Sci. Technol. 41, 19 (2007)

    Google Scholar 

  55. C. Sun, D. Zhao, C. Chen, W. Ma, J. Zhao, Environ. Sci. Technol. 43, 1 (2009)

    Article  Google Scholar 

  56. C. Sun, J. Zhao, H. Ji, W. Ma, C. Chen, Chemosphere 89, 4 (2012)

    Google Scholar 

  57. W. Chang, C. Sun, X. Pang, H. Sheng, Y. Li, H. Ji, W. Song, C. Chen, W. Ma, J. Zhao, Angew. Chem. Int. Ed. 54, 7 (2015)

    Google Scholar 

  58. P. Dongare, S. Maji, L. Hammarström, J. Am. Chem. Soc. 138, 7 (2016)

    Article  Google Scholar 

  59. L. Li, W. Chang, Y. Wang, H. Ji, C. Chen, W. Ma, J. Zhao, Chem. Eur. J. 20, 35 (2014)

    CAS  Google Scholar 

  60. Y. Lv, X. Cao, H. Jiang, W. Song, C. Chen, J. Zhao, Appl. Catal. B Environ. 194 (2016)

  61. A.A. Isse, S. Gottardello, C. Durante, A. Gennaro, Phys. Chem. Chem. Phys. 10, 17 (2008)

    Article  Google Scholar 

  62. H. Akiba, M. Kofu, H. Kobayashi, H. Kitagawa, K. Ikeda, T. Otomo, O. Yamamuro, J. Am. Chem. Soc. 138, 32 (2016)

    Article  Google Scholar 

  63. A.C. Bissember, A. Levina, G.C. Fu, J. Am. Chem. Soc. 134, 34 (2012)

    Article  Google Scholar 

  64. A. Marimuthu, J. Zhang, S. Linic, Science 339, 6127 (2013)

    Article  Google Scholar 

  65. A.N. Pestryakov, V.P. Petranovskii, A. Kryazhov, O. Ozhereliev, N. Pfänder, A. Knop-Gericke, Chem. Phys. Lett. 385, 3–4 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support of this work from the 973 Project (no. 2013CB632405), National Natural Science Foundation of China (NSFC, nos. 21407153, 21537003, 21590811, and 21521062) and “Strategic Priority Research Program” of the Chinese Academy of Sciences (no. XDA09030200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincai Zhao.

Additional information

Special Issue of the 1st International Symposium on Photocatalysis at Fuzhou University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Duan, R., Ji, H. et al. Interfacial proton-coupled electron transfer in metal oxide semiconductor photocatalysis. Res Chem Intermed 43, 4997–5009 (2017). https://doi.org/10.1007/s11164-017-3043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3043-z

Keywords

Navigation