Skip to main content
Log in

Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Greater understanding of enzymatic mechanisms aids the discovery of new targets for biologics, the development of biocatalytic transformations, and de novo enzyme design. Methods using quantum mechanical (QM) potentials, such as density functional theory, have enabled complex multistep enzymatic mechanisms to be studied, often in quantitative detail. Nevertheless, the dynamic interconversion of enzyme conformations between active and inactive catalytic forms, involving length- and timescales inaccessible to QM treatments, presents a formidable challenge for the development of computational models for allosterically modulated enzymes. We present an overview of the key concepts underlying multistate models of enzyme catalysis, enzyme allostery, and the challenge that large-scale conformational changes pose for methods using QM, QM/MM, and MM potentials. Structural clustering is highlighted as a valuable approach to bridge molecular dynamics conformational sampling of MM potentials and quantum chemical cluster models of catalysis. Particularly relevant to this discussion is structural allostery, which serves as the exemplar of conformational consequences. Here, a well-characterized allosteric enzyme, imidazole glycerol phosphate synthase, is used to showcase the importance of multiple conformations and guide a new direction for qualitative understanding and quantitative modeling in enzyme catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2021 American Chemical Society

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Edwards DR, Lohman DC, Wolfenden R (2012) Catalytic proficiency: the extreme case of S-O cleaving sulfatases. J Am Chem Soc 134:525–531. https://doi.org/10.1021/ja208827q

    Article  CAS  PubMed  Google Scholar 

  2. Fischer E (1894) Einfluss der configuration auf die wirkung der enzyme. Ber Dtsch Chem Ges 27:2985–2993. https://doi.org/10.1002/cber.18940270364

    Article  CAS  Google Scholar 

  3. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci 44:98–104. https://doi.org/10.1073/pnas.44.2.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramanathan A, Savol A, Burger V et al (2014) Protein conformational populations and functionally relevant substates. Acc Chem Res 47:149–156. https://doi.org/10.1021/ar400084s

    Article  CAS  PubMed  Google Scholar 

  5. Warshel A (1978) Energetics of enzyme catalysis. Proc Natl Acad Sci USA 75:5250–5254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24:966–978. https://doi.org/10.1063/1.1742723

    Article  CAS  Google Scholar 

  7. Smith AJT, Müller R, Toscano MD et al (2008) Structural reorganization and preorganization in enzyme active sites: comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle. J Am Chem Soc 130:15361–15373. https://doi.org/10.1021/ja803213p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Warshel A, Sharma PK, Kato M et al (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106:3210–3235. https://doi.org/10.1021/cr0503106

    Article  CAS  PubMed  Google Scholar 

  9. Lodola A, Sirirak J, Fey N et al (2010) Structural fluctuations in enzyme-catalyzed reactions: determinants of reactivity in fatty acid amide hydrolase from multivariate statistical analysis of quantum mechanics/molecular mechanics paths. J Chem Theory Comput 6:2948–2960. https://doi.org/10.1021/ct100264j

    Article  CAS  PubMed  Google Scholar 

  10. Benkovic SJ (2003) A perspective on enzyme catalysis. Science 301:1196–1202. https://doi.org/10.1126/science.1085515

    Article  CAS  PubMed  Google Scholar 

  11. Himo F (2017) Recent trends in quantum chemical modeling of enzymatic reactions. J Am Chem Soc 139:6780–6786. https://doi.org/10.1021/jacs.7b02671

    Article  CAS  PubMed  Google Scholar 

  12. Lind MES, Himo F (2013) Quantum chemistry as a tool in asymmetric biocatalysis: limonene epoxide hydrolase test case. Angew Chem Int Ed 52:4563–4567. https://doi.org/10.1002/anie.201300594

    Article  CAS  Google Scholar 

  13. Lind MES, Himo F (2014) Theoretical study of reaction mechanism and stereoselectivity of arylmalonate decarboxylase. ACS Catal 4:4153–4160. https://doi.org/10.1021/cs5009738

    Article  CAS  Google Scholar 

  14. Lind MES, Himo F (2016) Quantum chemical modeling of enantioconvergency in soluble epoxide hydrolase. ACS Catal 6:8145–8155. https://doi.org/10.1021/acscatal.6b01562

    Article  CAS  Google Scholar 

  15. Hotta K, Chen X, Paton RS et al (2012) Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis. Nature 483:355–358. https://doi.org/10.1038/nature10865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tantillo DJ, Jiangang C, Houk KN (1998) Theozymes and compuzymes: theoretical models for biological catalysis. Curr Opin Chem Biol 2:743–750. https://doi.org/10.1016/S1367-5931(98)80112-9

    Article  CAS  PubMed  Google Scholar 

  17. Kiss G, Çelebi-Ölçüm N, Moretti R et al (2013) Computational enzyme design. Angew Chem Int Ed 52:5700–5725. https://doi.org/10.1002/anie.201204077

    Article  CAS  Google Scholar 

  18. Schütz M (2000) Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T). J Chem Phys 113:9986–10001. https://doi.org/10.1063/1.1323265

    Article  Google Scholar 

  19. Claeyssens F, Harvey JN, Manby FR et al (2006) High-accuracy computation of reaction barriers in enzymes. Angew Chem 118:7010–7013. https://doi.org/10.1002/ange.200602711

    Article  Google Scholar 

  20. Lin H, Truhlar DG (2005) Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. J Phys Chem A 109:3991–4004. https://doi.org/10.1021/jp0446332

    Article  CAS  PubMed  Google Scholar 

  21. Yu EW, Koshland DE (2001) Propagating conformational changes over long (and short) distances in proteins. Proc Natl Acad Sci 98:9517–9520. https://doi.org/10.1073/pnas.161239298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nussinov R, Tsai C-J (2014) Unraveling structural mechanisms of allosteric drug action. Trends Pharmacol Sci 35:256–264. https://doi.org/10.1016/j.tips.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  23. Nussinov R (2016) Introduction to protein ensembles and allostery. Chem Rev 116:6263–6266. https://doi.org/10.1021/acs.chemrev.6b00283

    Article  CAS  PubMed  Google Scholar 

  24. Otten R, Liu L, Kenner LR et al (2018) Rescue of conformational dynamics in enzyme catalysis by directed evolution. Nat Commun 9:1314. https://doi.org/10.1038/s41467-018-03562-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Otten R, Pádua RAP, Bunzel HA, et al (2020) How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science eabd3623. https://doi.org/10.1126/science.abd3623

  26. Broom A, Rakotoharisoa RV, Thompson MC et al (2020) Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico. Nat Commun 11:4808. https://doi.org/10.1038/s41467-020-18619-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhabha G, Lee J, Ekiert DC et al (2011) A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332:234–238. https://doi.org/10.1126/science.1198542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wurm JP, Sung S, Kneuttinger AC et al (2021) Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex. Nat Commun 12:2748. https://doi.org/10.1038/s41467-021-22968-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmadi S, Herrera LB, Chehelamirani M et al (2018) Multiscale modeling of enzymes: QM-cluster, QM/MM, and QM/MM/MD: a tutorial review. Int J Quantum Chem 118:e25558. https://doi.org/10.1002/qua.25558

    Article  CAS  Google Scholar 

  30. Maria-Solano MA, Serrano-Hervás E, Romero-Rivera A et al (2018) Role of conformational dynamics in the evolution of novel enzyme function. Chem Commun 54:6622–6634. https://doi.org/10.1039/C8CC02426J

    Article  CAS  Google Scholar 

  31. Lonsdale R, Harvey JN, Mulholland AJ (2012) A practical guide to modelling enzyme-catalysed reactions. Chem Soc Rev 41:3025. https://doi.org/10.1039/c2cs15297e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiménez-Osés G, Osuna S, Gao X et al (2014) The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat Chem Biol 10:431–436. https://doi.org/10.1038/nchembio.1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maria-Solano MA, Romero-Rivera A, Osuna S (2017) Exploring the reversal of enantioselectivity on a zinc-dependent alcohol dehydrogenase. Org Biomol Chem 15:4122–4129. https://doi.org/10.1039/C7OB00482F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maria-Solano MA, Iglesias-Fernández J, Osuna S (2019) Deciphering the allosterically driven conformational ensemble in tryptophan synthase evolution. J Am Chem Soc 141:13049–13056. https://doi.org/10.1021/jacs.9b03646

    Article  CAS  PubMed  Google Scholar 

  35. Nussinov R, Tsai C-J (2015) Allostery without a conformational change? Revisiting the paradigm. Curr Opin Struct Biol 30:17–24. https://doi.org/10.1016/j.sbi.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  36. Myers RS, Jensen JR, Deras IL et al (2003) Substrate-induced changes in the ammonia channel for imidazole glycerol phosphate synthase. Biochemistry 42:7013–7022. https://doi.org/10.1021/bi034314l

    Article  CAS  PubMed  Google Scholar 

  37. Glowacki DR, Harvey JN, Mulholland AJ (2012) Taking Ockham’s razor to enzyme dynamics and catalysis. Nat Chem 4:169–176. https://doi.org/10.1038/nchem.1244

    Article  CAS  PubMed  Google Scholar 

  38. Benkovic SJ, Hammes GG, Hammes-Schiffer S (2008) Free-energy landscape of enzyme catalysis. Biochemistry 47:3317–3321. https://doi.org/10.1021/bi800049z

    Article  CAS  PubMed  Google Scholar 

  39. Eisenstein O, Ujaque G, Lledós A (2020) What makes a good (computed) energy profile? In: Lledós A, Ujaque G (eds) New directions in the modeling of organometallic reactions. Springer, Cham, pp 1–38

    Google Scholar 

  40. Yoon T (2009) Commentary: reviewer comments a discussion of “can reaction mechanisms be proven?” Chemical Education Today.

  41. Peng Q, Duarte F, Paton RS (2016) Computing organic stereoselectivity – from concepts to quantitative calculations and predictions. Chem Soc Rev 45:6093–6107. https://doi.org/10.1039/C6CS00573J

    Article  CAS  PubMed  Google Scholar 

  42. Luchini G, Alegre-Requena JV, Funes-Ardoiz I, Paton RS (2020) GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. F1000Res 9:291. https://doi.org/10.12688/f1000research.22758.1

  43. Kozuch S, Shaik S (2011) How to conceptualize catalytic cycles? The energetic span model. Acc Chem Res 44:101–110. https://doi.org/10.1021/ar1000956

    Article  CAS  PubMed  Google Scholar 

  44. Masgrau L, Truhlar DG (2015) The importance of ensemble averaging in enzyme kinetics. Acc Chem Res 48:431–438. https://doi.org/10.1021/ar500319e

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195. https://doi.org/10.1126/science.1088172

    Article  CAS  PubMed  Google Scholar 

  46. Bistoni G, Polyak I, Sparta M et al (2018) Toward accurate QM/MM reaction barriers with large QM regions using domain based pair natural orbital coupled cluster theory. J Chem Theory Comput 14:3524–3531. https://doi.org/10.1021/acs.jctc.8b00348

    Article  CAS  PubMed  Google Scholar 

  47. Siegbahn PEM, Himo F (2011) The quantum chemical cluster approach for modeling enzyme reactions. WIREs Comput Mol Sci 1:323–336. https://doi.org/10.1002/wcms.13

    Article  CAS  Google Scholar 

  48. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598

    Article  CAS  PubMed  Google Scholar 

  49. Frauenfelder H, McMahon B (1998) Dynamics and function of proteins: the search for general concepts. Proc Natl Acad Sci 95:4795–4797. https://doi.org/10.1073/pnas.95.9.4795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5:808–814. https://doi.org/10.1038/nchembio.238

    Article  CAS  PubMed  Google Scholar 

  51. Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci 98:12468–12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Junker JP, Ziegler F, Rief M (2009) Ligand-dependent equilibrium fluctuations of single calmodulin molecules. Science 323:633–637. https://doi.org/10.1126/science.1166191

    Article  CAS  PubMed  Google Scholar 

  53. Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468:72–76. https://doi.org/10.1038/nature09450

    Article  CAS  PubMed  Google Scholar 

  54. Bai X, McMullan G, Scheres SHW (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57. https://doi.org/10.1016/j.tibs.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  55. Glaeser RM (2016) How good can cryo-EM become? Nat Methods 13:28–32. https://doi.org/10.1038/nmeth.3695

    Article  CAS  PubMed  Google Scholar 

  56. Nogales E (2016) The development of cryo-EM into a mainstream structural biology technique. Nat Methods 13:24–27. https://doi.org/10.1038/nmeth.3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bonomi M, Vendruscolo M (2019) Determination of protein structural ensembles using cryo-electron microscopy. Curr Opin Struct Biol 56:37–45. https://doi.org/10.1016/j.sbi.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  58. Fraser JS, van den Bedem H, Samelson AJ et al (2011) Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci 108:16247–16252. https://doi.org/10.1073/pnas.1111325108

    Article  PubMed  PubMed Central  Google Scholar 

  59. Qin H, Lim L, Song J (2012) Protein dynamics at Eph receptor-ligand interfaces as revealed by crystallography NMR and MD simulations. BMC Biophys 5:2. https://doi.org/10.1186/2046-1682-5-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fenwick RB, van den Bedem H, Fraser JS, Wright PE (2014) Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc Natl Acad Sci 111:E445–E454. https://doi.org/10.1073/pnas.1323440111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mulder FAA, Filatov M (2010) NMR chemical shift data and ab initio shielding calculations: emerging tools for protein structure determination. Chem Soc Rev 39:578–590. https://doi.org/10.1039/B811366C

    Article  CAS  PubMed  Google Scholar 

  62. Tolman JR, Ruan K (2006) NMR residual dipolar couplings as probes of biomolecular dynamics. Chem Rev 106:1720–1736. https://doi.org/10.1021/cr040429z

    Article  CAS  PubMed  Google Scholar 

  63. Sibille N, Bernadó P (2012) Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS. Biochem Soc Trans 40:955–962. https://doi.org/10.1042/BST20120149

    Article  CAS  PubMed  Google Scholar 

  64. Schwalbe M, Ozenne V, Bibow S et al (2014) Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 22:238–249. https://doi.org/10.1016/j.str.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  65. Rivalta I, Sultan MM, Lee N-S et al (2012) Allosteric pathways in imidazole glycerol phosphate synthase. Proc Natl Acad Sci 109:E1428–E1436. https://doi.org/10.1073/pnas.1120536109

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lisi GP, Loria JP (2017) Allostery in enzyme catalysis. Curr Opin Struct Biol 47:123–130. https://doi.org/10.1016/j.sbi.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  67. Negre CFA, Morzan UN, Hendrickson HP et al (2018) Eigenvector centrality for characterization of protein allosteric pathways. Proc Natl Acad Sci USA 115:E12201–E12208. https://doi.org/10.1073/pnas.1810452115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bonomi M, Heller GT, Camilloni C, Vendruscolo M (2017) Principles of protein structural ensemble determination. Curr Opin Struct Biol 42:106–116. https://doi.org/10.1016/j.sbi.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  69. Jing Z, Liu C, Cheng SY et al (2019) Polarizable force fields for biomolecular simulations: recent advances and applications. Annu Rev Biophys 48:371–394. https://doi.org/10.1146/annurev-biophys-070317-033349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Unke OT, Chmiela S, Sauceda HE, et al (2021) Machine learning force fields. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c01111

  71. Shaw DE, Maragakis P, Lindorff-Larsen K et al (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346. https://doi.org/10.1126/science.1187409

    Article  CAS  PubMed  Google Scholar 

  72. Hansmann UHE (1997) Parallel tempering algorithm for conformational studies of biological molecules. Chem Phys Lett 281:140–150. https://doi.org/10.1016/S0009-2614(97)01198-6

    Article  CAS  Google Scholar 

  73. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151. https://doi.org/10.1016/S0009-2614(99)01123-9

    Article  CAS  Google Scholar 

  74. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99:12562–12566. https://doi.org/10.1073/pnas.202427399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou T, Caflisch A (2012) Free energy guided sampling. J Chem Theory Comput 8:2134–2140. https://doi.org/10.1021/ct300147t

    Article  CAS  PubMed  Google Scholar 

  76. Bacci M, Vitalis A, Caflisch A (2015) A molecular simulation protocol to avoid sampling redundancy and discover new states. Biochim Biophys Acta 1850:889–902. https://doi.org/10.1016/j.bbagen.2014.08.013

  77. Zimmerman MI, Bowman GR (2015) FAST conformational searches by balancing exploration/exploitation trade-offs. J Chem Theory Comput 11:5747–5757. https://doi.org/10.1021/acs.jctc.5b00737

    Article  CAS  PubMed  Google Scholar 

  78. Shrestha UR, Smith JC, Petridis L (2021) Full structural ensembles of intrinsically disordered proteins from unbiased molecular dynamics simulations. Commun Biol 4:243. https://doi.org/10.1038/s42003-021-01759-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Campbell E, Kaltenbach M, Correy GJ et al (2016) The role of protein dynamics in the evolution of new enzyme function. Nat Chem Biol 12:944–950. https://doi.org/10.1038/nchembio.2175

    Article  CAS  PubMed  Google Scholar 

  80. Hong N-S, Petrović D, Lee R et al (2018) The evolution of multiple active site configurations in a designed enzyme. Nat Commun 9:3900. https://doi.org/10.1038/s41467-018-06305-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Romero-Rivera A, Garcia-Borràs M, Osuna S (2017) Role of conformational dynamics in the evolution of retro-aldolase activity. ACS Catal 7:8524–8532. https://doi.org/10.1021/acscatal.7b02954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lake PT, Davidson RB, Klem H et al (2020) Residue-level allostery propagates through the effective coarse-grained hessian. J Chem Theory Comput 16:3385–3395. https://doi.org/10.1021/acs.jctc.9b01149

    Article  CAS  PubMed  Google Scholar 

  83. Fenton AW (2008) Allostery: an illustrated definition for the ‘second secret of life.’ Trends Biochem Sci 33:420–425. https://doi.org/10.1016/j.tibs.2008.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Changeux J-P (2005) Allosteric mechanisms of signal transduction. Science 308:1424–1428. https://doi.org/10.1126/science.1108595

    Article  CAS  PubMed  Google Scholar 

  85. Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins 57:433–443. https://doi.org/10.1002/prot.20232

    Article  CAS  PubMed  Google Scholar 

  86. Li J, White JT, Saavedra H, et al (2017) Genetically tunable frustration controls allostery in an intrinsically disordered transcription factor. eLife 6:e30688. https://doi.org/10.7554/eLife.30688

  87. Davidson RB, Hendrix J, Geiss BJ, McCullagh M (2018) Allostery in the dengue virus NS3 helicase: insights into the NTPase cycle from molecular simulations. PLoS Comput Biol 14:e1006103. https://doi.org/10.1371/journal.pcbi.1006103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wodak SJ, Paci E, Dokholyan NV et al (2019) Allostery in its many disguises: from theory to applications. Structure 27:566–578. https://doi.org/10.1016/j.str.2019.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang Z, Zhu L, Cao Y et al (2011) ASD: a comprehensive database of allosteric proteins and modulators. Nucl Acids Res 39:D663–D669. https://doi.org/10.1093/nar/gkq1022

    Article  CAS  PubMed  Google Scholar 

  90. Huang Z, Mou L, Shen Q et al (2014) ASD v2.0: updated content and novel features focusing on allosteric regulation. Nucl Acids Res 42:D510–D516. https://doi.org/10.1093/nar/gkt1247

    Article  CAS  PubMed  Google Scholar 

  91. Liu X, Lu S, Song K, et al (2019) Unraveling allosteric landscapes of allosterome with ASD. Nucl Acids Res. https://doi.org/10.1093/nar/gkz958

  92. Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: a plausible model. 31

  93. Perutz MF, Rossmann MG, Cullis AF et al (1960) Structure of hæmoglobin: a three-dimensional fourier synthesis at 5.5-Å. Resolution, obtained by x-ray analysis. Nature 185:416–422. https://doi.org/10.1038/185416a0

    Article  CAS  PubMed  Google Scholar 

  94. Koshland DE, Némethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits*. Biochemistry 5:365–385. https://doi.org/10.1021/bi00865a047

    Article  CAS  PubMed  Google Scholar 

  95. Cooper A (1984) Protein fluctuations and the thermodynamic uncertainty principle. Prog Biophys Mol Biol 44:181–214. https://doi.org/10.1016/0079-6107(84)90008-7

    Article  CAS  PubMed  Google Scholar 

  96. Hilser VJ, Wrabl JO, Motlagh HN (2012) Structural and energetic basis of allostery. Annu Rev Biophys 41:585–609. https://doi.org/10.1146/annurev-biophys-050511-102319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wei G, Xi W, Nussinov R, Ma B (2016) Protein ensembles: how does nature harness thermodynamic fluctuations for life? the diverse functional roles of conformational ensembles in the cell. Chem Rev 116:6516–6551. https://doi.org/10.1021/acs.chemrev.5b00562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339. https://doi.org/10.1038/nature13001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schueler-Furman O, Wodak SJ (2016) Computational approaches to investigating allostery. Curr Opin Struct Biol 41:159–171. https://doi.org/10.1016/j.sbi.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  100. Siegbahn PEM, Blomberg MRA (1999) Density functional theory of biologically relevant metal centers. Annu Rev Phys Chem 50:221–249. https://doi.org/10.1146/annurev.physchem.50.1.221

    Article  CAS  PubMed  Google Scholar 

  101. Siegbahn PEM, Himo F (2009) Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 14:643–651. https://doi.org/10.1007/s00775-009-0511-y

    Article  CAS  PubMed  Google Scholar 

  102. Liao R-Z, Yu J-G, Raushel FM, Himo F (2008) Theoretical investigation of the reaction mechanism of the dinuclear zinc enzyme dihydroorotase. Chem Eur J 14:4287–4292. https://doi.org/10.1002/chem.200701948

    Article  CAS  PubMed  Google Scholar 

  103. Kazemi M, Sheng X, Kroutil W, Himo F (2018) Computational study of Mycobacterium smegmatis acyl transferase reaction mechanism and specificity. ACS Catal 8:10698–10706. https://doi.org/10.1021/acscatal.8b03360

    Article  CAS  Google Scholar 

  104. Ryde U (2017) How many conformations need to be sampled to obtain converged QM/MM energies? the curse of exponential averaging. J Chem Theory Comput 13:5745–5752. https://doi.org/10.1021/acs.jctc.7b00826

    Article  CAS  PubMed  Google Scholar 

  105. Siegbahn PEM, Li X (2017) Cluster size convergence for the energetics of the oxygen evolving complex in PSII. J Comput Chem 38:2157–2160. https://doi.org/10.1002/jcc.24863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sumowski CV, Schmitt BBT, Schweizer S, Ochsenfeld C (2010) Quantum-chemical and combined quantum-chemical/molecular-mechanical studies on the stabilization of a twin arginine pair in adenovirus Ad11. Angew Chem Int Ed 49:9951–9955. https://doi.org/10.1002/anie.201004022

    Article  CAS  Google Scholar 

  107. Hu L, Söderhjelm P, Ryde U (2013) Accurate reaction energies in proteins obtained by combining QM/MM and large QM calculations. J Chem Theory Comput 9:640–649. https://doi.org/10.1021/ct3005003

    Article  CAS  PubMed  Google Scholar 

  108. Liao R-Z, Thiel W (2013) Convergence in the QM-only and QM/MM modeling of enzymatic reactions: a case study for acetylene hydratase. J Comput Chem n/a-n/a. https://doi.org/10.1002/jcc.23403

    Article  Google Scholar 

  109. Raugei S, Seefeldt LC, Hoffman BM (2018) Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction. Proc Natl Acad Sci USA 115:E10521–E10530. https://doi.org/10.1073/pnas.1810211115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hu L, Eliasson J, Heimdal J, Ryde U (2009) Do quantum mechanical energies calculated for small models of protein-active sites converge? J Phys Chem A 113:11793–11800. https://doi.org/10.1021/jp9029024

    Article  CAS  PubMed  Google Scholar 

  111. Siegbahn PEM (2016) Model calculations suggest that the central carbon in the FeMo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation. J Am Chem Soc 138:10485–10495. https://doi.org/10.1021/jacs.6b03846

    Article  CAS  PubMed  Google Scholar 

  112. Chen S-L, Fang W-H, Himo F (2008) Technical aspects of quantum chemical modeling of enzymatic reactions: the case of phosphotriesterase. Theor Chem Account 120:515–522. https://doi.org/10.1007/s00214-008-0430-y

    Article  CAS  Google Scholar 

  113. Blomberg MRA, Borowski T, Himo F et al (2014) Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 114:3601–3658. https://doi.org/10.1021/cr400388t

    Article  CAS  PubMed  Google Scholar 

  114. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101. https://doi.org/10.1063/1.2065267

    Article  CAS  PubMed  Google Scholar 

  115. Hegeman GD (1966) Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida I. Synthesis of enzymes by the wild type. J Bacteriol 91:1140–1154. https://doi.org/10.1128/jb.91.3.1140-1154.1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hegeman GD (1970) Benzoylformate decarboxylase (Pseudomonas putida). In: Methods in enzymology. Elsevier, New York, pp 674–678

  117. Blomberg MRA, Siegbahn PEM (2012) Mechanism for N2O generation in bacterial nitric oxide reductase: a quantum chemical study. Biochemistry 51:5173–5186. https://doi.org/10.1021/bi300496e

    Article  CAS  PubMed  Google Scholar 

  118. Planas F, Sheng X, McLeish MJ, Himo F (2018) A theoretical study of the benzoylformate decarboxylase reaction mechanism. Front Chem 6:205. https://doi.org/10.3389/fchem.2018.00205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Planas F, McLeish MJ, Himo F (2019) Computational study of enantioselective carboligation catalyzed by benzoylformate decarboxylase. ACS Catal 9:5657–5667. https://doi.org/10.1021/acscatal.9b01084

    Article  CAS  Google Scholar 

  120. Magalhães RP, Fernandes HS, Sousa SF (2020) Modelling enzymatic mechanisms with QM/MM approaches: current status and future challenges. Isr J Chem 60:655–666. https://doi.org/10.1002/ijch.202000014

    Article  CAS  Google Scholar 

  121. Ramos MJ, Fernandes PA (2008) Computational enzymatic catalysis. Acc Chem Res 41:689–698. https://doi.org/10.1021/ar7001045

    Article  CAS  PubMed  Google Scholar 

  122. Monard G, Merz KM (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Res 32:904–911. https://doi.org/10.1021/ar970218z

    Article  CAS  Google Scholar 

  123. Gao J, Truhlar DG (2002) Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem 53:467–505. https://doi.org/10.1146/annurev.physchem.53.091301.150114

    Article  CAS  PubMed  Google Scholar 

  124. Rosta E, Klähn M, Warshel A (2006) Towards accurate ab initio qm/mm calculations of free-energy profiles of enzymatic reactions. J Phys Chem B 110:2934–2941. https://doi.org/10.1021/jp057109j

    Article  CAS  PubMed  Google Scholar 

  125. Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 117:185. https://doi.org/10.1007/s00214-006-0143-z

    Article  CAS  Google Scholar 

  126. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249. https://doi.org/10.1016/0022-2836(76)90311-9

    Article  CAS  PubMed  Google Scholar 

  127. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229. https://doi.org/10.1002/anie.200802019

    Article  CAS  Google Scholar 

  128. Gao J, Ma S, Major DT et al (2006) Mechanisms and free energies of enzymatic reactions. Chem Rev 106:3188–3209. https://doi.org/10.1021/cr050293k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cortopassi WA, Simion R, Honsby CE et al (2015) Dioxygen binding in the active site of histone demethylase JMJD2A and the role of the protein environment. Chem Eur J 21:18983–18992. https://doi.org/10.1002/chem.201502983

    Article  CAS  PubMed  Google Scholar 

  130. Walker RC, de Souza MM, Mercer IP et al (2002) Large and fast relaxations inside a protein: calculation and measurement of reorganization energies in alcohol dehydrogenase. J Phys Chem B 106:11658–11665. https://doi.org/10.1021/jp0261814

    Article  CAS  Google Scholar 

  131. van der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52:2708–2728. https://doi.org/10.1021/bi400215w

    Article  CAS  PubMed  Google Scholar 

  132. Senn HM, Thiel W (2007) QM/MM studies of enzymes. Curr Opin Chem Biol 11:182–187. https://doi.org/10.1016/j.cbpa.2007.01.684

    Article  CAS  PubMed  Google Scholar 

  133. Sousa SF, Ribeiro AJM, Neves RPP et al (2017) Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. WIREs Comput Mol Sci 7:e1281. https://doi.org/10.1002/wcms.1281

    Article  CAS  Google Scholar 

  134. Klähn M, Braun-Sand S, Rosta E, Warshel A (2005) On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions. J Phys Chem B 109:15645–15650. https://doi.org/10.1021/jp0521757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sumowski CV, Ochsenfeld C (2009) A convergence study of QM/MM isomerization energies with the selected size of the QM region for peptidic systems. J Phys Chem A 113:11734–11741. https://doi.org/10.1021/jp902876n

    Article  CAS  PubMed  Google Scholar 

  136. Blank ID, Sadeghian K, Ochsenfeld C (2015) A base-independent repair mechanism for DNA glycosylase—no discrimination within the active site. Sci Rep 5:10369. https://doi.org/10.1038/srep10369

    Article  PubMed  PubMed Central  Google Scholar 

  137. Roßbach S, Ochsenfeld C (2017) Influence of coupling and embedding schemes on QM size convergence in QM/MM approaches for the example of a proton transfer in DNA. J Chem Theory Comput 13:1102–1107. https://doi.org/10.1021/acs.jctc.6b00727

    Article  CAS  PubMed  Google Scholar 

  138. Hu L, Söderhjelm P, Ryde U (2011) On the convergence of QM/MM energies. J Chem Theory Comput 7:761–777. https://doi.org/10.1021/ct100530r

    Article  CAS  PubMed  Google Scholar 

  139. Solt I, Kulhánek P, Simon I et al (2009) Evaluating boundary dependent errors in QM/MM simulations. J Phys Chem B 113:5728–5735. https://doi.org/10.1021/jp807277r

    Article  CAS  PubMed  Google Scholar 

  140. Kulik HJ, Zhang J, Klinman JP, Martínez TJ (2016) How large should the QM region be in QM/MM calculations? the case of catechol O -methyltransferase. J Phys Chem B 120:11381–11394. https://doi.org/10.1021/acs.jpcb.6b07814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lyman E, Pfaendtner J, Voth GA (2008) Systematic multiscale parameterization of heterogeneous elastic network models of proteins. Biophys J 95:4183–4192. https://doi.org/10.1529/biophysj.108.139733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Das S, Nam K, Major DT (2018) Rapid convergence of energy and free energy profiles with quantum mechanical size in quantum mechanical-molecular mechanical simulations of proton transfer in DNA. J Chem Theory Comput 14:1695–1705. https://doi.org/10.1021/acs.jctc.7b00964

    Article  CAS  PubMed  Google Scholar 

  143. Jindal G, Warshel A (2016) Exploring the dependence of QM/MM calculations of enzyme catalysis on the size of the QM region. J Phys Chem B 120:9913–9921. https://doi.org/10.1021/acs.jpcb.6b07203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Govender K, Gao J, Naidoo KJ (2014) AM1/d-CB1: a semiempirical model for qm/mm simulations of chemical glycobiology systems. J Chem Theory Comput 10:4694–4707. https://doi.org/10.1021/ct500372s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McCullagh M, Saunders MG, Voth GA (2014) Unraveling the mystery of ATP hydrolysis in actin filaments. J Am Chem Soc 136:13053–13058. https://doi.org/10.1021/ja507169f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yagi K, Ito S, Sugita Y (2021) Exploring the minimum-energy pathways and free-energy profiles of enzymatic reactions with QM/MM calculations. J Phys Chem B 125:4701–4713. https://doi.org/10.1021/acs.jpcb.1c01862

    Article  CAS  PubMed  Google Scholar 

  147. Sun R, Sode O, Dama JF, Voth GA (2017) Simulating protein mediated hydrolysis of ATP and other nucleoside triphosphates by combining qm/mm molecular dynamics with advances in metadynamics. J Chem Theory Comput 13:2332–2341. https://doi.org/10.1021/acs.jctc.7b00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Quinn TR, Steussy CN, Haines BE et al (2021) Microsecond timescale MD simulations at the transition state of Pm HMGR predict remote allosteric residues. Chem Sci 12:6413–6418. https://doi.org/10.1039/D1SC00102G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cortopassi WA, Kumar K, Duarte F et al (2016) Mechanisms of histone lysine-modifying enzymes: a computational perspective on the role of the protein environment. J Mol Graph Model 67:69–84. https://doi.org/10.1016/j.jmgm.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  150. Quesne MG, Borowski T, de Visser SP (2016) Quantum mechanics/molecular mechanics modeling of enzymatic processes: caveats and breakthroughs. Chemistry 22:2562–2581

    Article  CAS  PubMed  Google Scholar 

  151. Cooper AM, Kästner J (2014) Averaging techniques for reaction barriers in QM/MM simulations. ChemPhysChem 15:3264–3269. https://doi.org/10.1002/cphc.201402382

    Article  CAS  PubMed  Google Scholar 

  152. Romero-Téllez S, Cruz A, Masgrau L et al (2021) Accounting for the instantaneous disorder in the enzyme–substrate Michaelis complex to calculate the Gibbs free energy barrier of an enzyme reaction. Phys Chem Chem Phys 23:13042–13054. https://doi.org/10.1039/D1CP01338F

    Article  PubMed  Google Scholar 

  153. von der Esch B, Dietschreit JCB, Peters LDM, Ochsenfeld C (2019) Finding reactive configurations: a machine learning approach for estimating energy barriers applied to sirtuin 5. J Chem Theory Comput 15:6660–6667. https://doi.org/10.1021/acs.jctc.9b00876

    Article  CAS  PubMed  Google Scholar 

  154. Rhee YM, Sorin EJ, Jayachandran G et al (2004) Simulations of the role of water in the protein-folding mechanism. Proc Natl Acad Sci 101:6456–6461. https://doi.org/10.1073/pnas.0307898101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sittel F, Stock G (2018) Perspective: identification of collective variables and metastable states of protein dynamics. J Chem Phys 149:150901. https://doi.org/10.1063/1.5049637

    Article  CAS  PubMed  Google Scholar 

  156. Pérez-Hernández G, Noé F (2016) Hierarchical time-lagged independent component analysis: computing slow modes and reaction coordinates for large molecular systems. J Chem Theory Comput 12:6118–6129. https://doi.org/10.1021/acs.jctc.6b00738

    Article  CAS  PubMed  Google Scholar 

  157. Pérez-Hernández G, Paul F, Giorgino T et al (2013) Identification of slow molecular order parameters for Markov model construction. J Chem Phys 139:015102. https://doi.org/10.1063/1.4811489

    Article  CAS  PubMed  Google Scholar 

  158. Ceriotti M, Tribello GA, Parrinello M (2011) Simplifying the representation of complex free-energy landscapes using sketch-map. Proc Natl Acad Sci USA 108:13023–13028. https://doi.org/10.1073/pnas.1108486108

    Article  PubMed  PubMed Central  Google Scholar 

  159. Trozzi F, Wang X, Tao P (2021) UMAP as a dimensionality reduction tool for molecular dynamics simulations of biomacromolecules: a comparison study. J Phys Chem B 125:5022–5034. https://doi.org/10.1021/acs.jpcb.1c02081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Westerlund AM, Delemotte L (2019) InfleCS: clustering free energy landscapes with gaussian mixtures. J Chem Theory Comput 15:6752–6759. https://doi.org/10.1021/acs.jctc.9b00454

    Article  CAS  PubMed  Google Scholar 

  161. List F, Vega MC, Razeto A et al (2012) Catalysis uncoupling in a glutamine amidotransferase bienzyme by unblocking the glutaminase active site. Chem Biol 19:1589–1599. https://doi.org/10.1016/j.chembiol.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  162. Amaro RE, Sethi A, Myers RS et al (2007) A network of conserved interactions regulates the allosteric signal in a glutamine amidotransferase. Biochemistry 46:2156–2173. https://doi.org/10.1021/bi061708e

    Article  CAS  PubMed  Google Scholar 

  163. Strohmeier M, Raschle T, Mazurkiewicz J et al (2006) Structure of a bacterial pyridoxal 5’-phosphate synthase complex. Proc Natl Acad Sci 103:19284–19289. https://doi.org/10.1073/pnas.0604950103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chaudhuri BN, Lange SC, Myers RS et al (2003) Toward understanding the mechanism of the complex cyclization reaction catalyzed by imidazole glycerolphosphate synthase: crystal structures of a ternary complex and the free enzyme. Biochemistry 42:7003–7012. https://doi.org/10.1021/bi034320h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.S.P acknowledges the National Science Foundation (CHE-1955876) for support. M.M. acknowledges funding from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (R01AI166050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin McCullagh or Robert S. Paton.

Ethics declarations

Conflict of interest

The authors do not have conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klem, H., McCullagh, M. & Paton, R.S. Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences. Top Catal 65, 165–186 (2022). https://doi.org/10.1007/s11244-021-01521-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01521-1

Keywords

Navigation