Skip to main content
Log in

Lipopolysaccharide (LPS)-induced septic shock causes profound changes in myocardial energy metabolites in pigs

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Energy deficiency is a cause for myocardial dysfunction during septic shock. In rodents, septic shock decreases the oxidation of long-chain fatty acids and glucose in the myocardium causing energy deficiency. However, the effect of septic shock on myocardial energy metabolites in large animals and human is unknown.

Objectives

Investigate the effects of septic shock on myocardial energy metabolites in domestic pigs.

Methods

Seventeen female pigs divided into control and lipopolysaccharide (LPS)-induced septic shock groups. Myocardial metabolites were analyzed ex vivo by 1H nuclear magnetic resonance spectroscopy and liquid chromatography-tandem mass spectrometry. Gene and protein expression analysis were analyzed by real-time PCR and western blot.

Results

Septic shock was associated with an increase in myocardial levels of short- and medium-chain acylcarnitines, lactate, alanine, and pyruvate dehydrogenase kinase 4 gene expression. COX-2 and prostaglandin E4 receptor gene expression also increased in the septic myocardium, although the only elevated eicosanoid in the septic animals was thromboxane B2. Myocardial levels of niacin, taurine, glutamate, glutamine, and glutathione were higher, and hypoxanthine levels lower in septic pigs than controls.

Conclusions

In pigs, septic shock induced by LPS caused myocardial changes directed to decrease the oxidation of medium- and short-chain fatty acid without an effect on long-chain fatty acid oxidation. The increase in myocardial levels of lactate, alanine, and pyruvate dehydrogenase kinase 4 gene expression suggest that septic shock decreases pyruvate dehydrogenase complex activity and glucose oxidation. Homeostasis of niacin, taurine, glutamate, glutamine, glutathione, hypoxanthine and thromboxane B2 is also affected in the septic myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The metabolomics and metadata reported in this paper are available via Mendeley, https://data.mendeley.com/datasets/nddgfyft7d/1

References

  • Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2, 2692–2703.

    Article  CAS  Google Scholar 

  • Bieber, L. L., Abraham, T., & Helmrath, T. (1972). A rapid spectrophotometric assay for carnitine palmitoyltransferase. Analytical Biochemistry, 50, 509–518.

    Article  CAS  Google Scholar 

  • Blackshear, P. J., Fang, L. S., & Axelrod, L. (1982). Treatment of severe lactic acidosis with dichloroacetate. Diabetes Care, 5, 391–394.

    Article  CAS  Google Scholar 

  • Bollard, M. E., Murray, A. J., Clarke, K., Nicholson, J. K., & Griffin, J. L. (2003). A study of metabolic compartmentation in the rat heart and cardiac mitochondria using high-resolution magic angle spinning 1H NMR spectroscopy. FEBS Letters, 553, 73–78.

    Article  CAS  Google Scholar 

  • Brealey, D., Brand, M., Hargreaves, I., Heales, S., Land, J., Smolenski, R., et al. (2002). Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet, 360, 219–223.

    Article  CAS  Google Scholar 

  • Cambiaghi, A., Pinto, B. B., Brunelli, L., Falcetta, F., Aletti, F., Bendjelid, K., et al. (2017). Characterization of a metabolomic profile associated with responsiveness to therapy in the acute phase of septic shock. Scientific Reports, 7, 9748. https://doi.org/10.1038/s41598-017-09619-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carré, J. E., Orban, J.-C., Re, L., Felsmann, K., Iffert, W., Bauer, M., et al. (2010). Survival in critical illness is associated with early activation of mitochondrial biogenesis. American Journal of Respiratory and Critical Care Medicine, 182, 745–751.

    Article  Google Scholar 

  • Castro, I., Quisenberry, L., Calvo, R. M., Obregon, M. J., & Lado-Abeal, J. (2013). Septic shock NTIS causes hypothyroidism and conditions for reduced sensitivity to thyroid hormones. Journal of Molecular Endocrinology, 50, 255–266.

    Article  CAS  Google Scholar 

  • Chien, D., Dean, D., Saha, A. K., Flatt, J. P., & Ruderman, N. B. (2000). Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. American Journal of Physiology-Endocrinology and Metabolism, 79, E259–E265.

    Article  Google Scholar 

  • Contreras, C., Gonzalez-Garcia, I., Seoane-Collazo, P., Martinez-Sanchez, N., Linares-Pose, L., Rial-Pensado, E., et al. (2017). Reduction of hypothalamic ER stress activates browning of white fat and ameliorates obesity. Diabetes, 66, 87–99.

    Article  CAS  Google Scholar 

  • Crossland, H., Constantin-Teodosiu, D., Gardiner, S. M., Constantin, D., & Greenhaff, P. L. (2008). A potential role for Akt/FOXO signaling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle. The Journal of Physiology, 586, 5589–5600.

    Article  CAS  Google Scholar 

  • Datta, S., Das, D. K., Engelman, R. M., Otani, H., Rousou, J. A., Breyer, R. H., et al. (1989). Enhanced myocardial preservation by nicotinic acid, an antilipolytic compound: Mechanism of action. Basic Research in Cardiology, 84, 63–76.

    Article  CAS  Google Scholar 

  • Dhainaut, J. F., Huyghebaert, M. F., Monsallier, J. F., Lefevre, G., Dall’Ava-Santucci, J., Brunet, F., et al. (1987). Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation, 75, 533–541.

    Article  CAS  Google Scholar 

  • Dong, G., Wei, D., Wang, J., Guo, O., Li, M., Yang, M., et al. (2015). Study of the cardiotoxicity of Venenum Bufonis in rats using an 1H NMR-based metabolomics approach. PLoS ONE. https://doi.org/10.1371/journal.pone.0119515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drosatos, K., Lymperopoulos, A., Kennel, P. J., Pllack, N., Schulze, P. C., & Goldberg, I. J. (2015). Pathophysiology of sepsis-related cardiac dysfunction: Driven by inflammation, energy mismanagement, or both? Current Heart Failure Reports, 12, 130–140.

    Article  CAS  Google Scholar 

  • Drozatos, K., Drosatos-Tampakaki, Z., Khan, R., Homma, S., Schulze, P. C., Zannis, V. I., et al. (2011). Inhibition of c-Jun-N-terminal kinase increases cardiac peroxisome proliferator-activated receptor alpha expression and fatty acid oxidation and prevents lipopolysaccharide-induced heart dysfunction. Journal of Biological Chemistry, 286, 36331–36339.

    Article  Google Scholar 

  • Du, J., Li, X. H., & Li, Y. J. (2016). Glutamate in peripheral organs: Biology and pharmacology. European Journal of Pharmacology, 784, 42–48.

    Article  CAS  Google Scholar 

  • Elmadhun, N. Y., Sabe, A. A., Robich, M. P., Chu, L. M., Lassaletta, A. D., & Sellke, F. W. (2013). The pig as a valuable model for testing the effect of resveratrol to prevent cardiovascular disease. Annals of the New York Academy of Sciences, 1290, 130–135.

    Article  CAS  Google Scholar 

  • Feingold, K., Kim, M. S., Shigenaga, J., Moser, A., & Grunfeld, C. (2004). Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. American Journal of Physiology-Endocrinology and Metabolism, 286, E201–E207.

    Article  CAS  Google Scholar 

  • Ferrario, M., Cambiaghi, A., Brunelli, L., Giordano, S., Caironi, P., & Guatteri, L. (2016). Mortality prediction in patients with severe septic shock: A pilot study using a target metabolomics approach. Scientific Reports, 6, 20391.

    Article  CAS  Google Scholar 

  • Foster, D. W. (2012). Malonyl-CoA: The regulator of fatty acid synthesis and oxidation. The Journal of Clinical Investigation, 122, 1958–1959.

    Article  CAS  Google Scholar 

  • Garcia-Alvarez, M., Marik, P., & Bellomo, R. (2014). Sepsis-associated hyperlactatemia. Critical Care, 18, 503–513.

    Article  Google Scholar 

  • Ha, J., Lee, J. K., Kim, K. S., Witters, L. A., & Kim, K. H. (1996). Cloning of human acetyl-CoA carboxylase-beta and its unique features. Proceedings of the National Academy of Sciences of the United States of America, 93, 11466–11470.

    Article  CAS  Google Scholar 

  • Ito, T., Kimura, Y., Uozumi, Y., Takai, M., Muraoka, S., Matsuda, T., Ueki, K., et al. (2008). Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. Journal of Molecular and Cellular Cardiology, 44, 927–933.

    Article  CAS  Google Scholar 

  • Jiang, C. Y., Yang, K. M., Yang, L., Miao, Z. X., Wang, Y. H., & Zhu, H. B. (2013). A (1)H NMR-based metabonomic investigaction of time-related metabolic trajectories of the plasma, urine and liver extracts of hyperlipidemic hamsters. PLoS ONE. https://doi.org/10.1371/journal.pone.0066786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, G. L., Sang, E., Goddard, C., Mortishire-Smith, R. J., Sweatman, B. C., Haselden, J. N., et al. (2005). A functional analysis of mouse models of cardiac disease through metabolic profiling. Journal of Biological Chemistry, 280, 7530–7539.

    Article  CAS  Google Scholar 

  • Landesberg, G., Gilon, D., Meroz, Y., Georgieva, M., Levin, P. D., Goodman, S., et al. (2012). Diastolic dysfunction and mortality in severe sepsis and septic shock. European Heart Journal, 33, 895–903.

    Article  CAS  Google Scholar 

  • Langley, R. J., Tsalik, E. L., van Velkinburgh, J. C., Glickman, S. W., Rice, B. J., Wang, C., et al. (2013). An integrated clinico-metabolomic model improves prediction of death in sepsis. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.3005893.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lardon, I., Nilsson, G. E., Stecyk, J. A. W., Vu, T. N., Laukens, K., Dommisse, R., et al. (2013). 1H-NMR study of the metabolome of an exceptionally anoxia tolerant vertebrate, the crucian carp (Carassius carassius). Metabolomics. https://doi.org/10.1007/s11306-013-0540-y.

    Article  Google Scholar 

  • Lauzier, B., Vaillant, F., Merlen, C., Gelinas, R., Bouchard, B., Rivard, M.-E., et al. (2013). Metabolic effects of glutamine on the heart. Anaploresis versus the hesoxamine biosynthetic pathway. Journal of Molecular and Cellular Cardiology, 55, 92–100. https://doi.org/10.1016/j.yjmcc.2012.11.008.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Tao, S., Wu, Q., Wu, T., Tao, R., & Fan, J. (2017). Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90. Journal of Surgical Research, 220, 247–254. https://doi.org/10.1016/j.jss.2017.06.090.

    Article  CAS  PubMed  Google Scholar 

  • Lopaschuk, G. D., Ussher, J. R., Folmes, C. D. L., Jaswal, J. S., & Stanley, W. C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews, 90, 207–258.

    Article  CAS  Google Scholar 

  • Lopez, M., Nogueiras, R., Tena-Sempere, M., & Dieguez, C. (2016). Hypothalamic AMPK: A canonical regulator of whole-body energy balance. Nature Reviews Endocrinology, 12, 421–432.

    Article  CAS  Google Scholar 

  • Lopez, M., Varela, L., Vazquez, M. J., Rodríguez-Cuenca, S., González, C. R., Velagapudi, V. R., et al. (2010). Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 16, 1001–1008.

    Article  CAS  Google Scholar 

  • Maitra, U., Chang, S., Singh, N., & Li, L. (2009). Molecular mechanism underlying the suppression of lipid oxidation during endotoxemia. Molecular Immunology, 47, 420–425.

    Article  CAS  Google Scholar 

  • Martinez de Morentin, P. B., Gonzalez-Garcia, I., Martins, L., Lage, R., Fernández-Mallo, D., Martínez-Sánchez, N., et al. (2014). Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metabolism, 20, 41–53.

    Article  Google Scholar 

  • Martinez-Sanchez, N., Moreno-Navarrete, J. M., Contreras, C., Rial-Pensado, E., Ferno, J., Nogueiras, R., et al. (2017). Thyroid hormones induce browning of white fat. Journal of Endocrinology, 232, 351–362.

    Article  CAS  Google Scholar 

  • Martins, L., Seoane-Collazo, P., Contreras, C., Gonzalez-Garcia, I., Martinez-Sanchez, N., Gonzalez, F., Zalvide, J., et al. (2016). A functional link between ampk and orexin mediates the effect of BMP8B on energy balance. Cell Reports, 16, 2231–2242.

    Article  CAS  Google Scholar 

  • Mayr, M. (2008). Metabolomics: Ready for the prime time? Circulation: Genomic and Precision Medicine, 1, 58–65.

    CAS  Google Scholar 

  • Mayr, M., Yusuf, S., Weir, G., Chung, Y. L., Mayr, U., Yin, X., et al. (2008). Combined metabolomic and proteomic analysis of human atrial fibrillation. Journal of the American College of Cardiology, 51, 585–594.

    Article  CAS  Google Scholar 

  • McGarry, J. D., Stark, M. J., & Foster, D. W. (1978). Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay. Journal of Biological Chemistry, 253, 8291–8293.

    CAS  PubMed  Google Scholar 

  • Raymond, R. M. (1990). When does the heart fail during shock? Circulatory Shock, 30, 27–41.

    CAS  PubMed  Google Scholar 

  • Revelli, J. P., Tappy, L., Martinez, A., Bollmann, M., Cayeux, M.-C., Berger, M. M., et al. (2005). Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Critical Care Medicine, 33, 2235–2240.

    Article  Google Scholar 

  • Rocquelin, G., Guenot, L., Justrabo, E., Grynberg, A., & David, M. (1985). Fatty acid composition of human heart phospholipids: Data from 53 biopsy specimens. Journal of Molecular and Cellular Cardiology, 17, 769–773.

    Article  CAS  Google Scholar 

  • Rodriguez-Perez, A., Palos-Paz, F., Kaptein, E., Visser, T. J., Dominguez-Gerpe, L., Alvarez-Escudero, J., et al. (2008). Identification of molecular mechanisms related to nonthyroidal illness syndrome in skeletal muscle and adipose tissue from patients with septic shock. Clinical Endocrinology, 68, 821–827.

    Article  CAS  Google Scholar 

  • Rudiger, A., & Singer, M. (2007). Mechanisms of sepsis-induced cardiac dysfunction. Critical Care Medicine, 35, 1599–1608.

    Article  Google Scholar 

  • Saha, A. K., Kurowski, T. C., & Ruderman, N. B. (1995). A malonyl-CoA fuel-sensing mechanism in muscle: Effects of insulin, glucose, and denervation. American Journal of Physiology-Endocrinology and Metabolism, 269, E283–E289.

    Article  CAS  Google Scholar 

  • Santak, B., Radermacher, P., Adler, J., Iber, T., Rieger, K. M., Wachter, U., et al. (1998). Effect of increased cardiac output on liver blood flow, oxygen exchange and metabolic rate during longterm endotoxin-induced septic shock in pigs. British Journal of Pharmacology, 124, 1689–1697.

    Article  CAS  Google Scholar 

  • Schaffer, S. W., Shimada-Takaura, K., Jong, C. J., Ito, T., & Takahashi, K. (2016). Impaired energy metabolism of the taurinedeficient heart. Amino Acids, 48, 549–558.

    Article  CAS  Google Scholar 

  • Schilling, J., Lai, L., Sambandam, N., Dey, C. E., Leone, T. C., & Kelly, D. P. (2011). Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) signaling. Circulation: Heart Failure, 4, 474–482.

    CAS  Google Scholar 

  • Schreurs, M., Kuipers, F., & van der Leij, F. R. (2010). Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome. Obesity Reviews, 11, 380–388.

    Article  CAS  Google Scholar 

  • Schulze, P. C., Drosatos, K., & Goldberg, I. J. (2016). Lipid use and misuse by the heart. Circulation Research, 118, 1736–1751.

    Article  CAS  Google Scholar 

  • Singer, M. (2014). The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence, 5, 66–72.

    Article  Google Scholar 

  • Soininen, P., Kangas, A. J., Wurtz, P., Suna, T., & Ala-Korpela, M. (2015). Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circulation-Cardiovascular Genetics, 8, 192–206.

    Article  CAS  Google Scholar 

  • Solomon, M. A., Correa, R., Alexander, H. R., Koev, L. A., Cobb, J. P., & Kim, D. K. (1994). Myocardial energy metabolism and morphology in a canine model of sepsis. American Journal of Physiology-Endocrinology and Metabolism, 266, H757–H768.

    CAS  Google Scholar 

  • Standage, S. W., Waworuntu, R. L., Delaney, M. A., Maskal, S. M., Bennion, B. G., Duffield, J. S., et al. (2016). Nonhematopoietic peroxisome proliferator-activated receptor-α protects against cardiac injury and enhances survival in experimental polymicrobial sepsis. Critical Care Medicine. https://doi.org/10.1097/CCM.0000000000001585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley, W. C., Recchia, F. A., & Lopaschuk, G. D. (2005). Myocardial substrate metabolism in the normal and failing heart. Physiological Reviews, 85, 1093–1129.

    Article  CAS  Google Scholar 

  • Stevenson, E. K., Rubenstein, A. R., Radin, G. T., Wiener, R. S., & Walkey, A. J. (2014). Two decades of mortality trends among patients with severe sepsis: A comparative meta-analysis. Critical Care Medicine, 42, 625–631.

    Article  Google Scholar 

  • Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. Jr., & Frazier, K. S. (2012). Swine as models in biomedical research and toxicology. Veterinary Pathology, 49, 344–356.

    Article  CAS  Google Scholar 

  • Takeyama, N., Itoh, Y., Kitazawa, Y., & Tanaka, T. (1990). Altered hepatic mitochondrial fatty acid oxidation and ketogenesis in endotoxic rats. American Journal of Physiology-Endocrinology and Metabolism, 259, E498–E505.

    Article  CAS  Google Scholar 

  • Tessier, J.-P., Thurner, B., Jungling, E., Luckhoff, A., & Fischer, Y. (2003). Impairment of glucose metabolism in hearts from rats treated with endotoxin. Cardiovascular Research, 60, 119–130.

    Article  CAS  Google Scholar 

  • Touchberry, C. D., Silswal, N., Tchikrizov, V., Elmore, C. J., Srinivas, S., Akthar, A. S., et al. (2014). Cardiac thromboxane A2 receptor activation does not directly induce cardiomyocyte hypertrophy but does cause cell death that is prevented with gentamicin and 2-APB. BMC Pharmacology and Toxicology, 15, 73–84.

    Article  Google Scholar 

  • Van Vlies, N., Tian, L., Overmars, H., Bootsma, A., Kulik, W., Wanders, R. J. A., et al. (2005). Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydronenase-deficient mouse. Biochemical Journal, 387, 185–193.

    Article  Google Scholar 

  • Vary, T. C., (1996). Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: Effects on plasma lactate. Shock. https://doi.org/10.1097/00024382-199608000-00002.

    Article  PubMed  Google Scholar 

  • Wagner, T. M., Mullally, J. E., & Fitzpatrick, F. A. (2006). Reactive lipid species from cyclooxygenase-2 inactivate tumor suppressor LKB1/STK11: Cyclopentenone prostaglandins and 4-hydroxy-2-nonenal covalently modify and inhibit the AMP-kinase kinase that modulates cellular energy homeostasis and protein translation. Journal of Biological Chemistry, 281, 2598–2604.

    Article  CAS  Google Scholar 

  • Wu, P., Sato, J., Zhao, Y., Jaskiewicz, J., Popov, K. M., & Harris, R. A. (1998). Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochemical Journal, 329, 197–201.

    Article  CAS  Google Scholar 

  • Xia, Y., & Zweier, J. L. (1995). Substrate control of free radical generation from xanthine oxidase in the postischemic heart. Journal of Biological Chemistry, 270, 18797–18803.

    Article  CAS  Google Scholar 

  • Zulli, A. (2011). Taurine in cardiovascular disease. Current Opinion in Clinical Nutrition & Metabolic Care, 14, 57–60.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by CH Foundation (J LA), Texas Tech University Health Sciences Center-School of Medicine Clinical and Basic Science Cardiology Seed Grant Program (J LA), European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant agreement No. 281854—the ObERStress project (ML); Xunta de Galicia (M.: 2015-CP079); CIBER de Fisiopatología de la Obesidad y Nutrición is an initiative of ISCIII.–

Author information

Authors and Affiliations

Authors

Contributions

JLA conceived, designed, obtained funds and coordinated the project. He performed the animal studies and wrote the manuscript. NMS performed the protein and enzyme analysis and contributed to the writing and editing the manuscript. JAC and MLCP performed the acylcarnitine study, obtained research funds and contributed to writing and editing the manuscript. MMP performed the nuclear magnetic resonance spectroscopy based metabolite profile, obtained research funds and contributed to writing and editing the manuscript. ICP performed the animal studies and the gene expression analysis. AKS performed de malonyl-CoA assays. ML performed the protein and enzyme assays, edited the manuscript and obtained research funds to support the project. All authors read and approved the manuscript.

Corresponding author

Correspondence to Joaquin Lado-Abeal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lado-Abeal, J., Martinez-Sánchez, N., Cocho, J.A. et al. Lipopolysaccharide (LPS)-induced septic shock causes profound changes in myocardial energy metabolites in pigs. Metabolomics 14, 131 (2018). https://doi.org/10.1007/s11306-018-1433-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1433-x

Keywords

Navigation