Skip to main content
Log in

Global monsoon in a geological perspective

  • Frontiers/Geology
  • Published:
Chinese Science Bulletin

Abstract

Monsoon is now considered as a global system rather than regional phenomena only. For over 300 years, monsoon has been viewed as a gigantic land-sea breeze, but now satellite and conventional observations support an alternative hypothesis which considers monsoon as a manifestation of seasonal migration of the intertropical convergence zone (ITCZ) and, hence, a climate system of the global scale. As a low-latitude climate system, monsoon exists over all continents but Antarctica, and through all the geological history at least since the Phenorozoic. The time is ripe for systematical studies of monsoon variations in space and time.

As evidenced by the geological records, the global monsoon is controlled by the Wilson cycle on the tectonic time scale (106–108 a). A “Mega-continent” produces “Mega-monsoon”, and its breakdown leads to weakening of the monsoon intensity. On the time scales of 104-105 a, the global monsoon displays the precessional cycles of ∼20 ka and eccentricity cycles of 100- and 400-ka, i.e. the orbital cycles. On the time scales of 103 a and below, the global monsoon intensity is modulated by solar cycles and other factors. The cyclicity of global monsoon represents one of the fundamental factors responsible for variations in the Earth surface system as well as for the environmental changes of the human society. The 400-ka long eccentricity cycles of the global monsoon is likened to “heartbeat” of the Earth system, and the precession cycle of the global monsoon was responsible for the collapse of several Asian and African ancient cultures at ∼4000 years ago, whereas the Solar cycles led to the demise of the Maya civilization about a thousand years ago. Therefore, paleoclimatology should be focused not only on the high-latitude processes centered at ice cap variations, but also on the low-latitude processes such as monsoons, as the latter are much more common in the geological history compared to the glaciations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trenberth K E, Stepaniak D P, Caron J M. The global monsoon as seen through the divergent atmospheric circulation. J Clim, 2000, 13: 3969–3993

    Article  Google Scholar 

  2. Wang P. Orbital forcing of the low-latitude processes (in Chinese). Quat Sci, Beijing, 2006, 26(5) 694–701

    Google Scholar 

  3. Gadgil S. The Indian monsoon and its variability. Ann Rev Earth Planet Sci, 2003, 31: 429–467

    Article  Google Scholar 

  4. Chao W C. Multiple quasi equilibria of the ITCZ and the origin of monsoon onset. J Atmos Sci, 2000, 57: 641–651

    Article  Google Scholar 

  5. Black D E. The rains may be a-comin’. Science, 2002, 297: 528–529

    Article  Google Scholar 

  6. Wang B., Ding Q H. The global monsoon: Major modes of annual variations in the tropics. Dyn Atmos Ocean, 2008, (special issue 2): 165–183

  7. Chao W C, Chen B D. The origin of monsoon. J Atmos Sci, 2001, 58: 3497–3507

    Article  Google Scholar 

  8. Pierrehumbert R T. Climate change and the tropical Pacific: The sleeping dragon wakes. Proc Nat Acad Sci, 2000, 97(4): 1355–1358

    Article  Google Scholar 

  9. Webster P J, Magana VO, Palmer T N, et al. Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res, 1998, 103(C7): 14451–14510

    Article  Google Scholar 

  10. Li J P, Zeng Q C. A unified monsoon index. Geophys Res Lett, 2002, 29(8): 1274, doi: 10.1029/2001GL013874

    Article  Google Scholar 

  11. Qian W H. Dry/wet alternation and global monsoon. Geophysl Res Lett, 27(22): 3679–3682

  12. Wang B, Ding Q H. Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett, 2006, 33: L06711, doi: 10.1029/2005GL025347

    Article  Google Scholar 

  13. Liu Z, Harrison S, Kutzbach J, et al. Global monsoons in the mid-Holocene and oceanic feedback. Clim Dyn, 2004, 22: 157–182

    Article  Google Scholar 

  14. Chou C, Neelin J D, Su H. Ocean-atmosphere-land feedbacks in an idealized monsoon. Quart J Royal Meteorol Soc, 2001, 127: 1869–1891

    Article  Google Scholar 

  15. Chou C, Neelin, J D. Mechanisms Limiting the Northward Extent of the Northern Summer Monsoons over North America, Asia, and Africa. J Clim, 2003, 16: 406–425

    Article  Google Scholar 

  16. Vera C, Higgins W, Amador J, et al. Toward a unified view of the American monsoon systems. J Clim, 2006, 19: 4977–5000

    Article  Google Scholar 

  17. Adams D K, Comrie A C. The North American Monsoon. Bull Am Meteorol Soc 1997, 78: 2197–2213

    Article  Google Scholar 

  18. Zhou J H, Lau, K M. Does a monsoon climate exist over South America? J Clim, 1998, 11: 1020–1040

    Article  Google Scholar 

  19. Chiang J C H, Koutavas A. Tropical flip-flop connections. Nature, 2004, 432: 684–685

    Article  Google Scholar 

  20. Ninomiya K. Similarity and difference between the South Atlantic Convergence Zone and the Beiu Frontal Zone simulated by an AGCM. J Meteorol Soc Jpn, 2007, 85(3): 277–299

    Article  Google Scholar 

  21. Wang X F, Auler A S, Edwards R L, et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 2004, 432: 740–743

    Article  Google Scholar 

  22. Marchant R, Hooghiemstra H. Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Sci Rev, 2004, 66:217–260

    Article  Google Scholar 

  23. Carvalho L M V, Jones C, Liebmann B. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim, 2004, 17: 88–108

    Article  Google Scholar 

  24. Yano J I, McBride J L. An aquaplanet monsoon. J Atmos Sci, 1998. 55: 1373–1399

    Article  Google Scholar 

  25. Anderson D M, Overpeck J T, Gupta A K. Increase in the Asian Southwest monsoon during the past four centuries. Science, 2002, 297: 596–599

    Article  Google Scholar 

  26. Torrence C, Webster PJ. Interdecadal changes in the ENSO-monsoon system. J Clim, 1999, 12: 2679–2690

    Article  Google Scholar 

  27. Molnar P, Cane M A.. El Niño’s tropical climate and teleconnections as a blueprint for pre-Ice Age climates. Paleoceanography, 2002, 17(2), 1021, 10.1029/2001PA000663

    Article  Google Scholar 

  28. Kutzbach J. Monsoon climate of the Early Holocene: Climate experiment with the Earth’s orbital parameters for 9000 years ago. Science, 1981, 214: 59–61

    Article  Google Scholar 

  29. Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science, 2003, 300: 1737–1739

    Article  Google Scholar 

  30. Gupta A K, Anderson D M, Overpeck J T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 2003, 421: 354–357

    Article  Google Scholar 

  31. DeMenocal P B. Plio-Pleistocene African climate. Science, 1995, 270: 53–59

    Article  Google Scholar 

  32. Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the Intertropical Convergence Zone through the Holocene. Science, 2001, 293: 1304–1308

    Article  Google Scholar 

  33. Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 2005, 308: 854–857

    Article  Google Scholar 

  34. Gasse F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev, 2000, 19: 189–211

    Article  Google Scholar 

  35. Mayle F E, Burbridge R, Killeen T J. Millennial-scale dynamics of Southern Amazonian rain forests. Science, 2000, 290: 2291–2294

    Article  Google Scholar 

  36. Baker P A, Seltzer G O, Fritz S C.et al. The history of South American tropical precipitation for the past 25,000 years. Science, 2001, 291: 640–643

    Article  Google Scholar 

  37. Koutavas A, Lynch-Stieglitz J. Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: Regional perspective and global context. In: Diaz H F, Bradley R S, eds. The Hadley Circulation: Present, Past and Future. Boston: Kluwer Academic Press, 2004. 347–369

    Chapter  Google Scholar 

  38. Liu Z, Otto-Bleisner B, Kutzbach J, et al. Coupled climate simulation of the evolution of global monsoons in the Holocene. J Clim, 2003, 16: 2472–2490

    Article  Google Scholar 

  39. Zeng N. Drought in the Sahel. Science, 2003, 302: 999–1000

    Article  Google Scholar 

  40. Lebranc M, Favreau G, Maley J, et al. Reconstruction of Megalake Chad using Shuttle Radar Topographic Mission data. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 239: 16–27

    Article  Google Scholar 

  41. Giannini A, Saravanan R, Chang P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scale. Science, 2003, 302: 1027–1030

    Article  Google Scholar 

  42. Yuan D X, Cheng H, Edwards R L.et al. Timing, duration, and transitions of the Last Interglacial Asian Monsoon. Science, 2004, 304: 575–578

    Article  Google Scholar 

  43. Kelly M J, Edwards R L, Cheng H, et al. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 236: 20–38

    Article  Google Scholar 

  44. Wang Y J, Cheng H, Edwards L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 2008, 451: 1090–1093

    Article  Google Scholar 

  45. Adegbie A T, Schneider R R, Rohl U, et al. Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeogr Palaeoclimatol Palaeoecol, 2003, 197: 323–333

    Article  Google Scholar 

  46. Weldeab S, Lea D W, Schneider R R, et al. 155,000 years of West African monsoon and ocean thermal evolution. Science, 2007, 316: 1303–1307

    Article  Google Scholar 

  47. Beer J, van Geel B. Holocene climate change and the evidence for solar and other forcing. In: Battarbee R W, Binney H A, eds., Natural Climate variability and Global Warming: A Holocene Perspective. Chichester: Wiley-Blackwell, 2008. 138–162

    Chapter  Google Scholar 

  48. Hodell D A, Brenner M, Curtis J H, et al. Solar forcing of drought frequency in the Maya lowlands. Science, 2001, 292: 1367–1369

    Article  Google Scholar 

  49. Hodell D A, Brenner M, Curtis J H, et al. Climate change on the Yucatan Peninsula during the Little Ice Age. Quat Res, 2005, 63: 109–121

    Article  Google Scholar 

  50. Rossignol-Stick M. Africa monsoon, an immediate isotope response to orbital insolation. Nature, 1983, 303: 46–49

    Article  Google Scholar 

  51. Prell W L. Monsoonal climate of the Arabian Sea during the Late Quaternary: a response to changing solar radiation. In: Berger A L, Imbrie J, Hays J, et al., eds. Milankovitch and Climate. D. Riedel, Hingham, 1984. 349–366

    Google Scholar 

  52. Wang P X, Clemens S C, Beaufort L, et al. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev, 2005, 24: 595–629

    Article  Google Scholar 

  53. Pokras E M, Mix A C. Earth’s precession cycle and Quaternary climate change in tropical Africa. Nature, 1987, 326: 486–487

    Article  Google Scholar 

  54. Reichart G J, Lourens L J, Zachariasse W J. Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225,000 years. Paleoceanography, 1998, 13: 607–621

    Article  Google Scholar 

  55. Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene. Science, 2001, 293: 2440–2444

    Article  Google Scholar 

  56. Bender M, Sowers T, Labeyrie L. The Dole effect and its variation during the last 130,000 years as measured in the Vostok ice core. Global Biogeochem. Cycles, 1994, 8: 363–376

    Article  Google Scholar 

  57. Shackleton N J. The 100,000 year Ice-Age cycle identified and found to lag temperature, carbon dioxides and orbital eccentricity. Science, 2000, 289: 1897–1902

    Article  Google Scholar 

  58. Brook E J, Sowers T, Orchado J. Rapid variations of atmospheric methane concentrations during the past 110,000 years. Science, 1996, 273: 1087–1091

    Article  Google Scholar 

  59. Ruddiman W F, Raymo M E. A methane-based time scale for Vostok ice: climatic implications. Quat Sci Rev, 2003, 21: 141–155

    Article  Google Scholar 

  60. Partridge T C, Demonical P B, Lorentz S A, et al. Orbital forcing of climate over South Africa: A 200,000-year rainfall record from the Pretoria Saltpan. Quat Sci Rev, 1997, 16: 1125–1133

    Article  Google Scholar 

  61. Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dates late Pleistocene monsoon record from Hulu Cave, China. Science, 2001, 294: 2345–2348

    Article  Google Scholar 

  62. Cheng H, Edwards R L, Wang Y, et al. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology, 2006, 34: 217–220

    Article  Google Scholar 

  63. Overpeck J, Cole J. The rhythm of the rain. Nature, 2008, 451: 1061–1062

    Article  Google Scholar 

  64. Bar-Matthews M, Ayalon A, Gilmour M, et al. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in he Eastern Mediterranean region and their implication for paleorainfall during nterglacial intervals. Geochim Cosmochim Acta, 2003, 67: 3181–3199

    Article  Google Scholar 

  65. Ruddiman W F, Raymo M E. A methane-based time scale for Vostok ice. Quat Sci Rev, 2003. 22: 141–155

    Article  Google Scholar 

  66. Clemens S, Prell W L, Murray D W, et al. Forcing mechanisms of the Indian Ocean monsoon. Nature, 1991, 353: 720–725

    Article  Google Scholar 

  67. Clemens S C. Prell W L. A 350,000-year summer-monsoon multiproxy stack from the Owen Ridge, Northern Arabian Sea. Mar Geol, 2003, 201: 35–51

    Article  Google Scholar 

  68. Sun Y B, Clemens S C, An Z S, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Ma monsoon records from the Chinese Loess Plateau. Quat Sci Rev, 2006, 25: 33–48

    Article  Google Scholar 

  69. Ruddiman W F. What is the timing of orbital-scale monsoon changes? Quat Sci Rev, 2006, 25:657–658

    Article  Google Scholar 

  70. Clemens S C, Prell W L. The timing of orbital-scale Indian monsoon changes. Quat Sci Rev, 2007, 26: 275–278

    Article  Google Scholar 

  71. Kutzbach J E, Liu X D, Liu Z Y, et al. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Clim Dyn, 2007, 30(6), doi: 10.1007/s00382-007-0308-z

  72. Weijers J W H, Schefuss E, Schouten S et al. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science, 2007, 15: 1701–1704

    Article  Google Scholar 

  73. Berger A., Loutre M F, Laskar J. Stability of the astronomical frequencies over the Earth’s history for paleoclimate studies. Science, 1992, 255: 560–566

    Article  Google Scholar 

  74. Matthews R K, Froelich C. Maximum flooding surfaces and sequence boundaries: comparisons between observations and orbital forcing in the Cretaceous and Jurassic (65–190 Ma). GeoArabia, Middle East Petrol Geosci, 2002, 7(3): 503–538

    Google Scholar 

  75. Kump L R. Interpreting carbon-isotope excursions: Strangelove ocean. Geology, 1991, 19: 299–302

    Article  Google Scholar 

  76. Katz M E, Wright J D, Miller K G, et al. Biological overprint of the geological carbon cycle. Mar Geol, 2005, 217: 323–338

    Article  Google Scholar 

  77. Wang P X, Tian J, Cheng X R, et al. Exploring cyclic changes of ocean carbon reservoir. Chin Sci Bull, 2003, 48(23): 2537–2548

    Google Scholar 

  78. Wang P X, Tian J, Cheng X R, et al. Carbon reservoir changes preceded major ice-sheet expansion at Mid-Brunhes Event. Geology, 2003, 31(3): 239–242

    Article  Google Scholar 

  79. Wang P X, Tian J, Cheng X R, et al. Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison. Paleoceanography, 2004,, doi: 10.1029/2003PA000991

  80. Berger A. Support for the astronomical theory of climatic change. Nature, 1977, 269: 44–45

    Article  Google Scholar 

  81. Palike H, Norris R D, Herrle J O, et al. The heartbeat of the Oligocene climate system. Science, 2006, 314: 1894–1998

    Article  Google Scholar 

  82. Palike H, Frazier J, Zachos J C. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quat Sci Rev, 2006, 25: 3138–3149

    Article  Google Scholar 

  83. Woodruff F, Savin S M. Mid-Miocene isotope stratigraphy in the deep sea: High- resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography, 1991, 6: 755–806

    Article  Google Scholar 

  84. Flower B P, Kennett J P. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 108: 537–555

    Article  Google Scholar 

  85. Holbourn A E, Kuhnt W, Schulz M, et al. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet Sci Lett, 2007, 261: 534–550

    Article  Google Scholar 

  86. Cramer B S, Wright J D, Kent D V, et al. Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n). Paleoceanography, 2003, 18(4): 1097, doi: 10.1029/2003PA000909

    Article  Google Scholar 

  87. Salamy K A, Zachos J C. Latest Eocene-Early Oligocene climate change and Southern Ocean fertility: inference from sediment accumulation and stable isotope data. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 145: 61–77

    Article  Google Scholar 

  88. Zachos J C, Kump L R. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Glob Planet Change, 2005, 47: 51–66

    Article  Google Scholar 

  89. Wade B S, Palike H. Oligocene climate dynamics. Paleoceanography, 2004, 19, PA 4019, doi: 10.1029/2004PA001042

  90. Paul H A, Zachos J C, Flower B P, et al. Orbitally induced climate and geochemical variability across the Oligocene/Miocene boundary. Paleoceanography, 2000, 15(5): 471–485

    Article  Google Scholar 

  91. Zachos J S, Shackleton N J, Revenaugh J S, et al. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science, 2001, 292: 274–278

    Article  Google Scholar 

  92. Billups K, Channell J E T, Zachos J. Late Oligocene to early Miocene geochronology and paleocanography from the subantarctic South Atlantic. Paleoceanography, 2002, 17(1), doi: 10.1029/2000PA000568

  93. Lourens L J, Hilgen FJ, Shackleton N J, et al. The Neogene Period. Gradstein F M, Ogg J G, Smith A G, eds., A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 2005. 409–440

    Chapter  Google Scholar 

  94. Tiedemann R M, Sarnthein M, Shackleton N J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records from Ocean Drilling Program Site 659. Paleoceanography, 1994, 9: 619–638

    Article  Google Scholar 

  95. Rossignol-Stick M, Nesteroff V, Olive P, et al. After the deluge: Mediterranean stagnation and sapropel formation. Nature, 1982, 295: 105–110

    Article  Google Scholar 

  96. Rohling E J. Review and new aspects concerning the formation of eastern Mediterranean sapropels. Mar Geol, 1994, 122: 1–28

    Article  Google Scholar 

  97. Sachs J P, Repeta D J. Oligotrophy and nitrogen fixation during Eastern Mediterranean sapropel events. Science, 1999, 286: 2485–2488

    Article  Google Scholar 

  98. Van Os B J H, Lourens L J, Hilgen F J, et al. The formation of Pliocene sapropels and carbonate cycles in the Mediterranean: diagenesis, dilution, and productivity. Paleoceanography, 1994, 9: 601–617

    Article  Google Scholar 

  99. Wehausen R, Brumsack H J. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth Planet Sci Lett, 2002, 201: 621–636

    Article  Google Scholar 

  100. Wang P X. Feeling the Earth’s pulse from global monsoon records. Geophys Res Abst, EGU, 2007, 9, 05820

    Google Scholar 

  101. Xiong S F, Jiang W Y, Liu T S. Mega-pulses and megacycles in East Asian monsoon variations recorded in Chinese loess-red clay magnetic susceptibility. Geophys Res Lett, 2006, 33, L18702, doi: 10.1029/2006GL027842

    Article  Google Scholar 

  102. Ravelo A C, Andreasen D H., Lyle M, et al. Regional climate shifts caused by gradual global cooling in the Piocene epoch. Nature, 2004, 429: 263–267

    Article  Google Scholar 

  103. Lawrence K T, Liu Z H, Herbert T D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science, 2006, 312: 79–83

    Article  Google Scholar 

  104. Lange C B, Berger W H, Lin H-L, et al. The early Matuyama Diatom Maximum off SW Africa, Benguela Current System (ODP Leg 175). Mar Geol, 1999, 161: 93–114

    Article  Google Scholar 

  105. Cortese G, Gersonde R. Plio/Pleistocene changes in the main biogenic silica carrier in the Southern Ocean, Atlantic Sector. Mar Geol, 2008, 252: 100–110

    Article  Google Scholar 

  106. Hodell D A, Venz-Curtis K A. Late Neogene History of Deepwater Ventilation in the Southern Ocean. Geochem Geophys Geosyst, 2006, 7, Q09001, doi: 10.1029/2005GC001211

    Article  Google Scholar 

  107. Shevenell A E, Kennett J P, Lea D W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science, 2004, 305: 1766–1770

    Article  Google Scholar 

  108. Holbourn A, Kuhnt W, Schulz M, et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 2005, 438: 483–487

    Article  Google Scholar 

  109. Schmieder F, von Dobeneck T, Bleil U. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation, interim state and terminal event. Earth Planet Sci Lett, 2001, 79: 539–549

    Google Scholar 

  110. Prell W L, Kutzbach J E. The impact of Tibet-Himalayan elevation on the sensitivity of the monsoon climate system to changes in solar radiation. In: Ruddiman W F, ed. Tectonic Uplift and Climate Change. New York: Plenum Press, 1997. 172–201

    Google Scholar 

  111. Young J A. Physics of monsoons: the current view. In: Fein J S, Stephens P L, eds. Monsoons. New York: John Wiley & Sons, 1987. 211–243

    Google Scholar 

  112. Dirmeyer, P A. Land-sea geometry and its effect on monsoon circulations, J Geophys Res, 1998, 103(D10): 11555–11572

    Article  Google Scholar 

  113. Webster P J. Monsoon. Sci Am, 1981. 70–80

  114. Kutzbach J E, Gallimore R G. Pangean climates: megamonsoons of the megacontinent. J Geophys Res, 1989, 9: 3341–3357

    Article  Google Scholar 

  115. Parrish J T. Climate of the supercontinent Pangea. Journal of Geology, 1993, 101: 215–233

    Article  Google Scholar 

  116. Rodwell M J, Hoskins B J. Monsoons and the dynamics of deserts. Q J R Meteorol Soc, 1996, 122: 1385–1404

    Article  Google Scholar 

  117. Philander S G H, Gu D, Halpern D, et al. Why the ITCZ is mostly North of the Equator. J Clim, 1996, 9: 2958–2972

    Article  Google Scholar 

  118. Crowley T J, Hyde W T, Short D A. Seasonal cycle variations on the supercontinent of Pangaea. Geology, 1989, 17: 457–460

    Article  Google Scholar 

  119. Wang P X, Li Q Y. Monsoon: Pre-Quaternary. In: Gornitz V, ed. Encyclopedia of Paleoclimatology and Ancient Environments. Heidelberg: Springer, 2009. 583–589

    Chapter  Google Scholar 

  120. Parrish J T, Peterson F. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison. Sediment Geol, 1988, 56: 261–282

    Article  Google Scholar 

  121. Lamb H H. Climate: Present, Past and Future.Vol.2. London: Methuen & Co Ltd, 1977. 835

    Google Scholar 

  122. Parrish J T. Climate of the supercontinent Pangea. J Geol, 1993, 101: 215–233

    Article  Google Scholar 

  123. Fluteau F, Besse J, Broutin J, et al. The late Permian climate. What can be inferred from climate medelling concerning Pangea scenarios and Hercynian range altitude? Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 167: 39–71

    Article  Google Scholar 

  124. Gordon W A. Distribution by latitude of Phanerozoic evaporate deposit. J Geol, 1975, 83(6): 671–684

    Article  Google Scholar 

  125. Loope D B, Rowe C M, Joeckel R M. Annual monsoon rains recorded by Jurassic dunes. Nature, 2001, 412: 64–66

    Article  Google Scholar 

  126. Soreghan G S, Soreghan M J, Hamilton M A. Origin and significance of loess in late Paleozoic western Pangaea: A record of tropical cold? Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 268: 234–259

    Article  Google Scholar 

  127. Dubial R F, Parrish J T, Parrish J M, et al. The Pangaean megamonsoon—Evidence from the Upper Triassic Chinle Formation, Colorado Plateau. Palaios, 1991, 6: 347–370

    Article  Google Scholar 

  128. Olsen P E. A 40-million-year lake record of Early Mesozoic orbital climatic forcing. Science, 1986, 234: 842–848

    Article  Google Scholar 

  129. Olsen P E, Kent D V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic. Palaeogeogr Palaeoclimatol Palaeoecol, 1996, 122: 1–26

    Article  Google Scholar 

  130. Weissert H, Mohr H. Late Jurassic climate and its impact on carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol, 1996, 122: 27–43

    Article  Google Scholar 

  131. Bush A B G. Numerical simulation of the Cretaceous Tethys circum-global current. Science, 1997, 275: 807–810

    Article  Google Scholar 

  132. Johnson K R, Ellis B. A Tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary. Science, 2002, 296: 2379–2383

    Article  Google Scholar 

  133. Sewall J O, Sloan L C. Come a little bit closer: A high-resolution climate study of the early Paleogene Laramide foreland. Geology, 2006, 34: 81–84

    Article  Google Scholar 

  134. Greenwood D R. Eocene monsoon forests in central Australia?: Aust Syst Biol, 1996, 9: 95–112

    Article  Google Scholar 

  135. Parrish J T, Ziegler A M, Scotese C R. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol, 1982, 40: 67–101

    Article  Google Scholar 

  136. Zhou T. Chinese Natural Geography (in Chinese). Paleogeography, Vol. 1. Beijing: Science Press, 1984. 262

    Google Scholar 

  137. Wang P X. Neogene stratigraphy and paleoenvironments of China. Palaeogeogr Palaeoclimatol Palaeoecol, 1990, 77: 315–334

    Article  Google Scholar 

  138. Liu T S, Zheng M P, Guo Z T. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia (in Chinese). Quat Sci, 1998, 3: 193–204

    Google Scholar 

  139. Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Ma ago inferred from loess deposits in China. Nature, 2002, 416: 159–163

    Article  Google Scholar 

  140. Jia G D, Peng P A, Zhao Q H, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea. Geology, 2003, 31: 1093–1096

    Article  Google Scholar 

  141. Chen L X, Liu J, Zhou X J, et al. Impact of uplift of Tibetan Plateau and change of land-ocean distribution on climate over Asia. Acta Meteorol Sin, 2000, 14: 459–474

    Google Scholar 

  142. Sun X J, Wang P X. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181–122

    Article  Google Scholar 

  143. Kroon D, Steens T N F, Troelstra S R. Onset of monsoonal related upwelling in the western Arabian Sea. In: Prell W L, Niitsuma N, et al., eds. Proceedings of the ODP. Sci Results, 1991, 117: 257–264

  144. Burbank D W, Derry L A, France-Lanord C. Reduced Himalayan sediment production 8 Ma ago despite an intensified monsoon. Nature, 1993, 364: 48–54

    Article  Google Scholar 

  145. Sepulchre P, Ramstein G, Fluteau F, et al. Tectonic Uplift and Eastern Africa Aridification. Science, 2006, 313: 1419–1423

    Article  Google Scholar 

  146. Quade J, Cerling T E, Bowman J E. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 1989, 342: 163–166

    Article  Google Scholar 

  147. Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary. Nature, 1997, 389: 153–158

    Article  Google Scholar 

  148. Ruddiman W F, Raymo M E, Prell W L, et al. The uplift-climate connection: A synthesis. In: Ruddiman W F, ed., Tectonic Uplift and Climate Change. Plenum, 1997. 471–515

  149. Prell W L, Kutzbach J E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 1992, 360: 647–653

    Article  Google Scholar 

  150. An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 2001, 411: 62–66

    Article  Google Scholar 

  151. Wei G. J, Li X H, Liu Y, et al. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 2006, 21: PA4214, doi: 10.1029/2006PA001300

    Article  Google Scholar 

  152. Kump L R, Arthur M A. Global chemical erosion during the Cenozoic: Weatherability balanced the budget. In: Ruddiman W F, ed., Tectonic Uplift and Climate Change. New York: Plenum Press, 1997. 399–426

    Chapter  Google Scholar 

  153. Wang P X. Cenozoic deformation and the history of sea-land interactions in Asia. In: Clift P, et al., eds. Continent-Ocean interactions in the East Asian Marginal Seas. Geophysical Monograph 149, AGU, 2004, 1–22

  154. Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plate motion and land.sea distribution on Eurasian climate change over the past 30 million years. Nature, 1997, 386: 788–795

    Article  Google Scholar 

  155. Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 304 million years ago. Nature, 2001, 411: 157–162

    Article  Google Scholar 

  156. Lamb H H. Climate: Present, Past and Future. Vol.1. London: Methuen & Co Ltd, 1972. 613

    Google Scholar 

  157. CLIMAP Project Members. The surface of the ice-age earth. Science, 1976, 191: 1131–1144

    Article  Google Scholar 

  158. Berger A, Loutre M F, Melice J L. Equatorial insolation: from precession harmonics to eccentricity frequencies. Climate of the Past, 2006, 2: 131–136

    Article  Google Scholar 

  159. Park J, D’Hondt S L, King J W, et al. Late Cretaceous precessional cycles in double time: A warm-earth Milankovitch response. Science, 1993, 261: 1431–1434

    Article  Google Scholar 

  160. Westerhold T, Rohl U, Raffi I, et al. Astronomical calibration of the Paleocene time. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 257: 377–403

    Article  Google Scholar 

  161. Pierrehumbert R T. The hydrologic cycle in deep-time climate problems. Nature, 2002, 419: 191–198

    Article  Google Scholar 

  162. Wang B, Clemens S C, Liu P. Contrasting the Indian and East Asian monsoons: Implications on geological timescale. Mar Geol, 2003, 201: 5–21

    Article  Google Scholar 

  163. Fedorov A V, Dekens P S, McCarthy M, et al. The Pliocene Paradox (mechanisms for a permanent El Niño). Science, 2006, 312: 1485–1489

    Article  Google Scholar 

  164. Soreghan G S, Montanez I P. Special issue on the late Paleozoic Earth system. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 268: 123–125

    Article  Google Scholar 

  165. Sewall J O, Sloan L C, Huber M, et al. Climate sensitivity to changes in land surface characteristics. Glob Planet Change, 2000, 26: 445–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PinXian Wang.

Additional information

Supported by National Basic Research Program of China (Grant No. 2007CB815902)

About this article

Cite this article

Wang, P. Global monsoon in a geological perspective. Chin. Sci. Bull. 54, 1113–1136 (2009). https://doi.org/10.1007/s11434-009-0169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0169-4

Keywords

Navigation