Skip to main content
Log in

Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In order to obtain a comprehensive understanding of both thermodynamics and kinetics of water dissociation on TiO2, the reactions between liquid water and perfect and defective rutile TiO2 (110) surfaces were investigated using ab initio molecular dynamics simulations. The results showed that the free-energy barrier (~4.4 kcal/mol) is too high for a spontaneous dissociation of water on the perfect rutile (110) surface at a low temperature. The most stable oxygen vacancy (Vo1) on the rutile (110) surface cannot promote the dissociation of water, while other unstable oxygen vacancies can significantly enhance the water dissociation rate. This is opposite to the general understanding that Vo1 defects are active sites for water dissociation. Furthermore, we reveal that water dissociation is an exothermic reaction, which demonstrates that the dissociated state of the adsorbed water is thermodynamically favorable for both perfect and defective rutile (110) surfaces. The dissociation adsorption of water can also increase the hydrophilicity of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)

    Article  ADS  Google Scholar 

  2. X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331(6018), 746 (2011)

    Article  ADS  Google Scholar 

  3. S. J. Tan, F. Hao, Y. F. Ji, Y. Wang, J. Zhao, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2 (110)-1 x 1 Surface, J. Am. Chem. Soc. 134(24), 9978 (2012)

    Article  Google Scholar 

  4. J. H. Liang, N. Wang, Q. X. Zhang, B. F. Liu, X. B. Kong, C. C. Wei, D. K. Zhang, B. J. Yan, Y. Zhao, and X. D. Zhang, Exploring the mechanism of a pure and amorphous black-blue TiO2:H thin film as a photoanode in water splitting, Nano Energy 42, 151 (2017)

    Article  Google Scholar 

  5. V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, Cambridge: Cambridge University Press, 1994

    Google Scholar 

  6. H. J. Freund, Introductory lecture: Oxide surfaces, Faraday Discuss. 114, 1 (1999)

    Article  ADS  Google Scholar 

  7. M. Ramamoorthy, D. Vanderbilt, and R. D. King-Smith, First-principles calculations of the energetics of stoichiometric TiO2 surfaces, Phys. Rev. B 49(23), 16721 (1994)

    Article  ADS  Google Scholar 

  8. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48(5–8), 53 (2003)

    Article  ADS  Google Scholar 

  9. M. A. Henderson, An HREELS and TPD study of water on TiO2 (110): the extent of molecular versus dissociative adsorption, Surf. Sci. 355(1–3), 151 (1996)

    Article  ADS  Google Scholar 

  10. I. M. Brookes, C. A. Muryn, and G. Thornton, Imaging water dissociation on TiO2 (110), Phys. Rev. Lett. 87(26), 266103 (2001)

    Article  ADS  Google Scholar 

  11. R. Schaub, R. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K. Norskov, and F. Besenbacher, Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110), Phys. Rev. Lett. 87(26), 266104 (2001)

    Article  ADS  Google Scholar 

  12. O. Bikondoa, C. L. Pang, R. Ithnin, C. A. Muryn, H. Onishi, and G. Thornton, Direct visualization of defect-mediated dissociation of water on TiO2 (110), Nat. Mater. 5(3), 189 (2006)

    Article  ADS  Google Scholar 

  13. S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Lægsgaard, F. Besenbacher, and B. Hammer, Formation and splitting of paired hydroxyl groups on reduced TiO2 (110), Phys. Rev. Lett. 96(6), 066107 (2006)

    Article  ADS  Google Scholar 

  14. M. A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66(6–7), 185 (2011)

    Article  ADS  Google Scholar 

  15. C. L. Pang, R. Lindsay, and G. Thornton, Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces., Chem. Rev. 113(6), 3887 (2013)

    Article  Google Scholar 

  16. M. B. Hugenschmidt, L. Gamble, and C. T. Campbell, The interaction of H2O with a TiO2 (110) surface, Surf. Sci. 302(3), 329 (1994)

    Article  ADS  Google Scholar 

  17. L. E. Walle, A. Borg, P. Uvdal, and A. Sandell, Experimental evidence for mixed dissociative and molecular adsorption of water on a rutile TiO2 (110) surface without oxygen vacancies, Phys. Rev. B 80(23), 235436 (2009)

    Article  ADS  Google Scholar 

  18. H. H. Kristoffersen, J. Ø. Hansen, U. Martinez, Y. Y. Wei, J. Matthiesen, R. Streber, R. Bechstein, E. Lægsgaard, F. Besenbacher, B. Hammer, and S. Wendt, Role of steps in the dissociative adsorption of water on rutile TiO2 (110), Phys. Rev. Lett. 110(14), 146101 (2013)

    Article  ADS  Google Scholar 

  19. E. V. Stefanovich and T. N. Truong, Ab initio study of water adsorption on TiO2 (110): molecular adsorption versus dissociative chemisorption, Chem. Phys. Lett. 299(6), 623 (1999)

    Article  ADS  Google Scholar 

  20. W. Langel, Car-Parrinello simulation of H2O dissociation on rutile, Surf. Sci. 496(1–2), 141 (2002)

    Article  ADS  Google Scholar 

  21. P. J. D. Lindan, N. M. Harrison, J. M. Holender, and M. J. Gillan, First-principles molecular dynamics simulation of water dissociation on TiO2 (110), Chem. Phys. Lett. 261(3), 246 (1996)

    Article  ADS  Google Scholar 

  22. P. J. D. Lindan, N. M. Harrison, and M. J. Gillan, Mixed dissociative and molecular adsorption of water on the rutile (110) surface, Phys. Rev. Lett. 80(4), 762 (1998)

    Article  ADS  Google Scholar 

  23. L. E. Walle, D. Ragazzon, A. Borg, P. Uvdal, and A. Sandell, Competing water dissociation channels on rutile TiO2 (110), Surf. Sci. 621, 77 (2014)

    Article  ADS  Google Scholar 

  24. W. H. Zhang, J. L. Yang, Y. Luo, S. Monti, and V. Carravetta, Quantum molecular dynamics study of water on TiO2 (110) surface, J. Chem. Phys. 129(6), 064703 (2008)

    Article  ADS  Google Scholar 

  25. L. A. Harris and A. A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110), Phys. Rev. Lett. 93(8), 086105 (2004)

    Article  ADS  Google Scholar 

  26. C. Zhang and P. J. D. Lindan, Multilayer water adsorption on rutile TiO2 (110): A first-principles study, J. Chem. Phys. 118(10), 4620 (2003)

    Article  ADS  Google Scholar 

  27. N. Kumar, S. Neogi, P. R. C. Kent, A. V. Bandura, J. D. Kubicki, D. J. Wesolowski, D. Cole, and J. O. Sofo, Hydrogen bonds and vibrations of water on (110) rutile, J. Phys. Chem. C 113(31), 13732 (2009)

    Article  Google Scholar 

  28. L. M. Liu, C. J. Zhang, G. Thornton, and A. Michaelides, Structure and dynamics of liquid water on rutile TiO2 (110), Phys. Rev. B 82(16), 161415 (2010)

    Article  ADS  Google Scholar 

  29. H. Hussain, G. Tocci, T. Woolcot, X. Torrelles, C. L. Pang, D. S. Humphrey, C. M. Yim, D. C. Grinter, G. Cabailh, O. Bikondoa, R. Lindsay, J. Zegenhagen, A. Michaelides, and G. Thornton, Structure of a model TiO2 photocatalytic interface, Nat. Mater. 16(4), 461 (2017)

    Article  ADS  Google Scholar 

  30. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun. 167(2), 103 (2005)

    Article  ADS  Google Scholar 

  31. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38(6), 3098 (1988)

    Article  ADS  Google Scholar 

  32. C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37(2), 785 (1988)

    Article  ADS  Google Scholar 

  33. A. R. Khoei, P. Ghahremani, M. J. Abdolhosseini Qomi, and P. Banihashemi, Stability and sizedependency of temperature-related Cauchy-Born hypothesis, Comput. Mater. Sci. 50(5), 1731 (2011)

    Article  Google Scholar 

  34. J. Oviedo, M. A. San Miguel, and J. F. Sanz, Oxygen vacancies on TiO2 (110) from first principles calculations, J. Chem. Phys. 121(15), 7427 (2004)

    Article  ADS  Google Scholar 

  35. L. A. Harris and A. A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110), Phys. Rev. Lett. 93, 086105 (2004)

    Article  ADS  Google Scholar 

  36. P. J. D. Lindan and C. Zhang, Exothermic water dissociation on the rutile TiO2 (110) surface, Phys. Rev. B 72, 075439 (2005)

    Article  ADS  Google Scholar 

  37. A. Laio and M. Parrinello, Escaping free-energy minima, PNAS 99(20), 12562 (2002)

    Article  ADS  Google Scholar 

  38. D. Branduardi, G. Bussi, and M. Parrinello, Metadynamics with adaptive Gaussians, J. Chem. Theory Comput. 8(7), 2247 (2012)

    Article  Google Scholar 

  39. N. G. Petrik and G. A. Kimmel, Reaction kinetics of water molecules with oxygen vacancies on rutile TiO2 (110), J. Phys. Chem. C 119(40), 23059 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li  (李晖).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HL., Hu, ZP. & Li, H. Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations. Front. Phys. 13, 138107 (2018). https://doi.org/10.1007/s11467-018-0763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0763-5

Keywords

Navigation