Skip to main content

Advertisement

Log in

Coevolutionary Dynamics of Host Immune and Parasite Virulence Based on an Age-Structured Epidemic Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Hosts can activate a defensive response to clear the parasite once being infected. To explore how host survival and fecundity are affected by host-parasite coevolution for chronic parasitic diseases, in this paper, we proposed an age-structured epidemic model with infection age, in which the parasite transmission rate and parasite-induced mortality rate are structured by the infection age. By use of critical function analysis method, we obtained the existence of the host immune evolutionary singular strategy which is a continuous singular strategy (CSS). Assume that parasite-induced mortality begins at infection age \(\tau \) and is constant v thereafter. We got that the value of the CSS, \(c^*\), monotonically decreases with respect to infection age \(\tau \) (see Case (I)), while it is non-monotone if the constant v positively depends on the immune trait c (see Case (II)). This non-monotonicity is verified by numerical simulations and implies that the direction of immune evolution depends on the initial value of immune trait. Besides that, we adopted two special forms of the parasite transmission rate to study the parasite’s virulence evolution, by maximizing the basic reproduction ratio \({\mathcal {R}}_0\). The values of the convergence stable parasite’s virulence evolutionary singular strategies \(v^*\) and \(k^*\) increase monotonically with respect to time lag L (i.e., the time lag between the onset of transmission and mortality). At the singular strategy \(v^*\) and \(k^*\), we further obtained the expressions of the case mortalities \(\chi ^*\) and how they are affected by the time lag L. Finally, we only presented some preliminary results about host and parasite coevolution dynamics, including a general condition under which the coevolutionary singular strategy \((c^*,v^*)\) is evolutionarily stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Bowers RG, Hoyle A, White A, Boots M (2005) The geometric theory of adaptive evolution: trade-off and invasion plots. J Theor Biol 233:363–377

    Article  MathSciNet  MATH  Google Scholar 

  • Buckingham LJ, Ashby B (2022) Coevolutionary theory of hosts and parasites. J Evolut Biol 35:205–224

    Article  Google Scholar 

  • Combes C (2005) The art of being a parasite. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Cressman R (2010) Css, nis and dynamic stability for two-species behavioral models with continuous trait spaces. J Theor Biol 262:80–89

    Article  MathSciNet  MATH  Google Scholar 

  • Dai L, Zou X (2017) Effect of superinfection and cost of immunity on host-parasite co-evolution. Discrete Contin Dynam Syst Series B 22(3):809–829

    MathSciNet  MATH  Google Scholar 

  • Day T (2003) Virulence evolution and the timing of disease life-history events. Trends Ecol Evolut 18(3):113–118

    Article  Google Scholar 

  • Day T, Burns JG (2003) A consideration of patterns of virulence arising from host-parasite coevolution. Evolution 57(3):671–676

    Google Scholar 

  • Day T, Graham AL, Read AF (2007) Evolution of parasite virulence when host responses cause disease. Proceed Royal Soc B 274:2685–2692

    Article  Google Scholar 

  • Demas GE, Chefer V, Talan MI, Nelson RJ (1997) Metabolic costs of mounting an antigen-stimulated immune response in adult and aged c57bl/6j mice. Am J Physiol 42:R1631–R1637

    Google Scholar 

  • Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34:579–612

    Article  MathSciNet  MATH  Google Scholar 

  • Eshel I (1983) Evolutionary and continuous stability. J Theor Biol 103:99–111

    Article  MathSciNet  Google Scholar 

  • Gandon S, van Baalen M, Jansen VAA (2002) The evolution of parasite virulence, superinfection, and host resistance. Am Nat 159:658–669

    Article  Google Scholar 

  • Geritz SAH, Kisdi E, Meszena G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolut Ecol 12:35–57

    Article  Google Scholar 

  • Geritz SAH, Kisdi E, Yan P (2007) Evolutionary branching and long-term coexistence of cycling predators: critical function analysis. Theor Populat Biol 71:424–435

    Article  MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press

    Book  MATH  Google Scholar 

  • Kada S, Lion S (2015) Superinfection and the coevolution of parasite virulence and host recovery. J Evolut Biol 28:2285–2299

    Article  Google Scholar 

  • Kisdi E (1999) Evolutionary branching under asymmetric competition. J Theor Biol 197:149–162

    Article  Google Scholar 

  • Kisdi E (2006) Trade-off geometries and the adaptive dynamics of two co-evolving species. Evolut Ecol Res 8:929–973

    Google Scholar 

  • Levins R (1962) Theory of fitness in a heterogeneous environment. i. the fitness set and adaptive function. Am Nat 46:361–373

    Article  Google Scholar 

  • Lion S, Metz JAJ (2018) Beyond \(r_0\) maximisation: On pathogen evolution and environmental dimensions. Trends Ecol Evolut 33(6):S0169534718300363

    Article  Google Scholar 

  • Martcheva M (2015) An introduction to mathematical epidemiology. Springer

    Book  MATH  Google Scholar 

  • de Mazancourt C, Dieckmann U (2004) Trade-off geometries and frequency-dependent selection. Am Nat 164:765–778

    Article  Google Scholar 

  • Moret Y, Schmid-Hempel PJ (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290(6):1166–1168

    Article  Google Scholar 

  • Otto SP, Day T (2007) A biologist’s guide to mathematical modeling in ecology and evolution. Cambridge University Press

    Book  MATH  Google Scholar 

  • Pfab F, Nisbet RM, Briggs CJ (2022) A time-since-infection model for populations with two pathogens. Theor Populat Biol 144:1–12

    Article  MATH  Google Scholar 

  • Rueffler C, van Dooren TJM, Metz JAJ (2004) Adaptive walks on changing landscapes: Levins’ approach extended. Theoret Populat Biol 65:165–178

    Article  MATH  Google Scholar 

  • Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32:569–577

    Article  Google Scholar 

  • Yang Y, Ma C, Zu J (2022) Coevolutionary dynamics of host-pathogen interaction with density-dependent mortality. J Math Biol 85:15

    Article  MathSciNet  MATH  Google Scholar 

  • Zu J, Wang J (2013) Coevolutionary dynamics of host-pathogen interaction with density-dependent mortality. J Math Biol 89:12–23

    Google Scholar 

  • Zu J, Wang JL, Du J (2014) Adaptive evolution of defense ability leads to diversification of prey species. Acta Biotheor 62:207–234

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the handling editor and the referees for their valuable comments which have greatly improved the presentation and content of the paper. The project is supported partially by the National Natural Science Foundation of China (12271143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Chao Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Local stability of the positive steady state \(E^*\)

Proof

Assuming that \(\beta (\theta )\) is taken as (80) and \(v(\theta )\) is adopted as (24) or (37). If \(b_S>\mu \) and \(\frac{1}{2}<{\mathcal {R}}_0<{\mathcal {P}}_1(c)<1\),the positive steady state \(E^*\) of model (2) is locally stable. To prove this local stability, we make the following perturbation variables around \(E^*\),

$$\begin{aligned} {S(t)} = S^* + x(t),\ \ {I}(\theta ,t) = I^*(\theta ) + y(\theta ,t). \end{aligned}$$
(73)

Substituting (73) into model (2), we have the linearized system

$$\begin{aligned} \left\{ \begin{aligned} \frac{dx(t)}{dt} =&({b_S} - \mu )x(t) +({b_I}(c) + c)\int _0^\infty y(\theta ,t)d\theta \\&-x(t)\int _0^\infty \beta (\theta )I^*(\theta )d\theta -S^*\int _0^\infty \beta (\theta )y(\theta ,t)d\theta ,\\ \frac{\partial y(\theta ,t)}{\partial t} +&\frac{{\partial y(\theta ,t)}}{{\partial \theta }} = -(\mu + v(\theta ) + c)y(\theta ,t),\\ y(0,t) =&S^*\int _0^\infty \beta (\theta )y(\theta ,t)d\theta . \end{aligned}\right. \end{aligned}$$

To analyze the asymptotic behavior near \(E^*\), we assume

$$\begin{aligned} x(t) = {{\overline{x}}}{e^{\lambda t}},\ \ y(\theta ,t) = \overline{y}(\theta ){e^{\lambda t}}. \end{aligned}$$
(74)

By use of (74), we get the following equation

$$\begin{aligned} \left\{ \begin{aligned} \lambda {{\overline{x}}} =&(b_S -\mu ){{\overline{x}}} +({b_I}(c) + c)\int _0^{+\infty } {{{\overline{y}}}(\theta )d\theta } \\&-{{\overline{x}}}\int _0^{+\infty }\beta (\theta )I^*(\theta )d\theta -S^*\int _0^{+\infty }\beta (\theta ){{\overline{y}}}(\theta )d\theta ,\\ \frac{d{\overline{y}}(\theta )}{d\theta } =&-(\lambda +\mu + v(\theta )+ c){{\overline{y}}}(\theta ),\\ {{\overline{y}}}(0) =&x\int _0^{+\infty } {\beta (\theta )I^*(\theta )d\theta } -S^*\int _0^{+\infty } {\beta (\theta ){{\overline{y}}}(\theta )d\theta }. \end{aligned} \right. \end{aligned}$$
(75)

It follows from the second and the third equations of Eq. (75), we have

$$\begin{aligned} {{\overline{y}}}(\theta ) ={{\overline{y}}}(0)e^{ - \lambda \theta }w(\theta ,c). \end{aligned}$$
(76)

Substituting (76) into the third equation of (75), we have

$$\begin{aligned} {{\overline{y}}}(0)={{\overline{x}}}\int _0^{ + \infty } {\beta (\theta )I^*(\theta )d\theta }+ S^*\overline{y}(0)\int _0^{+\infty }{\beta (\theta ){e^{ - \lambda \theta }}w(\theta ,c)d\theta } \end{aligned}$$

It then follows that

$$\begin{aligned} {{\overline{y}}}(\theta ) = \frac{\displaystyle {{\overline{x}}}\int _0^{ + \infty }\beta (\theta )I^*(\theta )d\theta e^{ - \lambda \theta }w(\theta ,c)}{ \displaystyle 1 - S^*\int _0^{ + \infty } \beta (\theta )e^{ - \lambda \theta }w(\theta ,c)d\theta }. \end{aligned}$$
(77)

Note that

$$\begin{aligned} \int _0^{+\infty }\beta (\theta )I^*(\theta )d\theta =\frac{b_S-\mu }{1-\mathcal {P}_1(c)}. \end{aligned}$$

Substituting (77) into the first equation of (75), by some direct calculations, we have

$$\begin{aligned} (\lambda -b_S+\mu ) + \frac{\left[ 1-(b_I(c)+c)\int _0^{+\infty }e^{-\lambda \theta }w(\theta ,c)d\theta \right] }{\left( 1-S^*\int _0^{+\infty }\beta (\theta )e^{-\lambda \theta }w(\theta ,c)d\theta \right) }\frac{(b_S-\mu )}{(1 -{\mathcal {P}}_1(c))}=0. \end{aligned}$$
(78)

Here, we have used the expressions of \(S^*\) and \(I^*\). It then follows that

$$\begin{aligned} \left| \lambda + \frac{\left[ 1-(b_I(c)+c)\int _0^{+\infty }e^{-\lambda \theta }w(\theta ,c)d\theta \right] }{\left( 1-S^*\int _0^{+\infty }\beta (\theta )e^{-\lambda \theta }w(\theta ,c)d\theta \right) }\frac{(b_S-\mu )}{(1 -{\mathcal {P}}_1(c))}\right| =|b_S-\mu |, \end{aligned}$$
(79)

If \(\lambda =a_1+\text {i}a_2\) with \(a_1>0\) is a root of (78), then we have the real part

$$\begin{aligned} \begin{aligned}&\Re \left\{ \frac{1-(b_I(c)+c)\int _0^{+\infty }e^{-\lambda \theta }w(\theta ,c)d\theta }{1-S^*\int _0^{+\infty }\beta (\theta )e^{-\lambda \theta }w(\theta ,c)d\theta }\right\} \\&=\Re \left\{ \frac{1-(b_I(c)+c)\int _0^{+\infty }e^{-\lambda \theta }w(\theta ,c)d\theta }{1-\frac{\int _0^{+\infty }\beta (\theta )e^{-\lambda \theta }w(\theta ,c)d\theta }{\int _0^{+\infty }\beta (\theta )w(\theta ,c)d\theta }}\right\} \\&=\Re \left\{ \frac{C_1+\text {i}D_1}{C_2+\text {i}D_2} \right\} \end{aligned} \end{aligned}$$

with

$$\begin{aligned} \begin{aligned} C_1&=1-(b_I(c)+c)\int _0^{+\infty }e^{-a_1\theta }\cos (a_2\theta )w(\theta ,c)d\theta ,\\ D_1&=(b_I(c)+c)\int _0^{+\infty }e^{-a_1\theta }\sin (a_2\theta )w(\theta ,c)d\theta ,\\ C_2&=1-\frac{1}{{\mathcal {R}}_0}\int _0^{+\infty }\beta (\theta )e^{-a_1\theta }\cos (a_2\theta )w(\theta ,c)d\theta ,\\ D_2&=\frac{1}{\mathcal {R}_0}\int _0^{+\infty }\beta (\theta )e^{-a_1\theta }\sin (a_2\theta )w(\theta ,c)d\theta . \end{aligned} \end{aligned}$$

Obviously, \(0<C_1<1\) if \({\mathcal {P}}_1(c)<1\).

To determine the signs of \(C_2\) and \(D_2\), we need the following assumption. Assume that

$$\begin{aligned} \beta (\theta )={{\overline{\beta }}}(1-e^{-\alpha \theta })\ \ \text{ with }\ \ 0<{{\overline{\beta }}}\le b_I(c)+c. \end{aligned}$$
(80)

Then it follows that \(0<C_2<1\) if \({\mathcal {P}}_1(c)<1\), and \(0\le D_1<1\) and \(0\le D_2<1\) if \({\mathcal {P}}_1(c)<1\) and \(a_2\ge 0\), and \(-1<D_1<0\) and \(-1<D_2<0\) if \({\mathcal {P}}_1(c)<1\) and \(a_2<0\). If \(\frac{1}{2}<{\mathcal {R}}_0<{\mathcal {P}}_1(c)<1\), we have \(0<1-\mathcal P_1(c)<1-{\mathcal {R}}_0<{\mathcal {R}}_0\). By use of (80), we have that \(D_1>{\mathcal {R}}_0 D_2>0\) if \(a_2>0\) and \(D_1<{\mathcal {R}}_0 D_2<0\) if \(a_2<0\). Then we have

$$\begin{aligned}&\frac{D_1D_2}{(1 -{\mathcal {P}}_1(c))}>\frac{D_1D_2}{1-{\mathcal {R}}_0}>\frac{D_1D_2}{{\mathcal {R}}_0}>D_2^2,\ \ \ \text{ if }\ \ a_2>0; \\&\frac{D_1D_2}{(1 -{\mathcal {P}}_1(c))}>\frac{D_1D_2}{\mathcal {R}_0}=\frac{(-D_1)(-D_2)}{{\mathcal {R}}_0}>D_2^2,\ \ \text{ if }\ \ a_2<0. \end{aligned}$$

It then follows from \(0<C_2<1\) and \(\frac{C_1}{(1 -\mathcal P_1(c))}>1\) that

$$\begin{aligned} \begin{aligned} \Re \left\{ \frac{C_1+\text {i}D_1}{C_2+\text {i}D_2} \right\} \frac{1}{(1 -{\mathcal {P}}_1(c))}&=\frac{C_1C_2+D_1D_2}{C_2^2+D_2^2}\frac{1}{(1 -{\mathcal {P}}_1(c))}\\&=\frac{\displaystyle \frac{C_1}{(1 -{\mathcal {P}}_1(c))}C_2+\frac{D_1D_2}{(1 -{\mathcal {P}}_1(c))}}{C_2^2+D_2^2}\\&>\frac{C_2+D_2^2}{C_2^2+D_2^2}>1. \end{aligned} \end{aligned}$$

Thus, the left-hand side of (79) (LHS) satisfies

$$\begin{aligned} |b_S-\mu |{} & {} <\Re \left\{ \frac{\left[ 1-(b_I(c)+c)\int _0^{+\infty }e^{-\lambda \theta }w(\theta ,c)d\theta \right] }{\left( 1-S^*\int _0^{+\infty }\beta (\theta )e^{-\lambda \theta }w(\theta ,c)d\theta \right) }\right\} \frac{|b_S-\mu |}{(1 -{\mathcal {P}}_1(c))}\\{} & {} <LHS=|b_S-\mu | \end{aligned}$$

if \(b_S>\mu \) and \(\frac{1}{2}<{\mathcal {R}}_0<{\mathcal {P}}_1(c)<1\). This contradiction implies that Eq. (78) only has roots with negative real parts and the steady state \(E^*=(S^*,I^*)\) of model (2) is locally asymptotically stable if \(b_S>\mu \) and \(\frac{1}{2}<{\mathcal {R}}_0<{\mathcal {P}}_1(c)<1\). \(\square \)

Appendix B. Fitness function of hosts immune evolution

To get the the fitness function of hosts immune evolution described by model (2), we need to study the dynamics of the following system

$$\begin{aligned} \left\{ \begin{aligned} \frac{d S_{1}(t)}{d t}=&\, b_S S_{1}(t)-\mu S_{1}(t)+\int _{0}^{+\infty } b_{I}(c) I_{1}(\theta , t) d \theta +\int _{0}^{+\infty } c I_{1}(\theta ,t) d \theta \\ {}&\, -\left[ \int _{0}^{+\infty } \beta (\theta ) I_{1}(\theta ,t) d \theta +\int _{0}^{+\infty } \beta (a) I_{2}(a,t) d a\right] S_{1}(t) \\ \frac{{\partial {I_1}(\theta ,t)}}{{\partial t}} +&\frac{{\partial {I_1}(\theta ,t)}}{{\partial \theta }} = -(\mu + v(\theta ) + c){I_1}(\theta ,t)\\ {I_1}(0,t) =&\, \left[ \int _0^{ + \infty } {\beta (\theta ){I_1}(\theta ,t)d\theta } + \int _0^{ + \infty } {\beta (a){I_2}(a,t)da} \right] {S_1}(t)\\ \frac{d S_{2}(t)}{d t}=&b_S S_{2}(t)-\mu S_{2}(t)+\int _{0}^{+\infty } b_{I}({\hat{c}}) I_{2}(a,t) d a+\int _{0}^{+\infty } {\hat{c}} I_{2}(a,t) da \\ {}&\, -\left[ \int _{0}^{+\infty } \beta (\theta ) I_{1}(\theta ,t) d \theta +\int _{0}^{+\infty } \beta (a) I_{2}(a,t) d a\right] S_{2}(t) \\ \frac{{\partial {I_2}(a,t)}}{{\partial t}} +&\frac{{\partial {I_2}(a,t)}}{{\partial a}} = -(\mu + v(a) + {{\hat{c}}}){I_2}(a,t)\\ {I_2}(0,t) =&\, \left[ \int _0^{ + \infty } {\beta (\theta ){I_1}(\theta ,t)d\theta } + \int _0^{ + \infty } {\beta (a){I_2}(a,t)da}\right] {S_2}(t). \end{aligned} \right. \nonumber \\ \end{aligned}$$
(81)

in which \(S_1\) and \(I_1\) represent the resident hosts, \(S_2\) and \(I_2\) represent the mutant hosts. \(v(\theta )\) is the parasite-induced mortality rate for the resident hosts, and v(a) is the parasite-induced mortality rate for the mutant hosts. Other parameters are same as that in model (2). It is easy to obtain that, if \(b_S>\mu \) and \({\mathcal {P}}_1(c)<1\), there is a boundary steady state \(E_1^*=(S^*_1,I^*_1(\theta ),0,0_{L^1})\) with

$$\begin{aligned} S^*_1=\frac{1}{\displaystyle \int _0^{+\infty }\beta (\theta )w(\theta ,c)d\theta }=S^*\ \ \ \text{ and }\ \ \ I^*_1(\theta )=\frac{(b_S-\mu )S^*_1w(\theta ,c)}{1-\mathcal {P}_1(c)}=I^*(\theta ). \end{aligned}$$

In which, \((S^*,I^*(\theta ))\) is the positive steady state of model (2). By use of the immune regulation reproduction ratio \({\mathcal {R}}_H\) in (9), we have the following theorem.

Theorem B. When \({\mathcal {R}}_H<1\), the boundary steady state \(E_1^*\) of model (81) is locally asymptotically stable if it exists, otherwise, it is unstable.

Proof

To prove Theorem B, we make the following perturbation variables around \(E_1^*\),

$$\begin{aligned} {S_1(t)}= & {} S^*+ x_1(t),\ {I_1}(\theta ,t)= I^*(\theta ) + y_1(\theta ,t),\ {S_2}(t)\nonumber \\= & {} {x_2}(t),\ {I_2}(a,t)= {y_2}(a,t). \end{aligned}$$
(82)

Substituting (82) into model (81), we have the linearized system

$$\begin{aligned} \left\{ \begin{aligned} \frac{dx_1(t)}{dt} =&({b_S} - \mu )x_1(t)+({b_I}(c) + c)\int _0^\infty y_1(\theta ,t)d\theta -x_1(t)\int _0^\infty \beta (\theta )I^*(\theta )d\theta \\&-S^*\left[ \int _0^\infty {\beta (\theta )y_1(\theta ,t)d\theta } + \int _0^\infty {\beta (a){y_2}(a,t)da}\right] ,\\ \frac{\partial y_1(\theta ,t)}{\partial t} +&\frac{{\partial y_1(\theta ,t)}}{{\partial \theta }} = -(\mu + v(\theta ) + c)y_1(\theta ,t),\\ y_1(0,t) =&S^*\left[ \int _0^\infty {\beta (\theta )y_1(\theta ,t)d\theta } + \int _0^\infty {\beta (a){y_2}(a,t)da}\right] + x_1(t)\int _0^\infty {\beta (\theta )I^*(\theta )d\theta }, \\ \frac{d{x_2(t)}}{dt} =&(b_S-\mu ){x_2(t)}+({b_I}({{\hat{c}}})+{{\hat{c}}})\int _0^\infty {{y_2}(a,t)da}- {x_2(t)}\int _0^\infty {\beta (\theta )I^*(\theta )d\theta }, \\ \frac{{\partial {y_2}(a,t)}}{{\partial t}} +&\frac{{\partial {y_2}(a,t)}}{{\partial a}} = -(\mu + v(a) + {{\hat{c}}}){y_2}(a,t),\\ {y_2}(0,t) =&{x_2(t)}\int _0^\infty \beta (\theta )I^*(\theta )d\theta . \end{aligned}\right. \end{aligned}$$

To analyze the asymptotic behavior near \(E_1^*\), we assume

$$\begin{aligned} x_1(t) ={{\overline{x}}}_1{e^{\lambda t}},\ y_1(\theta ,t) =\overline{y}_1(\theta ){e^{\lambda t}},\ {x_2}(t) ={{\overline{x}}}_2{e^{\lambda t}},\ {y_2}(a,t) = {{\overline{y}}}_2(a){e^{\lambda t}}. \end{aligned}$$
(83)

By use of (83), we get the following equation

$$\begin{aligned} \left\{ \begin{aligned} \lambda {{\overline{x}}}_1 =&(b_S -\mu ){{\overline{x}}}_1 +({b_I}(c) + c)\int _0^{+\infty } {{{\overline{y}}}_1(\theta )d\theta }- {{\overline{x}}}_1\int _0^{ + \infty } {\beta (\theta )I^*(\theta )d\theta } \\&-S^*\left[ \int _0^{ + \infty } {\beta (\theta ){{\overline{y}}}_1(\theta )d\theta } + \int _0^{ + \infty } {\beta (a){{{\overline{y}}}_2}(a)da}\right] ,\\ \frac{d{{\overline{y}}}_1(\theta )}{d \theta } =&-(\lambda +\mu + v(\theta ) + c){{\overline{y}}}_1(\theta ),\\ {{\overline{y}}}_1(0) =&{{\overline{x}}}_1\int _0^{+\infty }\beta (\theta )I^*(\theta )d\theta + S^*\left[ \int _0^{+\infty }\beta (\theta ){{\overline{y}}}_1(\theta )d\theta +\int _0^{+\infty }\beta (a){{{\overline{y}}}_2}(a)da\right] ,\\ \lambda {{{\overline{x}}}_2}=&({b_S} - \mu ){{{\overline{x}}}_2} +({b_I}({{\hat{c}}}) + {{\hat{c}}})\int _0^{ + \infty }{{{\overline{y}}}_2}(a)da - {{{\overline{x}}}_2}\int _0^{ + \infty } {\beta (\theta )I^*(\theta )d\theta },\\ \frac{d{{{\overline{y}}}_2}(a)}{{d a}} =&-(\lambda +\mu + v(a) + {{\hat{c}}}){{{\overline{y}}}_2}(a),\\ {{{\overline{y}}}_2}(0) =&{{{\overline{x}}}_2}\int _0^{ + \infty }\beta (\theta )I^*(\theta )d\theta . \end{aligned} \right. \nonumber \\ \end{aligned}$$
(84)

It follows from the second and the third equations of Eq. (84) that we have

$$\begin{aligned} {{\overline{y}}}_1(\theta ) = {{\overline{y}}}_1(0)e^{ - \lambda \theta }w(\theta ,c). \end{aligned}$$
(85)

It follows from the fifth and the sixth equations of Eq. (84) that we have

$$\begin{aligned} {{{\overline{y}}}_2}(a)={{{\overline{y}}}_2}(0)e^{ - \int _0^a(\mu + v(\tau ) + {{\hat{c}}} + \lambda )d\tau }={{\overline{x}}}_2e^{-\lambda a}w(a,{{\hat{c}}})\int _0^{ + \infty }\beta (\theta )I^*(\theta )d\theta . \end{aligned}$$
(86)

Substituting (85) into the third equation of (84), we have

$$\begin{aligned} {{\overline{y}}}_1(0)&={{\overline{x}}}_1\int _0^{ + \infty } {\beta (\theta )I^*(\theta )d\theta }+ S^*\left[ \overline{y}_1(0)\int _0^{ + \infty } {\beta (\theta ){e^{ - \lambda \theta }}w(\theta ,c)d\theta }\right. \\ {}&\quad \left. + \int _0^{ + \infty } {\beta (a){\overline{y}_2}(a)da}\right] \end{aligned}$$

It then follows from (86), we have

$$\begin{aligned} {{\overline{y}}}_1(0) = \frac{\displaystyle \int _0^{ + \infty }\beta (\theta )I^*(\theta )d\theta \left( {{\overline{x}}}_1 + S^*{{\overline{x}}}_2\int _0^{ + \infty }\beta (a)e^{-\lambda a}w(a,{{\hat{c}}})da\right) }{ \displaystyle 1 - S^*\int _0^{ + \infty } \beta (\theta )e^{ - \lambda \theta }w(\theta ,c)d\theta }. \end{aligned}$$
(87)

Substituting (87) into Eq. (85), we get

$$\begin{aligned} {{\overline{y}}}_1(\theta ) = \frac{\displaystyle \int _0^{ + \infty }\beta (\theta )I^*(\theta )d\theta \left( {{\overline{x}}}_1+ S^*{{\overline{x}}}_2\int _0^{ + \infty }\beta (a)e^{-\lambda a}w(a,{{\hat{c}}})da\right) }{ \displaystyle 1 - S^*\int _0^{ + \infty } \beta (\theta )e^{ - \lambda \theta }w(\theta ,c)d\theta } e^{ - \lambda \theta }w(\theta ,c).\nonumber \\ \end{aligned}$$
(88)

Substituting (86) and (88) into the first equation of (84), substituting (86) into the forth equation of (84), we have

$$\begin{aligned} \left\{ \begin{aligned}&{{\overline{x}}}_1 H_1(\lambda ) + {{{\overline{x}}}_2}H_2(\lambda )S^*\int _0^{ + \infty } {\beta (\theta )I^*(\theta )d\theta } \int _0^{ + \infty }\beta (a){e^{ - \lambda a}}w(a,{{\hat{c}}})da = 0,\\&\lambda {{{\overline{x}}}_2} -(b_S- \mu ){{{\overline{x}}}_2} + {{{\overline{x}}}_2}\int _0^{ + \infty } \beta (\theta )I^*(\theta )d\theta \\&\ \ \ \ \ \ -(b_I({{\hat{c}}})+{{\hat{c}}}){{{\overline{x}}}_2}\int _0^{+\infty } \beta (\theta )I^*(\theta )d\theta \int _0^{ + \infty }e^{-\lambda a}w(a,{{\hat{c}}})da=0, \end{aligned} \right. \end{aligned}$$
(89)

where

$$\begin{aligned} H_1(\lambda ) =&\lambda -(b_S- \mu ) - \frac{\left[ 1-\displaystyle ({b_I}(c) + c)\int _0^{ + \infty } e^{ - \lambda \theta }w(\theta ,c)d\theta \right] }{\displaystyle 1-S^*\int _0^{ + \infty } \beta (\theta )e^{ - \lambda \theta }w(\theta ,c)d\theta }\int _0^{ + \infty }\beta (\theta )I^*(\theta )d\theta ,\\ H_2(\lambda )&= 1 -\frac{\displaystyle (b_I(c) + c)\int _0^{ + \infty }{e^{ - \lambda \theta }}w(\theta ,c)d\theta }{\displaystyle 1-S^*\int _0^{+\infty }\beta (\theta )e^{ - \lambda \theta }w(\theta ,c)d\theta } + \frac{\displaystyle S^*\int _0^{ + \infty }{e^{ - \lambda \theta }}w(\theta ,c)d\theta }{\displaystyle 1-S^*\int _0^{ + \infty } \beta (\theta )e^{ - \lambda \theta }w(\theta ,c)d\theta }. \end{aligned}$$

If \({{{\overline{x}}}_2}=0\), from the second equation of (89), we can obtain the characteristic equation

$$\begin{aligned} H_1(\lambda ) =0, \end{aligned}$$

which is same as the equation (78). Then \(H_1(\lambda ) =0\) has no roots with positive real parts and the boundary steady state \(E_1^*\) is locally asymptotically stable if \(b_S>\mu \) and \(\frac{1}{2}<{\mathcal {R}}_0<{\mathcal {P}}_1(c)<1\) under the condition that \(\beta (\theta )\) is taken as (80) and \(v(\theta )\) is adopted as (24) or (37). If \({{{\overline{x}}}_2}\ne 0\), from the second equation of (89), we can obtain the characteristic equation

$$\begin{aligned}{} & {} \lambda - \left( {{b_S} - \mu } \right) + \int _0^{ + \infty } {\beta (\theta )I^*(\theta )d\theta } - \left( {{b_I}({{\hat{c}}}) + {{\hat{c}}}} \right) \nonumber \\{} & {} \int _0^{ + \infty } {\beta (\theta )I^*(\theta )d\theta } \int _0^{ + \infty } {{e^{ - \lambda a}}w(a,{{\hat{c}}})da} = 0. \end{aligned}$$
(90)

Note that

$$\begin{aligned} \int _0^{ + \infty } \beta (\theta )I^*(\theta )d\theta =\frac{(b_S-\mu )}{1-{\mathcal {P}}_1(c)}. \end{aligned}$$

Then Eq. (90) is equivalent to

$$\begin{aligned} \lambda + \frac{(b_S-\mu )}{1-\mathcal {P}_1(c)}=(b_S-\mu )\left( 1+\frac{(b_I({{\hat{c}}}) + {{\hat{c}}})\int _0^{+\infty } e^{-\lambda a}w(a,{{\hat{c}}})da}{1-\mathcal P_1(c)}\right) . \end{aligned}$$
(91)

If \(\lambda \) with \(\Re \lambda >0\) is a root of Eq. (91) when \(b_S>\mu \) and \(0<{\mathcal {P}}_2({{\hat{c}}})<{\mathcal {P}}_1(c)<1\), i.e., \({\mathcal {R}}_H<1\), it follows that

$$\begin{aligned} \begin{aligned} \left| \frac{(b_S-\mu )}{1-{\mathcal {P}}_1(c)}\right|<&\left| \lambda + \frac{(b_S-\mu )}{1-{\mathcal {P}}_1(c)}\right| \\ =&\left| (b_S-\mu )\left( 1+\frac{(b_I({{\hat{c}}}) + {{\hat{c}}})\int _0^{+\infty } e^{-\lambda a}w(a,{{\hat{c}}})da}{1-{\mathcal {P}}_1(c)}\right) \right| \\ \le&\left| (b_S-\mu )\right| \left( 1+\frac{\left| (b_I({{\hat{c}}}) + {{\hat{c}}})\int _0^{+\infty } e^{-\lambda a}w(a,{{\hat{c}}})da\right| }{1-{\mathcal {P}}_1(c)}\right) \\<&|(b_S-\mu )|\left( 1+\frac{{\mathcal {P}}_2({{\hat{c}}})}{1-{\mathcal {P}}_1(c)}\right) \\ =&|(b_S-\mu )|\frac{\left( 1-{\mathcal {P}}_1(c)+{\mathcal {P}}_2({{\hat{c}}})\right) }{1-{\mathcal {P}}_1(c)}<\left| \frac{(b_S-\mu )}{1-\mathcal P_1(c)}\right| . \end{aligned} \end{aligned}$$

This contradiction shows that the characteristic equation (90) has no roots with positive real parts and the boundary steady state \(E_1^*\) is locally asymptotically stable if \({\mathcal {R}}_H<1\). Otherwise, the boundary steady state \(E_1^*\) is unstable. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, XC., Zhao, J. & Martcheva, M. Coevolutionary Dynamics of Host Immune and Parasite Virulence Based on an Age-Structured Epidemic Model. Bull Math Biol 85, 28 (2023). https://doi.org/10.1007/s11538-023-01131-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-023-01131-w

Keywords

Mathematics Subject Classification

Navigation