Skip to main content

Advertisement

Log in

Adipose Tissue Distribution and Quantification of PPARβ/δ and PPARγ1-3 mRNAs: Discordant Gene Expression in Subcutaneous, Retroperitoneal and Visceral Adipose Tissue of Morbidly Obese Patients

  • Published:
Obesity Surgery Aims and scope Submit manuscript

Background

Adipose tissue (AT) metabolism is altered in obese subjects, and the reestablishment of energy homeostasis requires the identification and regulation of genes with altered patterns. The aim of this study was to compare mRNA expression of PPARβ/δ and PPARγ1-3 in morbidly obese and nonobese patients. The expression pattern of these receptors in various abdominal adipose tissues, subcutaneous (SAT), retroperitoneal (RAT) and visceral (VAT), was also evaluated.

Methods

The AT depots were obtained by surgery. Total RNAs were extracted using TRIzol. PPARs reverse transcripts were determined by quantitative polymerase chain reaction (qRT-PCR).

Results

The amounts of PPARβ/δ mRNA in different depots of morbidly obese AT showed a significant decrease in VAT (P < 0.05). In the non-obese group, the level of PPARβ/δ was higher in SAT (P < 0.05), but PPARγ1-3 was not differentially expressed in obese and non-obese depots. When comparing obese and non-obese, the results revealed a decrease in PPARβ/δ expression in SAT (P = 0.058) and VAT (P = 0.094) of the morbidly obese. PPARγ1-3 mRNA expression was increased significantly in SAT (P = 0.022) and decreased in RAT (P = 0.034) in morbidly obese subjects. PPARβ/δ expression in SAT and VAT correlated negatively with hip size and insulin serum respectively. PPARγ1-3 expression in RAT correlated negatively with waist and hip circumference and in VAT correlated positively with waist size.

Conclusions

The present study demonstrates that PPARβ/δ and PPARγ1-3 mRNAs are quantitatively different in AT of morbidly obese individuals compared to non-obese, and that PPARβ/δ mRNA levels are characteristic for each AT depot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campos MG, Cañete RR, Gil A. Adiponectin. The missing link in insulin resistance and obesity. Clin Nutr 2004; 23: 963–74.

    Article  CAS  Google Scholar 

  2. Adami GF, Camerini GG, Ravera NS et al. Metabolic syndrome in severely obese patients. Obes Surg 2001; 11: 543–5.

    Article  PubMed  CAS  Google Scholar 

  3. Deitel M. Overweight and obesity worldwide now estimated to involve 1.7 billion people (Editorial). Obes Surg 2003; 13: 329–30.

    Article  PubMed  Google Scholar 

  4. Lee WJ, Wang W. Bariatric surgery: Asia-Pacific perspective. Obes Surg 2005; 15: 751–7.

    Article  PubMed  Google Scholar 

  5. Misra A, Vikram NK. Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition 2003; 19: 457–66.

    Article  PubMed  Google Scholar 

  6. Vohl MC, Sladek R, Robitaille J et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res 2004; 12: 1217–22.

    PubMed  CAS  Google Scholar 

  7. Takahashi S, Tanaka T, Kodama T et al. Peroxisome proliferator-activated receptor δ (PPARδ). A novel target site for drug discovery in metabolic syndrome. Pharmacol Res 2006; 53: 501–7.

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka T, Yamamoto J, Iwasaki S et al. Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. PNAS 2003; 100: 15924–9.

    Article  PubMed  CAS  Google Scholar 

  9. Grimaldi PA. The roles of PPARs in adipocyte differentiation. Prog Lipid Res 2001; 40: 269–81.

    Article  PubMed  CAS  Google Scholar 

  10. Kota BP, Huang THW, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res 2005; 51: 85–94.

    Article  PubMed  CAS  Google Scholar 

  11. Meirhaeghe A, Amouyel P. Impact of genetic variation of PPAR γ in humans. Mol Genet Metab 2004; 83: 93–102.

    Article  PubMed  CAS  Google Scholar 

  12. Panunti B, Fonseca V. Effects of PPAR gamma agonists on cardiovascular function in obese non-diabetic patients. Vasc Pharmacol 2006; 45: 29–35.

    Article  CAS  Google Scholar 

  13. Mehrabi MR, Haslmayer P, Humpeler S et al. Quantitative analysis of peroxisome proliferator-activated receptor gamma (PPARγ) expression in arteries and hearts of patients with ischaemic or dilated cardiomyopathy. Eur J Heart Fail 2003; 5: 733–9.

    Article  PubMed  CAS  Google Scholar 

  14. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med 2004; 10: 1–7.

    Article  CAS  Google Scholar 

  15. Wang YX, Lee CH, Tiep S et al. Peroxisome proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 2003; 113: 159–70.

    Article  PubMed  CAS  Google Scholar 

  16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 2001; 25: 402–8.

    Article  PubMed  CAS  Google Scholar 

  17. Rattarasarn C. Physiological and pathophysiological regulation of regional adipose tissue in the development of insulin resistance and type 2 diabetes. Acta Physiol 2006; 186: 87–101.

    Article  CAS  Google Scholar 

  18. Ferré P. The biology of peroxisome proliferator-activated receptors: Relationship with lipid metabolism and insulin sensitivity. Diabetes 2004; 53: S43–S50.

    Article  PubMed  Google Scholar 

  19. Montague CT, Prins JB, Sanders L et al. Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 1998; 47: 1384–91.

    Article  PubMed  CAS  Google Scholar 

  20. Barish GD, Narkar VA, Evans RM. PPARδ: a dagger in the heart of the metabolic syndrome. J Clin Invest 2006; 116: 590–7.

    Article  PubMed  CAS  Google Scholar 

  21. Krempler F, Breban D, Oberkofler H et al. Leptin, peroxisome proliferator-activated receptor-γ, and CAAAT/enhancer binding protein-α mRNA expression in adipose tissue of humans and their relation to cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2000; 20: 443–9.

    PubMed  CAS  Google Scholar 

  22. Auboeuf D, Riuesset J, Fajas J et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: No alterations in adipose tissue of obese and NIDDM patients. Diabetes 1997; 46: 1319–27.

    Article  PubMed  CAS  Google Scholar 

  23. Lefebre AM, Laville M, Vega N et al. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998; 47: 98–103.

    Article  Google Scholar 

  24. Yanase T, Yashiro T, Takitani K et al. Differential expression of PPAR γ1 and γ2 isoforms in human adipose tissue. Biochem Biophys Res Commun 1997; 233: 320–4.

    Article  PubMed  CAS  Google Scholar 

  25. Bouchard C, Despres J-P, Mauriege P. Genetic and nongenetic determinants of regional fat distribution. Endocr Rev 1993; 14: 72–93.

    Article  PubMed  CAS  Google Scholar 

  26. Vidal-Puig AJ, Considine RV, Jimenez-Liñan M et al. Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity. Weight loss and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99: 2416–22.

    Article  PubMed  CAS  Google Scholar 

  27. Fonseca V. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am J Med 2003; 115: 42S–48S.

    Article  PubMed  CAS  Google Scholar 

  28. Pelton PD, Zhou L, Demarest KT et al. PPARδ activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem Biophys Res Commun 1999; 261:456–8.

    Article  PubMed  CAS  Google Scholar 

  29. Albrektsen T, Frederiksen KS, Holmes WE et al. Novel genes regulated by the insulin sensitizer rosiglitazone during adipocyte differentiation. Diabetes 2002; 51: 1042–51.

    Article  PubMed  CAS  Google Scholar 

  30. Gross BS, Fruchart JC, Staels B. Peroxisome Proliferator-Activated Receptorβ/δ: A novel target for the reduction of atherosclerosis. Drug Discovery Today: Therapeutical Strategies 2005; 2: 237–43.

    Article  Google Scholar 

  31. Baranova A, Collantes R, Gowder SJ et al. Obesityrelated differential gene expression in the visceral adipose tissue. Obes Surg 2005; 15: 758–65.

    Article  PubMed  Google Scholar 

  32. Lee YH, Nair S, Rousseau E et al. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia 2005; 48: 1776–83.

    Article  PubMed  CAS  Google Scholar 

  33. Von Eyben FE, Kroustrup JP, Larsen JF et al. Comparison of gene expression in intra-abdominal and subcutaneous fat: a study of men with morbid obesity and nonobese men using microarray and proteomics. Ann N Y Acad Sci 2004; 1030: 508–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Maria Guaragna PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortolotto, J.W., Margis, R., Ferreira, Â.C.B. et al. Adipose Tissue Distribution and Quantification of PPARβ/δ and PPARγ1-3 mRNAs: Discordant Gene Expression in Subcutaneous, Retroperitoneal and Visceral Adipose Tissue of Morbidly Obese Patients. OBES SURG 17, 934–940 (2007). https://doi.org/10.1007/s11695-007-9172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-007-9172-5

Key words

Navigation