Skip to main content

Advertisement

Log in

Study of GOLPH3: a Potential Stress-Inducible Protein from Golgi Apparatus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although the Golgi apparatus has been studied extensively for over 100 years, the complex structure-function relationships have yet to be elucidated. It is well known that the Golgi complex plays an important role in the transport, processing, sorting, and targeting of numerous proteins and lipids destined for secretion, plasma membrane, and lysosomes. Increasing evidence suggests that the Golgi apparatus is a sensor and common downstream effector of stress signals in cell death pathways. It undergoes disassembly and fragmentation in several neurological disorders. Recent studies indicate that Golgi phosphoprotein 3 (GOLPH3 also known as GPP34/GMx33/MIDAS), a peripheral membrane protein of trans-Golgi network, represents an exciting new class of oncoproteins involved in cell signal transduction and is potentially mobilized by stress. In this review, we focus on the importance of GOLPH3 in vesicular trafficking, Golgi architecture maintenance, receptor sorting, protein glycosylation, and further discuss its potential in signal sensing in stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

Arf1-GTP:

Small GTPase ADP-ribosylation factor 1

cAMP:

Cyclic adenosine monophosphate

CAZy:

Carbohydrate Active Enzymes database

CERT:

Ceramide transporter

CI-MPR:

Cation-independent mannose-6-phosphate

CMT2B:

Charcot-Marie-Tooth Type 2B

COPI:

Coat protein complex I

CPEO:

Chronic progressive external ophthalmoplegia

CyD:

Cytochalasin D

EGFR:

Epidermal growth factor receptor

EXT:

Exostosin

FAPP:

Four-phosphate-adaptor protein

FRAP:

Fluorescence recovery after photo-bleaching

GET1/GET2:

Golgi ER trafficking complex 1/2

GIT:

G-protein coupled receptor kinase interactor

GM130:

Golgi matrix 130

GOLPH3:

Golgi phosphoprotein 3

GRASP65:

Golgi reassembly and stacking protein 65

GT:

Glycosyltransferase

LtB:

Latrunculin B

MELAS:

Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes

MIDAS:

Mitochondrial DNA absence sensitive factor

MRCK:

Myotonic dystrophy kinase-related Cdc4-binding kinase

MTOC:

Microtubule-organizing center

mTOR:

Mammalian target of rapamycin

OSBP:

OxySterol binding protein

PAK2:

p21-activated kinase 2

PI4P:

Phosphatidylinositol 4-phosphate

PI4K:

Phosphatidylinositol 4 kinase

PIX:

p21-activated kinase-interacting exchange factor

Rab 7:

Small GTP-binding protein 7

RIC1/YPT6:

Small GTPase complex 1

RLC:

Myosin regulatory light chain

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

t-SNARE:

Target-membrane-associated soluble N-ethylmaleimide fusion protein attachment protein receptor

SNX:

Sorting nexin accessory proteins

S6K:

p70 ribosomal S6 kinase

TGN:

Trans-Golgi network

TSC:

Tuberosis sclerosis complex

References

  1. Slusarewicz P, Nilsson T, Hui N, Watson R, Warren G (1994) Isolation of a matrix that binds medial Golgi enzymes. J Cell Biol 124(4):405–413

    CAS  PubMed  Google Scholar 

  2. De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9(4):273–284

    PubMed  Google Scholar 

  3. Wilson C, Venditti R, Rega LR, Colanzi A, D’Angelo G, De Matteis MA (2011) The Golgi apparatus: an organelle with multiple complex functions. Biochem J 433(1):1–9

    CAS  PubMed  Google Scholar 

  4. Wei JH, Seemann J (2009) Mitotic division of the mammalian Golgi apparatus. Semin Cell Dev Biol 20(7):810–816

    CAS  PubMed  Google Scholar 

  5. Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744(3):406–414

    CAS  PubMed  Google Scholar 

  6. Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC et al (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139(2):337–351

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Gillingham AK, Munro S (2003) Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641(2–3):71–85

    CAS  PubMed  Google Scholar 

  8. Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1(12):963–975

    CAS  PubMed  Google Scholar 

  9. Bell AW, Ward MA, Blackstock WP, Freeman HN, Choudhary JS, Lewis AP et al (2001) Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 276(7):5152–5165

    CAS  PubMed  Google Scholar 

  10. Ng MM, Dippold HC, Buschman MD, Noakes CJ, Field SJ (2013) GOLPH3L antagonizes GOLPH3 to determine Golgi morphology. Mol Biol Cell 24(6):796–808

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Snyder CM, Mardones GA, Ladinsky MS, Howell KE (2006) GMx33 associates with the trans-Golgi matrix in a dynamic manner and sorts within tubules exiting the Golgi. Mol Biol Cell 17(1):511–524

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Scott KL, Chin L (2010) Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16(8):2229–2234

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Nakashima-Kamimura N, Asoh S, Ishibashi Y, Mukai Y, Shidara Y, Oda H et al (2005) MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction. J Cell Sci 118(Pt 22):5357–5367

    CAS  PubMed  Google Scholar 

  14. Nagano-Ito M, Yoshikawa S, Tamura M, Tsurumaki M, Ichikawa S (2007) Identification and characterization of a novel alternative splice variant of mouse GMx33alpha/GPP34. Gene 400(1–2):82–88

    CAS  PubMed  Google Scholar 

  15. Scott KL, Kabbarah O, Liang MC, Ivanova E, Anagnostou V, Wu J et al (2009) GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature 459(7250):1085–1090

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    CAS  PubMed  Google Scholar 

  17. Bonangelino CJ, Chavez EM, Bonifacino JS (2002) Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13(7):2486–2501

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Aronova S, Wedaman K, Anderson S, Yates J 3rd, Powers T (2007) Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell 18(8):2779–2794

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Schmitz KR, Liu J, Li S, Setty TG, Wood CS, Burd CG et al (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14(4):523–534

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187(7):967–975

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Chang WL, Chang CW, Chang YY, Sung HH, Lin MD, Chang SC et al (2013) The Drosophila GOLPH3 homolog regulates the biosynthesis of heparan sulfate proteoglycans by modulating the retrograde trafficking of exostosins. Development 140(13):2798–2807

    PubMed  Google Scholar 

  22. Klute MJ, Melancon P, Dacks JB (2011) Evolution and diversity of the Golgi. Cold Spring Harb Perspect Biol 3(8):a007849

    PubMed Central  PubMed  Google Scholar 

  23. Papanikou E, Glick BS (2009) The yeast Golgi apparatus: insights and mysteries. FEBS Lett 583(23):3746–3751

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Di Fiore PP, De Camilli P (2001) Endocytosis and signaling. an inseparable partnership. Cell 106(1):1–4

    PubMed  Google Scholar 

  25. Sannerud R, Saraste J, Goud B (2003) Retrograde traffic in the biosynthetic-secretory route: pathways and machinery. Curr Opin Cell Biol 15(4):438–445

    CAS  PubMed  Google Scholar 

  26. Kristen U, Lockhausen J (1983) Estimation of Golgi membrane flow rates in ovary glands of aptenia cordifolia using cytochalasin B. Eur J Cell Biol 29(2):262–267

    CAS  PubMed  Google Scholar 

  27. Glick BS (2000) Organization of the Golgi apparatus. Curr Opin Cell Biol 12(4):450–456

    CAS  PubMed  Google Scholar 

  28. Mellman I, Warren G (2000) The road taken: past and future foundations of membrane traffic. Cell 100(1):99–112

    CAS  PubMed  Google Scholar 

  29. Pelham HR, Rothman JE (2000) The debate about transport in the Golgi—two sides of the same coin? Cell 102(6):713–719

    CAS  PubMed  Google Scholar 

  30. Subramaniam VN, Krijnse-Locker J, Tang BL, Ericsson M, Yusoff AR, Griffiths G et al (1995) Monoclonal antibody HFD9 identifies a novel 28 kDa integral membrane protein on the cis-Golgi. J Cell Sci 108(Pt 6):2405–2414

    CAS  PubMed  Google Scholar 

  31. Barr FA, Puype M, Vandekerckhove J, Warren G (1997) GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 91(2):253–262

    CAS  PubMed  Google Scholar 

  32. Sonnichsen B, Lowe M, Levine T, Jamsa E, Dirac-Svejstrup B, Warren G (1998) A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140(5):1013–1021

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P et al (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131(6 Pt 2):1715–1726

    CAS  PubMed  Google Scholar 

  34. Wong K, Meyers R, Cantley LC (1997) Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem 272(20):13236–13241

    CAS  PubMed  Google Scholar 

  35. Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS et al (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6(5):393–404

    CAS  PubMed  Google Scholar 

  36. D’Angelo G, Vicinanza M, Di Campli A, De Matteis MA (2008) The multiple roles of PtdIns(4)P—not just the precursor of PtdIns(4,5)P2. J Cell Sci 121(Pt 12):1955–1963

    PubMed  Google Scholar 

  37. Wong K, Cantley LC (1994) Cloning and characterization of a human phosphatidylinositol 4-kinase. J Biol Chem 269(46):28878–28884

    CAS  PubMed  Google Scholar 

  38. Graham TR, Burd CG (2011) Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol 21(2):113–121

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Santiago-Tirado FH, Bretscher A (2011) Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol 21(9):515–525

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Cheong FY, Sharma V, Blagoveshchenskaya A, Oorschot VM, Brankatschk B, Klumperman J et al (2010) Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity. Traffic 11(9):1180–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Strahl T, Hama H, DeWald DB, Thorner J (2005) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 171(6):967–979

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Im YJ, Raychaudhuri S, Prinz WA, Hurley JH (2005) Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 437(7055):154–158

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Raychaudhuri S, Prinz WA (2006) Uptake and trafficking of exogenous sterols in Saccharomyces cerevisiae. Biochem Soc Trans 34(Pt 3):359–362

    CAS  PubMed  Google Scholar 

  44. Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Maziere AM, Vieira OV et al (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179(1):101–115

    CAS  PubMed Central  PubMed  Google Scholar 

  45. D’Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A et al (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449(7158):62–67

    PubMed  Google Scholar 

  46. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M et al (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426(6968):803–809

    CAS  PubMed  Google Scholar 

  47. Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY et al (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273(46):30497–30508

    CAS  PubMed  Google Scholar 

  48. Stevenson JM, Perera IY, Boss WF (1998) A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem 273(35):22761–22767

    CAS  PubMed  Google Scholar 

  49. Audhya A, Foti M, Emr SD (2000) Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 11(8):2673–2689

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274(48):34294–34300

    CAS  PubMed  Google Scholar 

  51. Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321(5887):404–407

    CAS  PubMed  Google Scholar 

  52. Verhoeven K, De Jonghe P, Coen K, Verpoorten N, Auer-Grumbach M, Kwon JM et al (2003) Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet 72(3):722–727

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Burd CG (2011) Physiology and pathology of endosome-to-Golgi retrograde sorting. Traffic 12(8):948–955

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Stanley P (2011) Golgi glycosylation. Cold Spring Harb Perspect Biol. 3(4)

  55. Opat AS, van Vliet C, Gleeson PA (2001) Trafficking and localisation of resident Golgi glycosylation enzymes. Biochimie 83(8):763–773

    CAS  PubMed  Google Scholar 

  56. Petrosyan A, Ali MF, Cheng PW (2012) Glycosyltransferase-specific Golgi-targeting mechanisms. J Biol Chem 287(45):37621–37627

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Ali MF, Chachadi VB, Petrosyan A, Cheng PW (2012) Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem 287(47):39564–39577

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Berninsone PM, Hirschberg CB (2000) Nucleotide sugar transporters of the Golgi apparatus. Curr Opin Struct Biol 10(5):542–547

    CAS  PubMed  Google Scholar 

  59. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kitazume S, Oka R, Ogawa K, Futakawa S, Hagiwara Y, Takikawa H et al (2009) Molecular insights into beta-galactoside alpha2,6-sialyltransferase secretion in vivo. Glycobiology 19(5):479–487

    CAS  PubMed  Google Scholar 

  61. Shifley ET, Cole SE (2008) Lunatic fringe protein processing by proprotein convertases may contribute to the short protein half-life in the segmentation clock. Biochim Biophys Acta 1783(12):2384–2390

    CAS  PubMed  Google Scholar 

  62. Tu L, Chen L, Banfield DK (2012) A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 13(11):1496–1507

    CAS  PubMed  Google Scholar 

  63. Wood CS, Hung CS, Huoh YS, Mousley CJ, Stefan CJ, Bankaitis V et al (2012) Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase. Mol Biol Cell 23(13):2527–2536

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Kunigou O, Nagao H, Kawabata N, Ishidou Y, Nagano S, Maeda S et al (2011) Role of GOLPH3 and GOLPH3L in the proliferation of human rhabdomyosarcoma. Oncol Rep 26(5):1337–1342

    CAS  PubMed  Google Scholar 

  65. Cummings RD, Soderquist AM, Carpenter G (1985) The oligosaccharide moieties of the epidermal growth factor receptor in A-431 cells. Presence of complex-type N-linked chains that contain terminal N-acetylgalactosamine residues. J Biol Chem 260(22):11944–11952

    CAS  PubMed  Google Scholar 

  66. Soderquist AM, Carpenter G (1984) Glycosylation of the epidermal growth factor receptor in A-431 cells. The contribution of carbohydrate to receptor function. J Biol Chem 259(20):12586–12594

    CAS  PubMed  Google Scholar 

  67. Gamou S, Shimizu N (1988) Glycosylation of the epidermal growth factor receptor and its relationship to membrane transport and ligand binding. J Biochem 104(3):388–396

    CAS  PubMed  Google Scholar 

  68. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M et al (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306(5693):120–124

    CAS  PubMed  Google Scholar 

  69. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Yang Q, Guan KL (2007) Expanding mTOR signaling. Cell Res 17(8):666–681

    CAS  PubMed  Google Scholar 

  71. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22

    CAS  PubMed  Google Scholar 

  72. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103(2):253–262

    CAS  PubMed  Google Scholar 

  73. Shah OJ, Anthony JC, Kimball SR, Jefferson LS (2000) 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279(4):E715–E729

    CAS  PubMed  Google Scholar 

  74. Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165(1):123–133

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Seaman MN (2005) Recycle your receptors with retromer. Trends Cell Biol 15(2):68–75

    CAS  PubMed  Google Scholar 

  76. Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI (2000) Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 11(12):4105–4116

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Xie MW, Jin F, Hwang H, Hwang S, Anand V, Duncan MC et al (2005) Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci U S A 102(20):7215–7220

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E (2000) Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14(21):2689–2694

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Takahashi M, Tsuda T, Ikeda Y, Honke K, Taniguchi N (2004) Role of N-glycans in growth factor signaling. Glycoconj J 20(3):207–212

    CAS  PubMed  Google Scholar 

  80. Zhou J, Xu T, Qin R, Yan Y, Chen C, Chen Y et al (2012) Overexpression of Golgi phosphoprotein-3 (GOLPH3) in glioblastoma multiforme is associated with worse prognosis. J Neuro Oncol 110(2):195–203

    CAS  Google Scholar 

  81. Li H, Guo L, Chen SW, Zhao XH, Zhuang SM, Wang LP et al (2012) GOLPH3 overexpression correlates with tumor progression and poor prognosis in patients with clinically N0 oral tongue cancer. J Transl Med 10:168

    PubMed Central  PubMed  Google Scholar 

  82. Wang JH, Chen XT, Wen ZS, Zheng M, Deng JM, Wang MZ et al (2012) High expression of GOLPH3 in esophageal squamous cell carcinoma correlates with poor prognosis. PLoS One 7(10):e45622

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Hua X, Yu L, Pan W, Huang X, Liao Z, Xian Q et al (2012) Increased expression of Golgi phosphoprotein-3 is associated with tumor aggressiveness and poor prognosis of prostate cancer. Diagn Pathol 7:127

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kepes F, Rambourg A, Satiat-Jeunemaitre B (2005) Morphodynamics of the secretory pathway. Int Rev Cytol 242:55–120

    CAS  PubMed  Google Scholar 

  85. Egea G, Lázaro-Diéguez F, Vilella M (2006) Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18(2):168–178

    CAS  PubMed  Google Scholar 

  86. Almeida CG, Yamada A, Tenza D, Louvard D, Raposo G, Coudrier E (2011) Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nat Cell Biol 13(7):779–789

    CAS  PubMed  Google Scholar 

  87. Lazaro-Dieguez F, Jimenez N, Barth H, Koster AJ, Renau-Piqueras J, Llopis JL et al (2006) Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH. Cell Motil Cytoskeleton 63(12):778–791

    CAS  PubMed  Google Scholar 

  88. Valderrama F, Babia T, Ayala I, Kok JW, Renau-Piqueras J, Egea G (1998) Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76(1):9–17

    CAS  PubMed  Google Scholar 

  89. Valderrama F, Duran JM, Babia T, Barth H, Renau-Piqueras J, Egea G (2001) Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic 2(10):717–726

    CAS  PubMed  Google Scholar 

  90. Guzik-Lendrum S, Heissler SM, Billington N, Takagi Y, Yang Y, Knight PJ et al (2013) Mammalian myosin-18A, a highly divergent myosin. J Biol Chem 288(13):9532–9548

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Tan I, Yong J, Dong JM, Lim L, Leung T (2008) A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow. Cell 135(1):123–136

    CAS  PubMed  Google Scholar 

  92. Hsu RM, Tsai MH, Hsieh YJ, Lyu PC, Yu JS (2010) Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol Biol Cell 21(2):287–301

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Lu L, Tai G, Hong W (2004) Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network. Mol Biol Cell 15(10):4426–4443

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA (2007) The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8(6):758–773

    CAS  PubMed  Google Scholar 

  95. Yoshino A, Setty SR, Poynton C, Whiteman EL, Saint-Pol A, Burd CG et al (2005) tGolgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. J Cell Sci 118(Pt 10):2279–2293

    CAS  PubMed  Google Scholar 

  96. Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD (2006) GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8(3):238–248

    CAS  PubMed  Google Scholar 

  97. Giussani P, Colleoni T, Brioschi L, Bassi R, Hanada K, Tettamanti G et al (2008) Ceramide traffic in C6 glioma cells: evidence for CERT-dependent and independent transport from ER to the Golgi apparatus. Biochim Biophys Acta 1781(1–2):40–51

    CAS  PubMed  Google Scholar 

  98. Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12(4):780–794

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ohta S (2003) A multi-functional organelle mitochondrion is involved in cell death, proliferation and disease. Curr Med Chem 10(23):2485–2494

    CAS  PubMed  Google Scholar 

  100. Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26(3–4):463–471

    CAS  PubMed  Google Scholar 

  101. Cortopassi GA, Wong A (1999) Mitochondria in organismal aging and degeneration. Biochim Biophys Acta 1410(2):183–193

    CAS  PubMed  Google Scholar 

  102. Melov S (2000) Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci 908:219–225

    CAS  PubMed  Google Scholar 

  103. Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23(7):298–304

    CAS  PubMed  Google Scholar 

  104. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922

    CAS  PubMed  Google Scholar 

  105. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294(5544):1102–1105

    CAS  PubMed  Google Scholar 

  106. Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML (2001) Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes 50(2):353–360

    CAS  PubMed  Google Scholar 

  107. Desai BN, Myers BR, Schreiber SL (2002) FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci U S A 99(7):4319–4324

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Salem AF, Whitaker-Menezes D, Lin Z, Martinez-Outschoorn UE, Tanowitz HB, Al-Zoubi MS et al (2012) Two-compartment tumor metabolism: autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle 11(13):2545–2556

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Salem AF, Tsirigos A, Lamb R et al (2012) Mitochondria “fuel” breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle 11(23):4390–4401

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Zhou X, Zhan W, Bian W, Hua L, Shi Q, Xie S et al (2013) GOLPH3 regulates the migration and invasion of glioma cells though RhoA. Biochem Biophys Res Commun 433(3):338–344

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (grant 81171239) and National Natural Science Foundation for Young (no. 81301121) China P.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Lu or Zhiping Hu.

Additional information

Ting Li and Hong You are co-first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., You, H., Zhang, J. et al. Study of GOLPH3: a Potential Stress-Inducible Protein from Golgi Apparatus. Mol Neurobiol 49, 1449–1459 (2014). https://doi.org/10.1007/s12035-013-8624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8624-2

Keywords

Navigation