Skip to main content
Log in

Mechanisms of Ferritinophagy and Ferroptosis in Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The discovery of the role of autophagy, particularly the selective form like ferritinophagy, in promoting cells to undergo ferroptosis has inspired us to investigate functional connections between diseases and cell death. Ferroptosis is a novel model of procedural cell death characterized by the accumulation of iron-dependent reactive oxygen species (ROS), mitochondrial dysfunction, and neuroinflammatory response. Based on ferroptosis, the study of ferritinophagy is particularly important. In recent years, extensive research has elucidated the role of ferroptosis and ferritinophagy in neurological diseases and anemia, suggesting their potential as therapeutic targets. Besides, the global emergence and rapid transmission of COVID-19, which is caused by SARS-CoV-2, represents a considerable risk to public health worldwide. The potential involvement of ferroptosis in the pathophysiology of brain injury associated with COVID-19 is still unclear. This review summarizes the pathophysiological changes of ferroptosis and ferritinophagy in neurological diseases, anemia, and COVID-19, and hypothesizes that ferritinophagy may be a potential mechanism of ferroptosis. Advancements in these fields will enhance our comprehension of methods to prevent and address neurological disorders, anemia, and COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

ACSL4:

acyl CoA synthase long-chain family member 4

ACE2:

angiotensin-converting enzyme 2

ATP:

abundant adenosine triphosphate

AD:

Alzheimer’s disease

Aβ:

amyloid-β

ALS:

amyotrophic lateral sclerosis

BH4:

tetrahydrobiopterin

BH2:

dihydrobiopterin

BBB:

blood-brain barrier

CoQ10:

ubiquinone 10

COVID-19:

coronavirus disease 2019

CQ:

chloroquine

DMT1:

divalent metal transporter 1

DFP:

deferiprone

FTH1:

ferritin heavy chain 1

FPN:

ferroportin

FSP1:

ferroptosis suppressor protein 1

FTMT:

mitochondrial ferritin

FALS:

familial ALS

Fer-1:

Ferrostatin-1

GSH:

glutathione

GPX4:

glutathione peroxidase 4

HSC:

hepatic stellate cell

HD:

Huntington’s disease

HTT:

Huntington

HO-1:

heme-oxygenase-1

IREBP2:

iron response element binding protein 2

IS:

ischemic stroke

IRE:

iron response element

IRP1/2:

iron regulatory protein-1and -2

IL-6:

inflammatory cytokines interleukin

ICP-MS:

inductively coupled plasma mass spectrometry

JNK:

c-Jun N-terminal kinase

LPCAT3:

lysophosphatidylcholine acyltransferase 3

LIP:

labile iron pool

LA:

α-lipoic acid

LAP:

α-Lipoic acid-plus

MAPK8:

mitogen-activated protein kinase 8

MCAO/R:

middle cerebral artery occlusion/reoxygenation

MDA:

malondialdehyde

MRI:

magnetic resonance imaging

mHTT:

mutant huntingtin

NCOA4:

nuclear receptor coactivator 4

Nrf2:

Nuclear Factor Erythroid 2-Related Factor 2

ND:

neurodegenerative diseases

NBIA:

neurodegenerative with brain accumulation

NFTs:

neurofibrillary tangles

OGD/R:

oxygen-glucose deprivation/reoxygenation

8-OHdG:

8-Hydroxy-2-deoxyguanine

PUFAs:

polyunsaturated fatty acids

PLOOHs:

phospholipid hydroperoxides

PD:

Parkinson’s disease

ROS:

reactive oxygen species

RSL3:

RAS-selective lethal 3

STEAP3:

six transmembrane epithelial antigens of the prostate 3

SARS-CoV-2:

syndrome coronavirus 2

SENDA:

static encephalopathy of childhood with neurodegeneration in adulthood

SPs:

senile plaques

SALS:

sporadic ALS

SAH:

subarachnoid hemorrhage

TEM:

transmission electron microscopy

TF:

transferrin

TfR1:

transferrin receptor 1

TBI:

traumatic brain injury

TNF-α:

tumor necrosis factor alpha

WDR45:

WD repeat domain 45

Zip8/14:

Zinc-Iron regulatory protein family 8/14

References

  1. Li Y, McGreal S, Zhao J, Huang R, Zhou Y, Zhong H, Xia M, Ding WX (2016) A cell-based quantitative high-throughput image screening identified novel autophagy modulators. Pharmacol Res 110:35–49. https://doi.org/10.1016/j.phrs.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang L, Li J, Ma J, Chen X, Chen K, Jiang Z, Zong L, Yu S, Li X, Xu Q, Lei J, Duan W, Li W, Shan T, Ma Q, Shen X (2016) The relevance of Nrf2 pathway and autophagy in pancreatic cancer cells upon stimulation of reactive oxygen species. Oxid Med Cell Longev 2016:3897250. https://doi.org/10.1155/2016/3897250

    Article  CAS  PubMed  Google Scholar 

  3. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26:1021–1032. https://doi.org/10.1038/cr.2016.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li W, Li W, Wang Y, Leng Y, Xia Z (2021) Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury. Cell Death Discov 7:267. https://doi.org/10.1038/s41420-021-00656-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walker T, Michaelides C, Ekonomou A, Geraki K, Parkes HG, Suessmilch M, Herlihy AH, Crum WR, So PW (2016) Dissociation between iron accumulation and ferritin upregulation in the aged substantia nigra: attenuation by dietary restriction. Aging (Albany NY) 8:2488–2508. https://doi.org/10.18632/aging.101069

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Z, Guo M, Li Y, Shen M, Kong D, Shao J, Ding H, Tan S, Chen A, Zhang F, Zheng S (2020) RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy 16:1482–1505. https://doi.org/10.1080/15548627.2019.1687985

    Article  CAS  PubMed  Google Scholar 

  7. Santana-Codina N, Mancias JD (2018) The role of NCOA4-mediated ferritinophagy in health and disease. Pharmaceuticals (Basel) 11. https://doi.org/10.3390/ph11040114

  8. Wu S, Pan R, Lu J, Wu X, Xie J, Tang H, Li X (2022) Development and verification of a prognostic ferroptosis-related gene model in triple-negative breast cancer. Front Oncol 12:896927. https://doi.org/10.3389/fonc.2022.896927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang X, Ardehali H, Min J, Wang F (2023) The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 20:7–23. https://doi.org/10.1038/s41569-022-00735-4

    Article  PubMed  Google Scholar 

  10. Yoshida M, Minagawa S, Araya J, Sakamoto T, Hara H, Tsubouchi K, Hosaka Y, Ichikawa A, Saito N, Kadota T, Sato N, Kurita Y, Kobayashi K, Ito S, Utsumi H, Wakui H, Numata T, Kaneko Y, Mori S et al (2019) Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun 10:3145. https://doi.org/10.1038/s41467-019-10991-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:105–109. https://doi.org/10.1038/nature13148

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Quiles Del Rey M, Mancias JD (2019) NCOA4-Mediated ferritinophagy: a potential link to neurodegeneration. Front Neurosci 13:238. https://doi.org/10.3389/fnins.2019.00238

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nai A, Lidonnici MR, Federico G, Pettinato M, Olivari V, Carrillo F, Geninatti Crich S, Ferrari G, Camaschella C, Silvestri L, Carlomagno F (2021) NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice. Haematologica 106:795–805. https://doi.org/10.3324/haematol.2019.241232

    Article  CAS  PubMed  Google Scholar 

  14. Arosio P, Levi S (2002) Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 33:457–463. https://doi.org/10.1016/s0891-5849(02)00842-0

    Article  CAS  PubMed  Google Scholar 

  15. Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Lukas C, Bartek J, Lukas J, Mailand N (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol 12:80–86. https://doi.org/10.1038/ncb2008

    Article  CAS  PubMed  Google Scholar 

  16. Moroishi T, Yamauchi T, Nishiyama M, Nakayama KI (2014) HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism. J Biol Chem 289:16430–16441. https://doi.org/10.1074/jbc.M113.541490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mancias JD, Pontano Vaites L, Nissim S, Biancur DE, Kim AJ, Wang X, Liu Y, Goessling W, Kimmelman AC, Harper JW (2015) Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife 4. https://doi.org/10.7554/eLife.10308

  18. Philpott CC (2020) Iron on the move: mobilizing liver iron via NCOA4. Blood 136:2604–2605. https://doi.org/10.1182/blood.2020007971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fuhrmann DC, Mondorf A, Beifuß J, Jung M, Brüne B (2020) Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol 36:101670. https://doi.org/10.1016/j.redox.2020.101670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harris IS, Endress JE, Coloff JL, Selfors LM, McBrayer SK, Rosenbluth JM, Takahashi N, Dhakal S, Koduri V, Oser MG, Schauer NJ, Doherty LM, Hong AL, Kang YP, Younger ST, Doench JG, Hahn WC, Buhrlage SJ, DeNicola GM et al (2019) Deubiquitinases maintain protein homeostasis and survival of cancer cells upon glutathione depletion. Cell Metab 29:1166–1181.e6. https://doi.org/10.1016/j.cmet.2019.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao Z, Zhao P, Miao Z, Zhao L, Hu J, You Y, Liu N, Chao H, Ji J (2021) Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res 174:105933. https://doi.org/10.1016/j.phrs.2021.105933

    Article  CAS  PubMed  Google Scholar 

  22. Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomilehto J, Lip GYH, Penninger JM, Richardson DR, Tang D, Zhou H, Wang S, Klionsky DJ, Kroemer G, Ren J (2021) Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab 32:444–462. https://doi.org/10.1016/j.tem.2021.04.010

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F, Zheng S (2018) Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 14:2083–2103. https://doi.org/10.1080/15548627.2018.1503146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gryzik M, Asperti M, Denardo A, Arosio P, Poli M (2021) NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells. Biochim Biophys Acta Mol Cell Res 1868:118913. https://doi.org/10.1016/j.bbamcr.2020.118913

    Article  CAS  PubMed  Google Scholar 

  25. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, Kang R, Tang D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428. https://doi.org/10.1080/15548627.2016.1187366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuang F, Liu J, Tang D, Kang R (2020) Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol 8:586578. https://doi.org/10.3389/fcell.2020.586578

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hirschhorn T, Stockwell BR (2019) The development of the concept of ferroptosis. Free Radic Biol Med 133:130–143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043

    Article  CAS  PubMed  Google Scholar 

  28. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:165–176. https://doi.org/10.1016/j.tcb.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  29. Stockwell BR, Jiang X (2020) The chemistry and biology of ferroptosis. Cell Chem Biol 27:365–375. https://doi.org/10.1016/j.chembiol.2020.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun X, Niu X, Chen R, He W, Chen D, Kang R, Tang D (2016) Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64:488–500. https://doi.org/10.1002/hep.28574

    Article  CAS  PubMed  Google Scholar 

  31. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA, Heindel DW, Zuckerman DS, Bos PH, Reznik E, Ye LF, Tyurina YY, Lin AJ, Shchepinov MS, Chan AY, Peguero-Pereira E, Fomich MA, Daniels JD, Bekish AV et al (2018) FINO(2) initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507–515. https://doi.org/10.1038/s41589-018-0031-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Kang R, Tang D (2021) Signaling pathways and defense mechanisms of ferroptosis. Febs j. https://doi.org/10.1111/febs.16059

  35. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482:419–425. https://doi.org/10.1016/j.bbrc.2016.10.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Wei Z, Pan K, Li J, Chen Q (2020) The function and mechanism of ferroptosis in cancer. Apoptosis 25:786–798. https://doi.org/10.1007/s10495-020-01638-w

    Article  CAS  PubMed  Google Scholar 

  37. Bayır H, Anthonymuthu TS, Tyurina YY, Patel SJ, Amoscato AA, Lamade AM, Yang Q, Vladimirov GK, Philpott CC, Kagan VE (2020) Achieving life through death: redox biology of lipid peroxidation in ferroptosis. Cell Chem Biol 27:387–408. https://doi.org/10.1016/j.chembiol.2020.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reichert CO, de Freitas FA, Sampaio-Silva J, Rokita-Rosa L, Barros PL, Levy D, Bydlowski SP (2020) Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci 21. https://doi.org/10.3390/ijms21228765

  39. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA, Amoscato AA, Jiang J, Anthonymuthu T, Mohammadyani D, Yang Q, Proneth B, Klein-Seetharaman J, Watkins S et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90. https://doi.org/10.1038/nchembio.2238

    Article  CAS  PubMed  Google Scholar 

  40. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao G, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98. https://doi.org/10.1038/nchembio.2239

    Article  CAS  PubMed  Google Scholar 

  41. Konstorum A, Tesfay L, Paul BT, Torti FM, Laubenbacher RC, Torti SV (2020) Systems biology of ferroptosis: a modeling approach. J Theor Biol 493:110222. https://doi.org/10.1016/j.jtbi.2020.110222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Conrad M, Pratt DA (2019) The chemical basis of ferroptosis. Nat Chem Biol 15:1137–1147. https://doi.org/10.1038/s41589-019-0408-1

    Article  CAS  PubMed  Google Scholar 

  43. Kuhn H, Banthiya S, van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851:308–330. https://doi.org/10.1016/j.bbalip.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  44. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A 113:E4966–E4975. https://doi.org/10.1073/pnas.1603244113

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jin G, Arai K, Murata Y, Wang S, Stins MF, Lo EH, van Leyen K (2008) Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 39:2538–2543. https://doi.org/10.1161/strokeaha.108.514927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh NK, Rao GN (2019) Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 73:28–45. https://doi.org/10.1016/j.plipres.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  47. Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3:285–296. https://doi.org/10.1016/s1535-6108(03)00050-3

    Article  CAS  PubMed  Google Scholar 

  48. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, Stockwell BR (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3:e02523. https://doi.org/10.7554/eLife.02523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin CH, Lin PP, Lin CY, Lin CH, Huang CH, Huang YJ, Lane HY (2016) Decreased mRNA expression for the two subunits of system xc(-), SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J Psychiatr Res 72:58–63. https://doi.org/10.1016/j.jpsychires.2015.10.007

    Article  PubMed  Google Scholar 

  50. Ekoue DN, He C, Diamond AM, Bonini MG (2017) Manganese superoxide dismutase and glutathione peroxidase-1 contribute to the rise and fall of mitochondrial reactive oxygen species which drive oncogenesis. Biochim Biophys Acta Bioenerg 1858:628–632. https://doi.org/10.1016/j.bbabio.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  51. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arnér ESJ et al (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172:409–422.e21. https://doi.org/10.1016/j.cell.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  52. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839:62–70. https://doi.org/10.1016/0304-4165(85)90182-5

    Article  CAS  PubMed  Google Scholar 

  54. Eaton JK, Furst L, Cai LL, Viswanathan VS, Schreiber SL (2020) Structure-activity relationships of GPX4 inhibitor warheads. Bioorg Med Chem Lett 30:127538. https://doi.org/10.1016/j.bmcl.2020.127538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eaton JK, Furst L, Ruberto RA, Moosmayer D, Hilpmann A, Ryan MJ, Zimmermann K, Cai LL, Niehues M, Badock V, Kramm A, Chen S, Hillig RC, Clemons PA, Gradl S, Montagnon C, Lazarski KE, Christian S, Bajrami B et al (2020) Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol 16:497–506. https://doi.org/10.1038/s41589-020-0501-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gsaller F, Hortschansky P, Beattie SR, Klammer V, Tuppatsch K, Lechner BE, Rietzschel N, Werner ER, Vogan AA, Chung D, Mühlenhoff U, Kato M, Cramer RA, Brakhage AA, Haas H (2014) The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. Embo j 33:2261–2276. https://doi.org/10.15252/embj.201489468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frazer DM, Anderson GJ (2014) The regulation of iron transport. Biofactors 40:206–214. https://doi.org/10.1002/biof.1148

    Article  CAS  PubMed  Google Scholar 

  58. Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Regulators of Iron Homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci 41:274–286. https://doi.org/10.1016/j.tibs.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  59. Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93:1721–1741. https://doi.org/10.1152/physrev.00008.2013

    Article  CAS  PubMed  Google Scholar 

  60. Zhang J, Li X, Olmedo M, Holdorf AD, Shang Y, Artal-Sanz M, Yilmaz LS, Walhout AJM (2019) A delicate balance between bacterial iron and reactive oxygen species supports optimal C. elegans development. Cell Host Microbe 26:400–411.e3. https://doi.org/10.1016/j.chom.2019.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, Jiang X (2019) Role of Mitochondria in Ferroptosis. Mol Cell 73:354–363.e3. https://doi.org/10.1016/j.molcel.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  62. Tang LJ, Zhou YJ, Xiong XM, Li NS, Zhang JJ, Luo XJ, Peng J (2021) Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med 162:339–352. https://doi.org/10.1016/j.freeradbiomed.2020.10.307

    Article  CAS  PubMed  Google Scholar 

  63. Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G (2015) Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxid Med Cell Longev 2015:230182. https://doi.org/10.1155/2015/230182

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lv H, Shang P (2018) The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics 10:899–916. https://doi.org/10.1039/c8mt00048d

    Article  CAS  PubMed  Google Scholar 

  65. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379. https://doi.org/10.1038/cdd.2015.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191. https://doi.org/10.1038/ncb3064

    Article  CAS  PubMed  Google Scholar 

  67. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692. https://doi.org/10.1038/s41586-019-1705-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A, Buday K, Sato M, Wanninger J, Vignane T, Mohana V, Rehberg M, Flatley A, Schepers A et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698. https://doi.org/10.1038/s41586-019-1707-0

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Elguindy MM, Nakamaru-Ogiso E (2015) Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2). J Biol Chem 290:20815–20826. https://doi.org/10.1074/jbc.M115.641498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, Brandner S, Daniels JD, Schmitt-Kopplin P, Hauck SM, Stockwell BR, Hadian K, Schick JA (2020) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 6:41–53. https://doi.org/10.1021/acscentsci.9b01063

    Article  CAS  PubMed  Google Scholar 

  71. Dai E, Meng L, Kang R, Wang X, Tang D (2020) ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem Biophys Res Commun 522:415–421. https://doi.org/10.1016/j.bbrc.2019.11.110

    Article  CAS  PubMed  Google Scholar 

  72. Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D (2020) AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun 523:966–971. https://doi.org/10.1016/j.bbrc.2020.01.066

    Article  CAS  PubMed  Google Scholar 

  73. Chen X, Yu C, Kang R, Kroemer G, Tang D (2021) Cellular degradation systems in ferroptosis. Cell Death Differ 28:1135–1148. https://doi.org/10.1038/s41418-020-00728-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30:343–355. https://doi.org/10.1038/s41422-020-0305-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yesudhas D, Srivastava A, Gromiha MM (2021) COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection 49:199–213. https://doi.org/10.1007/s15010-020-01516-2

    Article  CAS  PubMed  Google Scholar 

  76. Arbour N, Day R, Newcombe J, Talbot PJ (2000) Neuroinvasion by human respiratory coronaviruses. J Virol 74:8913–8921. https://doi.org/10.1128/jvi.74.19.8913-8921.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abobaker A, Raba AA (2021) Does COVID-19 affect male fertility? World J Urol 39:975–976. https://doi.org/10.1007/s00345-020-03208-w

    Article  CAS  PubMed  Google Scholar 

  78. Divani AA, Andalib S, Biller J, Di Napoli M, Moghimi N, Rubinos CA, Nobleza CO, Sylaja PN, Toledano M, Lattanzi S, McCullough LD, Cruz-Flores S, Torbey M, Azarpazhooh MR (2020) Central nervous system manifestations associated with COVID-19. Curr Neurol Neurosci Rep 20:60. https://doi.org/10.1007/s11910-020-01079-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Beaud V, Crottaz-Herbette S, Dunet V, Vaucher J, Bernard-Valnet R, Du Pasquier R, Bart PA, Clarke S (2021) Pattern of cognitive deficits in severe COVID-19. J Neurol Neurosurg Psychiatry 92:567–568. https://doi.org/10.1136/jnnp-2020-325173

    Article  PubMed  Google Scholar 

  80. Habib HM, Ibrahim S, Zaim A, Ibrahim WH (2021) The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 136:111228. https://doi.org/10.1016/j.biopha.2021.111228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moreira AC, Mesquita G, Gomes MS (2020) Ferritin: an inflammatory player keeping iron at the core of pathogen-host interactions. Microorganisms 8. https://doi.org/10.3390/microorganisms8040589

  82. Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13:509–519. https://doi.org/10.1016/j.chom.2013.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Colafrancesco S, Alessandri C, Conti F, Priori R (2020) COVID-19 gone bad: a new character in the spectrum of the hyperferritinemic syndrome? Autoimmun Rev 19:102573. https://doi.org/10.1016/j.autrev.2020.102573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang DL, Crooks DR, Sougrat R, Morgenstern A, Galy B, Hentze MW, Lazaro FJ, Rouault TA, Meyron-Holtz EG (2010) Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 116:1574–1584. https://doi.org/10.1182/blood-2009-11-253815

    Article  CAS  PubMed  Google Scholar 

  85. Jia F, Liu H, Kang S (2021) NCOA4-mediated ferritinophagy: a vicious culprit in COVID-19 pathogenesis? Front Mol Biosci 8:761793. https://doi.org/10.3389/fmolb.2021.761793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Khan R, Naseem T, Hussain MJ, Hussain MA, Malik SS (2020) Possible potential outcomes from COVID-19 complications on testes: lesson from SARS infection. J Coll Physicians Surg Pak 30:118–120. https://doi.org/10.29271/jcpsp.2020.supp2.118

    Article  PubMed  Google Scholar 

  87. Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, Liu S, Yang JK (2020) Gender Differences in patients with COVID-19: focus on severity and mortality. Front Public Health 8:152. https://doi.org/10.3389/fpubh.2020.00152

    Article  PubMed  PubMed Central  Google Scholar 

  88. Santambrogio P, Biasiotto G, Sanvito F, Olivieri S, Arosio P, Levi S (2007) Mitochondrial ferritin expression in adult mouse tissues. J Histochem Cytochem 55:1129–1137. https://doi.org/10.1369/jhc.7A7273.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Campanella A, Rovelli E, Santambrogio P, Cozzi A, Taroni F, Levi S (2009) Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability: hypothesis for a protective role in Friedreich ataxia. Hum Mol Genet 18:1–11. https://doi.org/10.1093/hmg/ddn308

    Article  CAS  PubMed  Google Scholar 

  90. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060. https://doi.org/10.1016/s1474-4422(14)70117-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873. https://doi.org/10.1038/nrn1537

    Article  CAS  PubMed  Google Scholar 

  92. Angelova DM, Brown DR (2015) Iron, aging, and neurodegeneration. Metals 5:2070–2092. https://doi.org/10.3390/met5042070

    Article  Google Scholar 

  93. Biasiotto G, Di Lorenzo D, Archetti S, Zanella I (2016) Iron and neurodegeneration: is ferritinophagy the link? Mol Neurobiol 53:5542–5574. https://doi.org/10.1007/s12035-015-9473-y

    Article  PubMed  Google Scholar 

  94. Ullrich SR, González C, Poehlein A, Tischler JS, Daniel R, Schlömann M, Holmes DS, Mühling M (2016) Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile “Ferrovum”. Front Microbiol 7:797. https://doi.org/10.3389/fmicb.2016.00797

    Article  PubMed  PubMed Central  Google Scholar 

  95. Anastassova N, Aluani D, Hristova-Avakumova N, Tzankova V, Kondeva-Burdina M, Rangelov M, Todorova N, Yancheva D (2022) Study on the neuroprotective, radical-scavenging and MAO-B inhibiting properties of new benzimidazole arylhydrazones as potential multi-target drugs for the treatment of parkinson’s disease. Antioxidants (Basel) 11. https://doi.org/10.3390/antiox11050884

  96. Sandström KO, Baltzersen OB, Marsman A, Lemvigh CK, Boer VO, Bojesen KB, Nielsen M, Lundell H, Sulaiman DK, Sørensen ME, Fagerlund B, Lahti AC, Syeda WT, Pantelis C, Petersen ET, Glenthøj BY, Siebner HR, Ebdrup BH (2022) Add-on memantine to dopamine antagonism to improve negative symptoms at first psychosis- the AMEND trial protocol. Front Psychiatry 13:889572. https://doi.org/10.3389/fpsyt.2022.889572

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ito S, Yamanaka Y, Ojika M, Wakamatsu K (2016) The metabolic fate of ortho-Quinones derived from catecholamine metabolites. Int J Mol Sci 17. https://doi.org/10.3390/ijms17020164

  98. Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, Kasai-Yoshida E, Sawaura N, Nishida H, Hoshino A, Ryujin F, Yoshioka S, Nishiyama K, Kondo Y, Tsurusaki Y, Nakashima M, Miyake N, Arakawa H, Kato M et al (2013) De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 45:445–449e1. https://doi.org/10.1038/ng.2562

    Article  CAS  PubMed  Google Scholar 

  99. Seibler P, Burbulla LF, Dulovic M, Zittel S, Heine J, Schmidt T, Rudolph F, Westenberger A, Rakovic A, Münchau A, Krainc D, Klein C (2018) Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells. Brain 141:3052–3064. https://doi.org/10.1093/brain/awy230

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lan B, Ge JW, Cheng SW, Zheng XL, Liao J, He C, Rao ZQ, Wang GZ (2020) Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats. J Integr Med 18:344–350. https://doi.org/10.1016/j.joim.2020.01.008

    Article  PubMed  Google Scholar 

  101. Au A, Griffiths LR, Irene L, Kooi CW, Wei LK (2017) The impact of APOA5, APOB, APOC3 and ABCA1 gene polymorphisms on ischemic stroke: evidence from a meta-analysis. Atherosclerosis 265:60–70. https://doi.org/10.1016/j.atherosclerosis.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  102. Brouns R, De Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111:483–495. https://doi.org/10.1016/j.clineuro.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  103. Dávalos A, Castillo J, Marrugat J, Fernandez-Real JM, Armengou A, Cacabelos P, Rama R (2000) Body iron stores and early neurologic deterioration in acute cerebral infarction. Neurology 54:1568–1574. https://doi.org/10.1212/wnl.54.8.1568

    Article  PubMed  Google Scholar 

  104. Patt A, Horesh IR, Berger EM, Harken AH, Repine JE (1990) Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains. J Pediatr Surg 25:224–227. https://doi.org/10.1016/0022-3468(90)90407-z

    Article  CAS  PubMed  Google Scholar 

  105. Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, Marti DL, Hoekman JD, Matthews RB, Frey WH 2nd, Panter SS (2009) Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther 330:679–686. https://doi.org/10.1124/jpet.108.149807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang Y, Lu X, Tai B, Li W, Li T (2021) Ferroptosis and its multifaceted roles in cerebral stroke. Front Cell Neurosci 15:615372. https://doi.org/10.3389/fncel.2021.615372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Speer RE, Karuppagounder SS, Basso M, Sleiman SF, Kumar A, Brand D, Smirnova N, Gazaryan I, Khim SJ, Ratan RR (2013) Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: from ferroptosis to stroke. Free Radic Biol Med 62:26–36. https://doi.org/10.1016/j.freeradbiomed.2013.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chang CF, Cho S, Wang J (2014) (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol 1:258–271. https://doi.org/10.1002/acn3.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22:1520–1530. https://doi.org/10.1038/mp.2017.171

    Article  CAS  PubMed  Google Scholar 

  110. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–339. https://doi.org/10.1016/j.cell.2019.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ, György B, Breakefield XO, Tanzi RE, Moir RD (2018) Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 99:56–63.e3. https://doi.org/10.1016/j.neuron.2018.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189. https://doi.org/10.1101/cshperspect.a006189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rogers JT, Randall JD, Cahill CM, Eder PS, Huang X, Gunshin H, Leiter L, McPhee J, Sarang SS, Utsuki T, Greig NH, Lahiri DK, Tanzi RE, Bush AI, Giordano T, Gullans SR (2002) An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277:45518–45528. https://doi.org/10.1074/jbc.M207435200

    Article  CAS  PubMed  Google Scholar 

  114. Nuñez MT, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals (Basel) 11. https://doi.org/10.3390/ph11040109

  115. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017) Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12:8–17. https://doi.org/10.1016/j.redox.2017.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ersche KD, Acosta-Cabronero J, Jones PS, Ziauddeen H, van Swelm RP, Laarakkers CM, Raha-Chowdhury R, Williams GB (2017) Disrupted iron regulation in the brain and periphery in cocaine addiction. Transl Psychiatry 7:e1040. https://doi.org/10.1038/tp.2016.271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Belaidi AA, Masaldan S, Southon A, Kalinowski P, Acevedo K, Appukuttan AT, Portbury S, Lei P, Agarwal P, Leurgans SE, Schneider J, Conrad M, Bush AI, Ayton S (2022) Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01568-w

  118. Mahoney-Sanchez L, Belaidi AA, Bush AI, Ayton S (2016) The complex role of apolipoprotein E in Alzheimer’s disease: an overview and update. J Mol Neurosci 60:325–335. https://doi.org/10.1007/s12031-016-0839-z

    Article  CAS  PubMed  Google Scholar 

  119. van Bergen JM, Li X, Hua J, Schreiner SJ, Steininger SC, Quevenco FC, Wyss M, Gietl AF, Treyer V, Leh SE, Buck F, Nitsch RM, Pruessmann KP, van Zijl PC, Hock C, Unschuld PG (2016) Colocalization of cerebral iron with amyloid beta in mild cognitive impairment. Sci Rep 6:35514. https://doi.org/10.1038/srep35514

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ayton S, Faux NG, Bush AI (2017) Association of cerebrospinal fluid ferritin level with preclinical cognitive decline in APOE-ε4 carriers. JAMA Neurol 74:122–125. https://doi.org/10.1001/jamaneurol.2016.4406

    Article  PubMed  Google Scholar 

  121. Song B, Cha Y, Ko S, Jeon J, Lee N, Seo H, Park KJ, Lee IH, Lopes C, Feitosa M, Luna MJ, Jung JH, Kim J, Hwang D, Cohen BM, Teicher MH, Leblanc P, Carter BS, Kordower JH et al (2020) Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson’s disease models. J Clin Invest 130:904–920. https://doi.org/10.1172/jci130767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/s0896-6273(03)00568-3

    Article  CAS  PubMed  Google Scholar 

  123. Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009399. https://doi.org/10.1101/cshperspect.a009399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu MZ, Kong N, Zhang GY, Xu Q, Xu Y, Ke P, Liu C (2022) The critical role of ferritinophagy in human disease. Front Pharmacol 13:933732. https://doi.org/10.3389/fphar.2022.933732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, Hirsch EC (2002) Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease. J Neurochem 83:320–330. https://doi.org/10.1046/j.1471-4159.2002.01118.x

    Article  CAS  PubMed  Google Scholar 

  126. Baksi S, Singh N (2017) α-Synuclein impairs ferritinophagy in the retinal pigment epithelium: implications for retinal iron dyshomeostasis in Parkinson’s disease. Sci Rep 7:12843. https://doi.org/10.1038/s41598-017-12862-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rhodes SL, Ritz B (2008) Genetics of iron regulation and the possible role of iron in Parkinson’s disease. Neurobiol Dis 32:183–195. https://doi.org/10.1016/j.nbd.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ammal Kaidery N, Ahuja M, Thomas B (2019) Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson’s disease. Mol Cell Neurosci 101:103413. https://doi.org/10.1016/j.mcn.2019.103413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sun Y, He L, Wang T, Hua W, Qin H, Wang J, Wang L, Gu W, Li T, Li N, Liu X, Chen F, Tang L (2020) Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells. Mol Neurobiol 57:4628–4641. https://doi.org/10.1007/s12035-020-02049-3

    Article  CAS  PubMed  Google Scholar 

  130. Shi L, Huang C, Luo Q, Xia Y, Liu W, Zeng W, Cheng A, Shi R, Zhengli C (2020) Clioquinol improves motor and non-motor deficits in MPTP-induced monkey model of Parkinson’s disease through AKT/mTOR pathway. Aging (Albany NY) 12:9515–9533. https://doi.org/10.18632/aging.103225

    Article  CAS  PubMed  Google Scholar 

  131. Wyant KJ, Ridder AJ, Dayalu P (2017) Huntington’s disease-update on treatments. Curr Neurol Neurosci Rep 17:33. https://doi.org/10.1007/s11910-017-0739-9

    Article  CAS  PubMed  Google Scholar 

  132. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ (2015) Huntington disease. Nat Rev Dis Primers 1:15005. https://doi.org/10.1038/nrdp.2015.5

    Article  PubMed  Google Scholar 

  133. Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC (2017) Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 7. https://doi.org/10.1101/cshperspect.a024240

  134. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25:24–34. https://doi.org/10.1111/ene.13413

    Article  CAS  PubMed  Google Scholar 

  135. Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK, Bush A, Fox J, Hersch SM (2012) Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol 69:887–893. https://doi.org/10.1001/archneurol.2011.2945

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chen CM, Wu YR, Cheng ML, Liu JL, Lee YM, Lee PW, Soong BW, Chiu DT (2007) Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem Biophys Res Commun 359:335–340. https://doi.org/10.1016/j.bbrc.2007.05.093

    Article  CAS  PubMed  Google Scholar 

  137. Magtanong L, Dixon SJ (2018) Ferroptosis and brain injury. Dev Neurosci 40:382–395. https://doi.org/10.1159/000496922

    Article  CAS  PubMed  Google Scholar 

  138. Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137–1151. https://doi.org/10.1093/hmg/11.9.1137

    Article  CAS  PubMed  Google Scholar 

  139. Perera ND, Sheean RK, Lau CL, Shin YS, Beart PM, Horne MK, Turner BJ (2018) Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy 14:534–551. https://doi.org/10.1080/15548627.2017.1385674

    Article  CAS  PubMed  Google Scholar 

  140. Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071. https://doi.org/10.1038/nrdp.2017.71

    Article  PubMed  Google Scholar 

  141. Vahsen BF, Gray E, Thompson AG, Ansorge O, Anthony DC, Cowley SA, Talbot K, Turner MR (2021) Non-neuronal cells in amyotrophic lateral sclerosis - from pathogenesis to biomarkers. Nat Rev Neurol 17:333–348. https://doi.org/10.1038/s41582-021-00487-8

    Article  PubMed  Google Scholar 

  142. Xiao Y, Karam C, Yi J, Zhang L, Li X, Yoon D, Wang H, Dhakal K, Ramlow P, Yu T, Mo Z, Ma J, Zhou J (2018) ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacol Res 138:25–36. https://doi.org/10.1016/j.phrs.2018.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang T, Tomas D, Perera ND, Cuic B, Luikinga S, Viden A, Barton SK, McLean CA, Samson AL, Southon A, Bush AI, Murphy JM, Turner BJ (2022) Ferroptosis mediates selective motor neuron death in amyotrophic lateral sclerosis. Cell Death Differ 29:1187–1198. https://doi.org/10.1038/s41418-021-00910-z

    Article  CAS  PubMed  Google Scholar 

  144. Da Cruz S, Bui A, Saberi S, Lee SK, Stauffer J, McAlonis-Downes M, Schulte D, Pizzo DP, Parone PA, Cleveland DW, Ravits J (2017) Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathol 134:97–111. https://doi.org/10.1007/s00401-017-1688-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ignjatović A, Stević Z, Lavrnić D, Nikolić-Kokić A, Blagojević D, Spasić M, Spasojević I (2012) Inappropriately chelated iron in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler 13:357–362. https://doi.org/10.3109/17482968.2012.665929

    Article  CAS  PubMed  Google Scholar 

  146. Kwan JY, Jeong SY, Van Gelderen P, Deng HX, Quezado MM, Danielian LE, Butman JA, Chen L, Bayat E, Russell J, Siddique T, Duyn JH, Rouault TA, Floeter MK (2012) Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 7:e35241. https://doi.org/10.1371/journal.pone.0035241

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hemerková P, Vališ M (2021) Role of oxidative stress in the pathogenesis of amyotrophic lateral sclerosis: antioxidant metalloenzymes and therapeutic strategies. Biomolecules 11. https://doi.org/10.3390/biom11030437

  148. Moreau C, Danel V, Devedjian JC, Grolez G, Timmerman K, Laloux C, Petrault M, Gouel F, Jonneaux A, Dutheil M, Lachaud C, Lopes R, Kuchcinski G, Auger F, Kyheng M, Duhamel A, Pérez T, Pradat PF, Blasco H et al (2018) Could conservative iron chelation lead to neuroprotection in amyotrophic lateral sclerosis? Antioxid Redox Signal 29:742–748. https://doi.org/10.1089/ars.2017.7493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Evans RC, Chen L, Na R, Yoo K, Ran Q (2022) The Gpx4NIKO mouse is a versatile model for testing interventions targeting ferroptotic cell death of spinal motor neurons. Neurotox Res 40:373–383. https://doi.org/10.1007/s12640-021-00469-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee JY, He Y, Sagher O, Keep R, Hua Y, Xi G (2009) Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res 1287:126–135. https://doi.org/10.1016/j.brainres.2009.06.028

    Article  CAS  PubMed  Google Scholar 

  151. Hao S, Song C, Shang L, Yu J, Qiao T, Li K (2016) Phosphorylation of Akt by SC79 prevents iron accumulation and ameliorates early brain injury in a model of experimental subarachnoid hemorrhage. Molecules 21:325. https://doi.org/10.3390/molecules21030325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang Y, Gao A, Xu X, Dang B, You W, Li H, Yu Z, Chen G (2015) The neuroprotection of lysosomotropic agents in experimental subarachnoid hemorrhage probably involving the apoptosis pathway triggering by cathepsins via chelating intralysosomal iron. Mol Neurobiol 52:64–77. https://doi.org/10.1007/s12035-014-8846-y

    Article  CAS  PubMed  Google Scholar 

  153. Yan H, Hao S, Sun X, Zhang D, Gao X, Yu Z, Li K, Hang CH (2015) Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage. Biochem Biophys Res Commun 456:835–840. https://doi.org/10.1016/j.bbrc.2014.12.073

    Article  CAS  PubMed  Google Scholar 

  154. Li Y, Liu Y, Wu P, Tian Y, Liu B, Wang J, Bihl J, Shi H (2021) Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation. Cell Mol Neurobiol 41:263–278. https://doi.org/10.1007/s10571-020-00850-1

    Article  CAS  PubMed  Google Scholar 

  155. Jiang JY, Gao GY, Feng JF, Mao Q, Chen LG, Yang XF, Liu JF, Wang YH, Qiu BH, Huang XJ (2019) Traumatic brain injury in China. Lancet Neurol 18:286–295. https://doi.org/10.1016/s1474-4422(18)30469-1

    Article  PubMed  Google Scholar 

  156. Pavlovic D, Pekic S, Stojanovic M, Popovic V (2019) Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary 22:270–282. https://doi.org/10.1007/s11102-019-00957-9

    Article  PubMed  Google Scholar 

  157. Xie BS, Wang YQ, Lin Y, Mao Q, Feng JF, Gao GY, Jiang JY (2019) Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther 25:465–475. https://doi.org/10.1111/cns.13069

    Article  CAS  PubMed  Google Scholar 

  158. Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197. https://doi.org/10.2174/092986707780597961

    Article  CAS  PubMed  Google Scholar 

  159. Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2:492–516. https://doi.org/10.1007/s12975-011-0125-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fischer TD, Hylin MJ, Zhao J, Moore AN, Waxham MN, Dash PK (2016) Altered mitochondrial dynamics and TBI pathophysiology. Front Syst Neurosci 10:29. https://doi.org/10.3389/fnsys.2016.00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Anthonymuthu TS, Kenny EM, Lamade AM, Kagan VE, Bayır H (2018) Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 124:493–503. https://doi.org/10.1016/j.freeradbiomed.2018.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Morera-Fumero AL, Abreu-Gonzalez P (2013) Role of melatonin in schizophrenia. Int J Mol Sci 14:9037–9050. https://doi.org/10.3390/ijms14059037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cao B, Yan L, Ma J, Jin M, Park C, Nozari Y, Kazmierczak OP, Zuckerman H, Lee Y, Pan Z, Brietzke E, McIntyre RS, Lui LMW, Li N, Wang J (2019) Comparison of serum essential trace metals between patients with schizophrenia and healthy controls. J Trace Elem Med Biol 51:79–85. https://doi.org/10.1016/j.jtemb.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  164. Wirshing DA, Bartzokis G, Pierre JM, Wirshing WC, Sun A, Tishler TA, Marder SR (1998) Tardive dyskinesia and serum iron indices. Biol Psychiatry 44:493–498. https://doi.org/10.1016/s0006-3223(97)00453-8

    Article  CAS  PubMed  Google Scholar 

  165. Sussulini A, Erbolato HM, Pessôa GS, Arruda MAZ, Steiner J, Martins-de-Souza D (2018) Elemental fingerprinting of schizophrenia patient blood plasma before and after treatment with antipsychotics. Eur Arch Psychiatry Clin Neurosci 268:565–570. https://doi.org/10.1007/s00406-017-0836-4

    Article  PubMed  Google Scholar 

  166. Keleş Altun İ, Atagün M, Erdoğan A, Oymak Yenilmez D, Yusifova A, Şenat A, Erel Ö (2021) Serum hepcidin / ferroportin levels in bipolar disorder and schizophrenia. J Trace Elem Med Biol 68:126843. https://doi.org/10.1016/j.jtemb.2021.126843

    Article  CAS  PubMed  Google Scholar 

  167. Wang DM, Chen DC, Wang L, Zhang XY (2021) Sex differences in the association between symptoms and superoxide dismutase in patients with never-treated first-episode schizophrenia. World J Biol Psychiatry 22:325–334. https://doi.org/10.1080/15622975.2020.1805510

    Article  CAS  PubMed  Google Scholar 

  168. Ikawa T, Sato M, Oh-Hashi K, Furuta K, Hirata Y (2021) Oxindole-curcumin hybrid compound enhances the transcription of γ-glutamylcysteine ligase. Eur J Pharmacol 896:173898. https://doi.org/10.1016/j.ejphar.2021.173898

    Article  CAS  PubMed  Google Scholar 

  169. Cruz BF, de Campos-Carli SM, de Oliveira AM, de Brito CB, Garcia ZM, do Nascimento Arifa RD, de Souza DDG, Teixeira AL, Salgado JV (2021) Investigating potential associations between neurocognition/social cognition and oxidative stress in schizophrenia. Psychiatry Res 298:113832. https://doi.org/10.1016/j.psychres.2021.113832

    Article  CAS  PubMed  Google Scholar 

  170. Krieg L, Milstein O, Krebs P, Xia Y, Beutler B, Du X (2011) Mutation of the gastric hydrogen-potassium ATPase alpha subunit causes iron-deficiency anemia in mice. Blood 118:6418–6425. https://doi.org/10.1182/blood-2011-04-350082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488. https://doi.org/10.1038/41343

    Article  ADS  CAS  PubMed  Google Scholar 

  172. Haschka D, Hoffmann A, Weiss G (2021) Iron in immune cell function and host defense. Semin Cell Dev Biol 115:27–36. https://doi.org/10.1016/j.semcdb.2020.12.005

    Article  CAS  PubMed  Google Scholar 

  173. Weber GJ, Choe SE, Dooley KA, Paffett-Lugassy NN, Zhou Y, Zon LI (2005) Mutant-specific gene programs in the zebrafish. Blood 106:521–530. https://doi.org/10.1182/blood-2004-11-4541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. An X, Schulz VP, Li J, Wu K, Liu J, Xue F, Hu J, Mohandas N, Gallagher PG (2014) Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood 123:3466–3477. https://doi.org/10.1182/blood-2014-01-548305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, Cantwell J, Luu C, Cornella-Taracido I, Harrington E, Fekkes P, Lei H, Fang Q, Digan ME, Burdick D et al (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol 16:1069–1079. https://doi.org/10.1038/ncb3053

    Article  CAS  PubMed  Google Scholar 

  176. Gao X, Lee HY, Li W, Platt RJ, Barrasa MI, Ma Q, Elmes RR, Rosenfeld MG, Lodish HF (2017) Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. Proc Natl Acad Sci U S A 114:10107–10112. https://doi.org/10.1073/pnas.1711058114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bellelli R, Federico G, Matte A, Colecchia D, Iolascon A, Chiariello M, Santoro M, De Franceschi L, Carlomagno F (2016) NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep 14:411–421. https://doi.org/10.1016/j.celrep.2015.12.065

    Article  CAS  PubMed  Google Scholar 

  178. Truman-Rosentsvit M, Berenbaum D, Spektor L, Cohen LA, Belizowsky-Moshe S, Lifshitz L, Ma J, Li W, Kesselman E, Abutbul-Ionita I, Danino D, Gutierrez L, Li H, Li K, Lou H, Regoni M, Poli M, Glaser F, Rouault TA, Meyron-Holtz EG (2018) Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood 131:342–352. https://doi.org/10.1182/blood-2017-02-768580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82374326), and the Zhejiang Provincial Science and Technology Innovation Leading Talent Project of “Ten Thousand Talents Plan” (2019).

Author information

Authors and Affiliations

Authors

Contributions

The contribution of each author in this manuscript is as follows: Yu He contributes to the conception. Siqi Li writes the initial draft. Ping Huang and Feifan Lai modify the manuscript. Ting Zhang, Jiaqi Guan, Haitong Wan, and Yu He review and edit the manuscript. All authors read and approved the final manuscript. The corresponding authors attest that all listed authors meet the authorship criteria.

Corresponding authors

Correspondence to Haitong Wan or Yu He.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Huang, P., Lai, F. et al. Mechanisms of Ferritinophagy and Ferroptosis in Diseases. Mol Neurobiol 61, 1605–1626 (2024). https://doi.org/10.1007/s12035-023-03640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03640-0

Keywords

Navigation