Skip to main content
Log in

Anaerobic Digestion Enhancement of Brewery Sludge Assisted by Exogenous Hydrogen

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The purification of biogas as a product of anaerobic digestion has gradually become a research focus. In situ hydrogen-assisted biogas purification is an effective way to enhance the reaction rate, but the solubility and mass transfer efficiency of hydrogen are the difficulties that constrain the technology. Thus, four continuous hydrogen injection modes M1: 1 mL/min, M2: 2 mL/min, M3: 5 mL/min, and M4: 10 mL/min and two intermittent hydrogen injection modes A: 4 mL/min ( interval 20 min ) and B: 6 mL/min ( interval 40 min ) were designed to explore the effect of different hydrogen injection modes on in situ biogas upgrading of upflow anaerobic sludge bed (UASB) in the research. The results showed that the methane production showed a trend of increasing first and then decreasing in continuous hydrogenation experiment. The CH4 production reached its peak at 86.2% in the M2 stage. In the two batch hydrogenation tests, group A showed better hydrogenation effect with a CH4 production of about 92%, which was 4% higher than that of group B. The hydrogenotrophic methanogens (HMs) in group A archaea community were more effectively enriched, with an abundance of 52.83% of Methanobacterium. The results illustrate that proper hydrogen injection can enhance anaerobic digestion and promote biogas purification, and the effect of short-term intermittent hydrogen injection is more significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Dahlgren S (2020) Biogas-based fuels as renewable energy in the transport sector: an overview of the potential of using CBG, LBG and other vehicle fuels produced from biogas. Biofuels-UK 13:587–599. https://doi.org/10.1080/17597269.2020.1821571

    Article  CAS  Google Scholar 

  2. Miltner M, Makaruk A, Harasek M (2017) Review on available biogas upgrading technologies and innovations towards advanced solutions. J Clean Prod 161:1329–1337. https://doi.org/10.1016/j.jclepro.2017.06.045

    Article  CAS  Google Scholar 

  3. Patterson T, Esteves S, Dinsdale R, Guwy A (2011) An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 39:1806–1816. https://doi.org/10.1016/j.enpol.2011.01.017

    Article  Google Scholar 

  4. Kapoor R, Subbarao PMV, Vijay VK, Shah G, Sahota S, Singh D, Verma M (2017) Factors affecting methane loss from a water scrubbing based biogas upgrading system. Appl Energ 208:1379–1388. https://doi.org/10.1016/j.apenergy.2017.09.017

    Article  CAS  Google Scholar 

  5. Thiruselvi D, Kumar PS, Kumar MA, Lay C-H, Aathika S, Mani Y, Jagadiswary D, Dhanasekaran A, Shanmugam P, Sivanesan S, Show P-L (2021) A critical review on global trends in biogas scenario with its up-gradation techniques for fuel cell and future perspectives. Int J Hydrogen Energ 46:16734–16750. https://doi.org/10.1016/j.ijhydene.2020.10.023

    Article  CAS  Google Scholar 

  6. Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sust Energ Rev 51:521–532. https://doi.org/10.1016/j.rser.2015.06.029

    Article  CAS  Google Scholar 

  7. Hu Y, Hao X, Zhao D, Fu K (2015) Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2. Chemosphere 140:34–39. https://doi.org/10.1016/j.chemosphere.2014.10.022

    Article  CAS  PubMed  Google Scholar 

  8. Kim S, Choi K, Chung J (2013) Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry. Int J Hydrogen Energ 38:3488–3496. https://doi.org/10.1016/j.ijhydene.2012.12.007

    Article  CAS  Google Scholar 

  9. Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36:452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  10. Kougias PG, Treu L, Benavente DP, Boe K, Campanaro S, Angelidaki I (2017) Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresource Technol 225:429–437. https://doi.org/10.1016/j.biortech.2016.11.124

    Article  CAS  Google Scholar 

  11. Liu Y, Whitman WB Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. In: Adams Incredible Anaerobes: From Physiology To Genomics To Fuels, Wiegel J, Maier RJ (2008) M.W.W, pp. 171–189

  12. Acs N, Szuhaj M, Wirth R, Bagi Z, Maroti G, Rakhely G, Kovacs KL (2019) Microbial community rearrangements in power-to-biomethane reactors employing mesophilic biogas digestate. Front Energy Res 7. https://doi.org/10.3389/fenrg.2019.00132

  13. Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. https://doi.org/10.1038/nrmicro1931

    Article  CAS  PubMed  Google Scholar 

  14. Biavati B, Vasta M, Ferry JG (1988) Isolation and characterization of Methanosphaera cuniculi sp. nov. Appl Environ Microb 54:768–771. https://doi.org/10.1128/aem.54.3.768-771.1988

    Article  CAS  Google Scholar 

  15. Fricke WF, Seedorf H, Henne A, Kruer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK (2006) The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188:642–658. https://doi.org/10.1128/jb.188.2.642-658.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu H, Wang KJ, Holmes DE (2014) Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading. Bioresource Technol 173:392–398. https://doi.org/10.1016/j.biortech.2014.09.127

    Article  CAS  Google Scholar 

  17. Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ Environ Sci 7:408–415. https://doi.org/10.1039/c3ee42189a

    Article  CAS  Google Scholar 

  18. Ajay Thapa J-G, Park H-M, Yang H-B Jun (2021) In-situ biogas upgrading in an anaerobic trickling filter bed reactor treating a thermal post-treated digestate. J Environ Chem Eng 9:106780. https://doi.org/10.1016/j.jece.2021.106780

    Article  CAS  Google Scholar 

  19. Khan A, Akbar S, Okonkwo V, Smith C, Khan S, Ali Shah A, Adnan F, Zeeshan Ijaz U, Ahmed S, Badshah M (2021) Enrichment of the hydrogenotrophic methanogens for, in-situ biogas up-gradation by recirculation of gases and supply of hydrogen in methanogenic reactor. Bioresource Technol 345:126219. https://doi.org/10.1016/j.biortech.2021.126219

    Article  CAS  Google Scholar 

  20. Zhu X, Chen L, Chen Y, Cao Q, Liu X, Li D (2020) Effect of H2 addition on the microbial community structure of a mesophilic anaerobic digestion system. Energy 198:117368. https://doi.org/10.1016/j.energy.2020.117368

    Article  CAS  Google Scholar 

  21. Wahid R, Mulat DG, Gaby JC, Horn SJ (2019) Effects of H2:CO2 ratio and H2 supply fluctuation on methane content and microbial community composition during insitu biological biogas upgrading. Biotechnol Biofuels 12:104. https://doi.org/10.1186/s13068-019-1443-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. ZhongFang S, Zhao L, Wu J-T, Wang Z-H, Wu K-K, Chen C, Xing D-F, Liu D-M, Yang S-S, Ai-jie Wang (2023) Nan-Qi Ren Exogenous hydrogen supply improves in-situ biogas upgrading of sewage sludge: Performance and mechanisms. Chem Eng J 477:147307. https://doi.org/10.1016/j.cej.2023.147307.

  23. The State Environmental Protection Administration The Water and Wastewater Monitoring Analysis Method Editorial Board (2002) Water and wastewater monitoring analysis method.China Environ. Sci., China, Beijing

    Google Scholar 

  24. Qian Jiang Z, Zheng Y, Zhang X, Zhang H, Liu (2023) Key properties identification of biochar material in anaerobic digestion of sewage sludge for enhancement of methane production. J Environ Chem Eng 11:109850. https://doi.org/10.1016/j.jece.2023.109850

    Article  CAS  Google Scholar 

  25. Xu N, Tan G, Wang H, Gai X (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol 74:1–8. https://doi.org/10.1016/j.ejsobi.2016.02.004

    Article  CAS  Google Scholar 

  26. Chen S, Zhou Y, Chen Y et al (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanja M, Steven, et al (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  Google Scholar 

  28. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  29. Blanchet E, Vahlas Z, Etcheverry L, Rafrafi Y, Erable B, Delia M-L, Bergel A (2018) Coupled iron-microbial catalysis for CO2 hydrogenation with multispecies microbial communities. Chem Eng J 346:307–316. https://doi.org/10.1016/j.cej.2018.03.191

    Article  CAS  Google Scholar 

  30. Wei J, Hao X, van Loosdrecht MCM, Li J (2018) Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: a review. Renew Sust Energ Rev 89:16–26. https://doi.org/10.1016/j.rser.2018.02.042

    Article  CAS  Google Scholar 

  31. Wang Y, Yin C, Liu Y, Tan M, Shimizu K, Lei Z, Zhang Z, Sumi I, Yao Y, Mogi Y (2018) Biomethanation of blast furnace gas using anaerobic granular sludge via addition of hydrogen. Rsc Adv 8:26399–26406. https://doi.org/10.1039/c8ra04853c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu D, Meng X, Liu J, Dian L, Sui Q, Zhang J, Zhong H, Wei Y (2018) Formation and characteristics of a ternary pH buffer system for in-situ biogas upgrading in two-phase anaerobic membrane bioreactor treating starch wastewater. Bioresource Technol 269:57–66. https://doi.org/10.1016/j.biortech.2018.08.072

    Article  CAS  Google Scholar 

  33. Okoro-Shekwaga CK, Ross AB, Alonso Camargo-Valero M (2019) Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis. Appl Energ 254:113629. https://doi.org/10.1016/j.apenergy.2019.113629

    Article  CAS  Google Scholar 

  34. Wang W, Xie L, Luo G, Zhou Q, Angelidaki I (2013) Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading. Bioresource Technol 234–239. https://doi.org/10.1016/j.biortech.2013.07.049

  35. Luo G, Johansson S, Boe K, Xie L, Zhou Q, Angelidaki I (2012) Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol Bioeng 109:1088–1094. https://doi.org/10.1002/bit.24360

    Article  CAS  PubMed  Google Scholar 

  36. Rachbauer L, Voitl G, Bochmann G, Fuchs W (2016) Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor. Appl Energ 180:483–490. https://doi.org/10.1016/j.apenergy.2016.07.109

    Article  CAS  Google Scholar 

  37. Tian X, Shen Z, Zhou Y, Wang K (2020) Inhibition on biological acidification and microbial community by high-strength acetaldehyde. Process Saf Environ 143:231–238. https://doi.org/10.1016/j.psep.2020.07.001

    Article  CAS  Google Scholar 

  38. Song T, Li S, Yin Z, Bao M, Lu J, Li Y (2021) Hydrolyzed polyacrylamide-containing wastewater treatment using ozone reactor-upflow anaerobic sludge blanket reactor-aerobic biofilm reactor multistage treatment system. Environ Pollut 269:11611. https://doi.org/10.1016/j.envpol.2020.116111

    Article  CAS  Google Scholar 

  39. Fan Q, Fan X, Fu P, Sun Y, Li Y, Long S, Guo T, Zheng L, Yang K, Hua D (2022) Microbial community evolution, interaction, and functional genes prediction during anaerobic digestion in the presence of refractory organics. J Environ Chem Eng 10:107789. https://doi.org/10.1016/j.jece.2022.107789

    Article  CAS  Google Scholar 

  40. Chen S, Tao Z, Yao F, Wu B, He L, Hou K, Pi Z, Fu J, Yin H, Huang Q, Liu Y, Wang D, Li X, Yang Q (2020) Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron: insights in direct interspecies electron transfer mechanism. Bioresource Technol 316:123901. https://doi.org/10.1016/j.biortech.2020.123901

    Article  CAS  Google Scholar 

  41. Zamorano-López N, Borrás L, Giménez JB, Seco A, Aguado D (2019) Acclimatised rumen culture for raw microalgae conversion into biogas: linking microbial community structure and operational parameters in anaerobic membrane bioreactors (AnMBR). Bioresource Technol 290:121787. https://doi.org/10.1016/j.biortech.2019.121787

    Article  CAS  Google Scholar 

  42. McIlroy SJ, Kirkegaard RH, Dueholm MS, Fernando E, Karst SM, Albertsen M, Nielsen PH (2017) Culture-independent analyses reveal novel Anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge. Front Microbiol 8:01134. https://doi.org/10.3389/fmicb.2017.01134

    Article  Google Scholar 

  43. De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresource Technol 112:1–9. https://doi.org/10.1016/j.biortech.2012.02.079

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Shiyue Liu, Sue Yao; methodology: Xingdi Ma, Sue Yao; formal analysis and investigation: Xingdi Ma, Zhiqiang Chen; writing—original draft preparation: Xingdi Ma, Xingyun Zhu; writing—review and editing: Shiyue Liu; funding acquisition: Shiyue Liu; resources: Yongguang Ma; supervision: Jiyan Liang

Corresponding author

Correspondence to Shiyue Liu.

Ethics declarations

Consent to Participate and Publish

All authors have agreed to participate in this experiment and consent to the publication of this work.

Competing Interests 

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Ma, X., Yao, S. et al. Anaerobic Digestion Enhancement of Brewery Sludge Assisted by Exogenous Hydrogen. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10758-z

Keywords

Navigation