Skip to main content
Log in

Cryo-nanoscale chromosome imaging—future prospects

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

A Correction to this article was published on 13 October 2020

This article has been updated

Abstract

The high-order structure of mitotic chromosomes remains to be fully elucidated. How nucleosomes compact at various structural levels into a condensed mitotic chromosome is unclear. Cryogenic preservation and imaging have been applied for over three decades, keeping biological structures close to the native in vivo state. Despite being extensively utilized, this field is still wide open for mitotic chromosome research. In this review, we focus specifically on cryogenic efforts for determining the mitotic nanoscale chromatin structures. We describe vitrification methods, current status, and applications of advanced cryo-microscopy including future tools required for resolving the native architecture of these fascinating structures that hold the instructions to life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 13 October 2020

    A correction to this paper has been published: <ExternalRef><RefSource>https://doi.org/10.1007/s12551-020-00767-5</RefSource><RefTarget Address="10.1007/s12551-020-00767-5" TargetType="DOI"/></ExternalRef>.

References

  • Al-Amoudi A, Chang JJ, Leforestier A, McDowall A, Salamin LM, Norlen LP, ..., Dubochet J (2004) Cryo-electron microscopy of vitreous sections. EMBO J, 23(18):3583–3588

  • Antonin W, Neumann H (2016) Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol 40:15–22

    CAS  PubMed  Google Scholar 

  • Bateman BC, Zanetti-Domingues LC, Moores AN, Needham SR, Rolfe DJ, Wang L, Clarke DT, Martin-Fernandez ML (2019) Super-resolution microscopy at cryogenic temperatures using solid immersion lenses. Bio-protocol 9(22):e3426. https://doi.org/10.21769/BioProtoc.3426

  • Batty P, Gerlich DW (2019) Mitotic chromosome mechanics: how cells segregate their genome. Trends Cell Biol 29(9):717–726

    PubMed  Google Scholar 

  • Bendandi A, Dante S, Zia SR, Diaspro A, Rocchia W (2020) Chromatin compaction multiscale modeling: a complex synergy between theory, simulation, and experiment. Front Mol Biosci 7:15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beseda T, Cápal P, Kubalová I, Schubert V, Doležel J, Šimková H (2020) Mitotic chromosome organization: general rules meet species-specific variability. Comput Struct Biotechnol J 18:1311–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booth DG, Beckett AJ, Molina O, Samejima I, Masumoto H, Kouprina N, ..., Earnshaw WC (2016) 3D-CLEM reveals that a major portion of mitotic chromosomes is not chromatin. Mol Cell, 64(4):790–802

  • Cai S, Chen C, Tan ZY, Huang Y, Shi J, Gan L (2018) Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci 115(43):10977–10982

    CAS  PubMed  Google Scholar 

  • Cervantes GA (2016) Technical fundamentals of radiology and CT. IOP Publishing

  • Chen C, Lim HH, Shi J, Tamura S, Maeshima K, Surana U, Gan L (2016) Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol Biol Cell 27(21):3357–3368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Yusuf M, Hashimoto T, Estandarte AK, Thompson G, Robinson I (2017) Three-dimensional positioning and structure of chromosomes in a human prophase nucleus. Sci Adv 3(7):e1602231

    PubMed  PubMed Central  Google Scholar 

  • Chicano A, Crosas E, Otón J, Melero R, Engel BD, Daban JR (2019) Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. EMBO J 38(7):e99769

    PubMed  PubMed Central  Google Scholar 

  • Chua EY, Vogirala VK, Inian O, Wong AS, Nordenskiöld L, Plitzko JM, ..., Sandin S (2016) 3.9 Å structure of the nucleosome core particle determined by phase-plate cryo-EM. Nucleic Acids Res 44(17):8013–8019

  • Cressey D, Callaway E (2017) Cryo-electron microscopy wins chemistry Nobel. Nat News 550(7675):167

    Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319(5):1097–1113

    CAS  PubMed  Google Scholar 

  • Dixon JR, Gorkin DU, Ren B (2016) Chromatin domains: the unit of chromosome organization. Mol Cell 62(5):668–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doerr A (2017) Cryo-electron tomography. Nat Methods 14(1):34–34

    CAS  Google Scholar 

  • Dong B, Almassalha LM, Stypula-Cyrus Y, Urban BE, Chandler JE, Nguyen TQ, Sun C, Zhang HF, Backman V (2016) Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast. Proc Natl Acad Sci 113(35):9716–9721

  • Dubochet J, McDowall AW (1981) Vitrification of pure water for electron microscopy. J Microsc 124(3):3–4

    Google Scholar 

  • Dubochet J, Lepault J, Freeman RBJA, Berriman JA, Homo JC (1982) Electron microscopy of frozen water and aqueous solutions. J Microsc 128(3):219–237

    Google Scholar 

  • Ekundayo B, Richmond TJ, Schalch T (2017) Capturing structural heterogeneity in chromatin fibers. J Mol Biol 429(20):3031–3042

    CAS  PubMed  Google Scholar 

  • Eltsov M, MacLellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci 105(50):19732–19737

    CAS  PubMed  Google Scholar 

  • Fang K, Chen X, Li X, Shen Y, Sun J, Czajkowsky DM, Shao Z (2018) Super-resolution imaging of individual human subchromosomal regions in situ reveals nanoscopic building blocks of higher-order structure. ACS Nano 12(5):4909–4918

    CAS  PubMed  Google Scholar 

  • Flors C, Earnshaw WC (2011) Super-resolution fluorescence microscopy as a tool to study the nanoscale organization of chromosomes. Curr Opin Chem Biol 15(6):838–844

    CAS  PubMed  Google Scholar 

  • Fuest M, Nocera GM, Modena MM, Riedel D, Mejia YX, Burg TP (2018) Cryofixation during live-imaging enables millisecond time-correlated light and electron microscopy. J Microsc 272(2):87–95

    CAS  PubMed  Google Scholar 

  • Fuest M, Schaffer M, Nocera GM, Galilea-Kleinsteuber RI, Messling JE, Heymann M, ..., Burg TP (2019) In situ microfluidic cryofixation for cryo focused ion beam milling and cryo electron tomography. Sci Rep 9(1):1–10

  • Fussner E, Strauss M, Djuric U, Li R, Ahmed K, Hart M, ..., Bazett-Jones DP (2012) Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep 13(11):992–996

  • Galbraith CG, Galbraith JA (2011) Super-resolution microscopy at a glance. J Cell Sci 124(10):1607–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gállego I, Castro-Hartmann P, Caravaca JM, Caño S, Daban JR (2009) Dense chromatin plates in metaphase chromosomes. Eur Biophys J 38(4):503

    PubMed  Google Scholar 

  • Gan L, Jensen GJ (2012) Electron tomography of cells. Q Rev Biophys 45(1):27–56

    CAS  PubMed  Google Scholar 

  • Gan L, Ladinsky MS, Jensen GJ (2013) Chromatin in a marine picoeukaryote is a disordered assemblage of nucleosomes. Chromosoma 122(5):377–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson GP, Gan L, Jensen GJ (2007) 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One 2(8):e749

    PubMed  PubMed Central  Google Scholar 

  • Hsieh THS, Fudenberg G, Goloborodko A, Rando OJ (2016) Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome. Nat Methods 13(12):1009–1011

    CAS  PubMed  Google Scholar 

  • Kalle W, Strappe P (2012) Atomic force microscopy on chromosomes, chromatin and DNA: a review. Micron 43(12):1224–1231

    CAS  PubMed  Google Scholar 

  • Kourkoutis LF, Plitzko JM, Baumeister W (2012) Electron microscopy of biological materials at the nanometer scale. Annu Rev Mater Res 42:33–58

    CAS  Google Scholar 

  • Krietenstein N, Rando OJ (2020) Mesoscale organization of the chromatin fiber. Curr Opin Genet Dev 61:32–36

    CAS  PubMed  Google Scholar 

  • Lakadamyali M, Cosma MP (2015) Advanced microscopy methods for visualizing chromatin structure. FEBS Lett 589(20):3023–3030

    CAS  PubMed  Google Scholar 

  • Li Y, Almassalha LM, Chandler JE, Zhou X, Stypula-Cyrus YE, Hujsak KA, ..., Dravid VP (2017) The effects of chemical fixation on the cellular nanostructure. Exp Cell Res 358(2):253–259

  • Liang Z, Zickler D, Prentiss M, Chang FS, Witz G, Maeshima K, Kleckner N (2015) Chromosomes progress to metaphase in multiple discrete steps via global compaction/expansion cycles. Cell 161(5):1124–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lučić V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202(3):407–419

    PubMed  PubMed Central  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251–260

    CAS  PubMed  Google Scholar 

  • Macville M, Schröck E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D, ..., Ried T (1999) Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res 59(1):141–150

  • Matsuda A, Shao L, Boulanger J, Kervrann C, Carlton PM, Kner P, Sedat JW (2010) Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-histones. PLoS One 5(9):e12768

    PubMed  PubMed Central  Google Scholar 

  • Mazur P (1970) Cryobiology: the freezing of biological systems. Science 168(3934):939–949

    CAS  PubMed  Google Scholar 

  • McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5(6):1395–1402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirabelli P, Coppola L, Salvatore M (2019) Cancer cell lines are useful model systems for medical research. Cancers 11(8):1098

    CAS  PubMed Central  Google Scholar 

  • Moor H (1968) Snap freezing under high pressure: a new fixation technique for freeze-etching. In Proceedings of the 4th European Regional Conference on Electron Microscopy, Rome, 1968 (Vol. 2, pp. 445-446)

  • Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J (2013) Organization of the mitotic chromosome. Science 342(6161):948–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nir G, Farabella I, Estrada CP, Ebeling CG, Beliveau BJ, Sasaki HM, ..., Erceg J (2018) Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet 14(12):e1007872

  • Nishino Y, Takahashi Y, Imamoto N, Ishikawa T, Maeshima K (2009) Three-dimensional visualization of a human chromosome using coherent X-ray diffraction. Phys Rev Lett 102(1):018101

    PubMed  Google Scholar 

  • Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, Tani T, ..., Wendt KS (2017) Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol Cell 67(2):282–293

  • Ohno M, Priest DG, Taniguchi Y (2018) Nucleosome-level 3D organization of the genome. Biochem Soc Trans 46(3):491–501

    CAS  PubMed  Google Scholar 

  • Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, de Lima Alves F, Wood L, Chen ZA, ..., Fukagawa T (2010) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142(5):810–821

  • Olins AL, Olins DE (1974) Spheroid chromatin units (ν bodies). Science 183(4122):330–332

    CAS  PubMed  Google Scholar 

  • Otterstrom J, Castells-Garcia A, Vicario C, Gomez-Garcia PA, Cosma MP, Lakadamyali M (2019) Super-resolution microscopy reveals how histone tail acetylation affects DNA compaction within nucleosomes in vivo. Nucleic Acids Res 47(16):8470–8484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O’shea CC (2017) ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357(6349)

  • Phengchat R, Hayashida M, Ohmido N, Homeniuk D, Fukui K (2019) 3D observation of chromosome scaffold structure using a 360° electron tomography sample holder. Micron 126:102736

    CAS  PubMed  Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164(4172):666–666

    CAS  PubMed  Google Scholar 

  • Poonperm R, Takata H, Hamano T, Matsuda A, Uchiyama S, Hiraoka Y, Fukui K (2015) Chromosome scaffold is a double-stranded assembly of scaffold proteins. Sci Rep 5(1):1–10

    Google Scholar 

  • Ramachandran S, Henikoff S (2016) Nucleosome dynamics during chromatin remodeling in vivo. Nucleus 7(1):20–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson PJ, Fairall L, Huynh VA, Rhodes D (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci 103(17):6506–6511

    CAS  PubMed  Google Scholar 

  • Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436(7047):138–141

    CAS  PubMed  Google Scholar 

  • Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GP (2019) Super-resolution microscopy demystified. Nat Cell Biol 21(1):72–84

    CAS  PubMed  Google Scholar 

  • Schertel A, Snaidero N, Han HM, Ruhwedel T, Laue M, Grabenbauer M, Möbius W (2013) Cryo FIB-SEM: volume imaging of cellular ultrastructure in native frozen specimens. J Struct Biol 184(2):355–360

    CAS  PubMed  Google Scholar 

  • Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12(6):1198

    CAS  PubMed  Google Scholar 

  • Schroeder-Reiter E, Pérez-Willard F, Zeile U, Wanner G (2009) Focused ion beam (FIB) combined with high resolution scanning electron microscopy: a promising tool for 3D analysis of chromosome architecture. J Struct Biol 165(2):97–106

    CAS  PubMed  Google Scholar 

  • Shemilt LA, Estandarte AKC, Yusuf M, Robinson IK (2014) Scanning electron microscope studies of human metaphase chromosomes. Philos Trans R Soc A Math Phys Eng Sci 372(2010):20130144

    CAS  Google Scholar 

  • Song F, Chen P, Sun D, Wang M, Dong L, Liang D et al (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344(6182):376–380

    CAS  PubMed  Google Scholar 

  • Studer D, Humbel BM, Chiquet M (2008) Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem Cell Biol 130(5):877–889

    CAS  PubMed  Google Scholar 

  • Swedlow JR, Hirano T (2003) The making of the mitotic chromosome: modern insights into classical questions. Mol Cell 11(3):557–569

    CAS  PubMed  Google Scholar 

  • Szczurek AT, Prakash K, Lee HK, Żurek-Biesiada DJ, Best G, Hagmann M, Birk U (2014) Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes. Nucleus 5(4):331–340

    PubMed  PubMed Central  Google Scholar 

  • Taylor KA, Glaeser RM (1974) Electron diffraction of frozen, hydrated protein crystals. Science 186(4168):1036–1037

    CAS  PubMed  Google Scholar 

  • Ushiki T, Hoshi O (2008) Atomic force microscopy for imaging human metaphase chromosomes. Chromosom Res 16(3):383

    CAS  Google Scholar 

  • Walther N, Ellenberg J (2018) Quantitative live and super-resolution microscopy of mitotic chromosomes. In Methods in cell biology (Vol. 145, pp. 65-90). Academic Press

  • Wang L, Bateman B, Zanetti-Domingues LC, Moores AN, Astbury S, Spindloe C, ..., Rolfe DJ (2019) Solid immersion microscopy images cells under cryogenic conditions with 12 nm resolution. Commun Biol 2(1):1–11

  • Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2(5):a000596

    PubMed  PubMed Central  Google Scholar 

  • Xu J, Liu Y (2019) A guide to visualizing the spatial epigenome with super-resolution microscopy. FEBS J 286(16):3095–3109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Nazaretski E, Lauer K, Huang X, Wagner U, Rau C, ..., Bouet N (2016) Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution. Sci Rep 6:20112

  • Yusuf M, Chen B, Hashimoto T, Estandarte AK, Thompson G, Robinson I (2014) Staining and embedding of human chromosomes for 3-D serial block-face scanning electron microscopy. Biotechniques. 57(6):302–307

    CAS  PubMed  Google Scholar 

  • Yusuf M, Chen B, Robinson I (2016) Future prospects of 3d human chromosome imaging by serial block face scanning electron microscopy. Single Cell Biol 5(2)

  • Yusuf M, Zhang F, Chen B, Bhartiya A, Cunnea K, Wagner U, ..., Robinson IK (2017) Procedures for cryogenic X-ray ptychographic imaging of biological samples. IUCrJ 4(2):147–151

  • Yusuf M, Kaneyoshi K, Fukui K, Robinson I (2019) Use of 3D imaging for providing insights into high-order structure of mitotic chromosomes. Chromosoma 128(1):7–13

    CAS  PubMed  Google Scholar 

  • Zhou BR, Yadav KS, Borgnia M, Hong J, Cao B, Olins AL, ..., Zhang P (2019a) Atomic resolution cryo-EM structure of a native-like CENP-A nucleosome aided by an antibody fragment. Nat Commun 10(1):1–7.

  • Zhou Z, Li K, Yan R, Yu G, Gilpin CJ, Jiang W, Irudayaraj JM (2019b) The transition structure of chromatin fibers at the nanoscale probed by cryogenic electron tomography. Nanoscale 11(29):13783–13789

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Aga Khan University and generous donors provided financial support. Others include the Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. This work was partially supported by the UK BBSRC (BB/H022597/1) under a “Professorial Fellowship for imaging chromosomes by coherent X-ray diffraction”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Yusuf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the originally published article, the name of the 4th author was incorrectly presented as El-Naser Lalani. The correct name is El-Nasir Lalani, which is also given above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusuf, M., Farooq, S., Robinson, I. et al. Cryo-nanoscale chromosome imaging—future prospects. Biophys Rev 12, 1257–1263 (2020). https://doi.org/10.1007/s12551-020-00757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00757-7

Keywords

Navigation