Skip to main content
Log in

Variability on microevolutionary and macroevolutionary scales: a review on patterns of morphological variation in Cnidaria Medusozoa

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Members of Cnidaria Medusozoa are known for their wide morphological variation, which is expressed on many different levels, especially in different phases of the life cycle. Difficulties in interpreting morphological variations have posed many taxonomic problems, since intraspecific morphological variations are often misinterpreted as interspecific variations and vice-versa, hampering species delimitation. This study reviews the patterns of morphological variation in the Medusozoa, to evaluate how different interpretations of the levels of variation may influence the understanding of the patterns of diversification in the group. Additionally, we provide an estimate of the cryptic diversity in the Hydrozoa, based on COI sequences deposited in GenBank. Morphological variations frequently overlap between microevolutionary and macroevolutionary scales, contributing to misinterpretations of the different levels of variation. In addition, most of the cryptic diversity described so far for the Medusozoa is a result of previously overlooked morphological differences, and there is still great potential for discovering cryptic lineages in the Hydrozoa. We provide evidence that the number of species in the Medusozoa is misestimated and emphasize the necessity of examining different levels of morphological variations when studying species boundaries, in order to avoid generalizations and misinterpretations of morphological characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Andrade, L. P., & Migotto, A. E. (1999). Variação morfológica de Aglaophenia latecarinata (Cnidaria, Hydrozoa, Aglaopheniidae) da região do Canal de São Sebastião, São Paulo, Brasil. VIII Congreso Latinoamericano sobre Ciencias del Mar, Trujillo, 1, 412–413.

    Google Scholar 

  • Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., et al. (2012). The magnitude of global marine species diversity. Current Biology, 22, 1–14.

    Article  CAS  Google Scholar 

  • Badyaev, A. V., & Foresman, K. R. (2000). Extreme environmental change and evolution: stress-induced morphological variation is strongly concordant with patterns of evolutionary divergence in shrew mandibles. Proceedings of the Royal Society of London, Biological Sciences, 267, 371–377.

    Article  CAS  Google Scholar 

  • Bavestrello, G., Puce, S., Cerrano, C., & Sarà, M. (2000). Phenotypic plasticity in hydrozoans: morph reversibility. Rivista di Biologia, 93, 283–294.

    CAS  PubMed  Google Scholar 

  • Bayha, K. M., & Dawson, M. N. (2010). New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton. Biological Bulletin, 219, 249–267.

    PubMed  Google Scholar 

  • Bentlage, B., Cartwright, P., Yanagihara, A. A., Lewis, C., Richards, G. S., & Collins, A. G. (2010). Evolution of box jellyfish (Cnidaria: Cubozoa), a group of highly toxic invertebrates. Proceedings of the Royal Society Biological Sciences, 277, 493–501.

    Article  CAS  PubMed  Google Scholar 

  • Boardman, R. S., & Cheetham, A. H. (1973). Degrees of colony dominance in Stenolaemate and Gymnolaemate Bryozoa. In R. S. Boardman, A. H. Cheetham, & W. A. Oliver Jr. (Eds.), Animal colonies: development and function through time (pp. 121–220). Stroudsburg: Dowden, Hutchinson & Ross Inc.

    Google Scholar 

  • Boero, F., & Bouillon, J. (1989). An evolutionary interpretation of anomalous medusoid stages in the life cycles of some Leptomedusae (Cnidaria). In J. S. Ryland & P. A. Tyler (Eds.), Reproduction, genetics and distributions of marine organisms, 23rd European Marine Biology Symposium (pp. 37–41). Fredensborg: Olsen & Olsen.

    Google Scholar 

  • Boero, F., & Bouillon, J. (1993). Zoogeography and life cycle patterns of Mediterranean hydromedusae (Cnidaria). Biological Journal of the Linnean Society, 48, 239–266.

    Article  Google Scholar 

  • Boero, F., & Bouillon, J. (1994). Ecological and evolutionary implications of medusozoan (mainly hydromedusae) life cycles. UNEP/FAO: final reports on research projects dealing with the effects of pollutants on marine organisms and communities. MAP Technical Reports Series, 80, 1–24.

    Google Scholar 

  • Boero, F., & Sarà, M. (1987). Motile sexual stages and evolution of Leptomedusae (Cnidaria). Bollettino di Zoologia, 54, 131–139.

    Article  Google Scholar 

  • Boero, F., Bouillon, J., & Piraino, S. (1992). On the origins and evolution of hydromedusan life cycles (Cnidaria, Hydrozoa). In R. Dallai (Ed.), Sex origin and evolution (pp. 59–68). Modena: Selected Symposia and Monographs U.Z.I.

    Google Scholar 

  • Boero, F., Bouillon, J., Piraino, S., Schmid, V. (1997). Diversity of hydroidomedusan life cycles: ecological implications and evolutionary patterns. Proceedings of the 6th International Conference on Coelenterate Biology, 53–62.

  • Boero, F., Bouillon, J., & Piraino, S. (1998). Heterochrony, generic distinction and phylogeny in the family Hydractiniidae (Hydrozoa, Cnidaria). Zoologische Verhandelingen, Leiden, 323, 25–36.

    Google Scholar 

  • Boero, F., Bouillon, J., & Gravili, C. (2000). A survey of Zanclea, Halocoryne and Zanclella (Cnidaria, Hydrozoa, Anthomedusae, Zancleidae) with description of new species. Italian Journal of Zoology, 67, 93–124.

    Article  Google Scholar 

  • Bolton, T. F., & Graham, W. M. (2004). Morphological variation among populations of an invasive jellyfish. Marine Ecology Progress Series, 278, 125–139.

    Article  Google Scholar 

  • Boschma, H. (1948). The species problem in Millepora. Zoologische Verhandelingen, Leiden, 1, 1–115.

    Google Scholar 

  • Bouillon, J., & Boero, F. (2000). Synopsis of the families and genera of the hydromedusae of the world, with a list of worldwide species. Thalassia Salentina, 24, 47–296.

    Google Scholar 

  • Bouillon, J., Boero, F., & Fraschetti, S. (1991). The life cycle of Laodicea indica (Laodiceidae, Leptomedusae, Cnidaria). Hydrobiologia, 216(217), 151–157.

    Article  Google Scholar 

  • Bouillon, J., Medel, M. D., Pagès, F., Gili, J. M., Boero, F., & Gravili, C. (2004). Fauna of the Mediterranean Hydrozoa. Scientia Marina, 68(2), 1–449.

    Google Scholar 

  • Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P., & Campana, S. E. (2008). Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proceedings of the Royal Society B: Biological Sciences, 275, 1803–1809.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braverman, M. (1974). The cellular basis for colony form in Podocoryne carnea. American Zoologist, 14, 673–698.

    Article  Google Scholar 

  • Brewer, R. H., & Feingold, J. S. (1991). The effect of temperature on the benthic stages of Cyanea (Cnidaria, Scyphozoa), and their seasonal distribution in the Niantic River estuary, Connecticut. Journal of Experimental Marine Biology and Ecology, 152, 49–60.

    Article  Google Scholar 

  • Bumann, D., & Buss, L. W. (2008). Nutritional physiology and colony form in Podocoryna carnea (Cnidaria : Hydrozoa). Invertebrate Biology, 127(4), 368–380.

    Article  Google Scholar 

  • Calder, D. R. (1988). Shallow-water hydroids of Bermuda: the Athecatae. Life Sciences Contributions, 148, 1–107.

    Google Scholar 

  • Calder, D. R. (1991). Shallow-water hydroids of Bermuda: the thecatae, exclusive of Plumularioidea. Life Science Contributions Royal Ontario Museum, 154, 1–140.

    Google Scholar 

  • Calder, D. R. (1997). Shallow-water hydroids of Bermuda: superfamily Plumularioidea. Life Sciences Contributions, 161, 1–85.

    Google Scholar 

  • Cartwright, P., & Nawrocki, A. M. (2010). Character evolution in Hydrozoa (phylum Cnidaria). Integrative and Comparative Biology, 50(3), 456–472.

    Article  CAS  PubMed  Google Scholar 

  • Clark, W. C. (1976). The environment and the genotype in polymorphism. Zoological Journal of the Linnean Society, 58, 255–262.

    Article  Google Scholar 

  • Collins, A. G., & Daly, M. (2005). A new deepwater species of Stauromedusae, Lucernaria janetae (Cnidaria, Staurozoa, Lucernariidae), and a preliminary investigation of stauromedusan phylogeny based on nuclear and mitochondrial rDNA data. Biological Bulletin, 208(3), 221–230.

    Article  CAS  PubMed  Google Scholar 

  • Collins, A. G., Schuchert, P., Marques, A. C., Jankowski, T., Medina, M., & Schierwater, B. (2006). Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic Biology, 55(1), 97–115.

    Article  PubMed  Google Scholar 

  • Collins, A. G., Bentlage, B., Gillan, W. B., Lynn, T. H., Morandini, A. C., & Marques, A. C. (2011). Naming the Bonaire banded box jelly, Tamoya ohboya, n. sp. (Cnidaria: Cubozoa: Carybdeida: Tamoyidae). Zootaxa, 2753, 53–68.

    Google Scholar 

  • Cornelius, P. F. S. (1975). The hydroid species of Obelia (Coelenterata, Hydrozoa: Campanulariidae), with notes on the medusa stage. The Bulletin of the British Museum (Natural History), 5, 251–293.

    Google Scholar 

  • Cornelius, P. F. S. (1982). Hydroids and medusae of the family Campanulariidae recorded from the eastern North Atlantic, with a world synopsis of genera. Bulletin of the British Museum of Natural History (Zoology series), 42(2), 37–148.

    Google Scholar 

  • Cornelius, P. F. S. (1990a). Evolution in leptolid life-cycles (Cnidaria: Hydroida). Journal of Natural History, 24(3), 579–594.

    Article  Google Scholar 

  • Cornelius, P. F. S. (1990b). European Obelia (Cnidaria, Hydroida): systematics and identification. Journal of Natural History, 24, 535–578.

    Article  Google Scholar 

  • Cornelius, P. F. S. (1992). Medusa loss in leptolid Hydrozoa (Cnidaria), hydroid rafting, and abbreviated life-cycles among their remote-island faunae: an interim review. Scientia Marina, 56(2–3), 245–261.

    Google Scholar 

  • Cornelius, P. F. S. (1995). North-west European thecate hydroids and their medusae. Part 2. Sertulariidae to Campanulariidae. Synopses of the British Fauna New Series, 50, 1–386.

    Google Scholar 

  • Courtney, R., & Seymour, J. (2013). Seasonality in polyps of a tropical cubozoan: Alatina nr moderns. PLoS One, 8(7), e69369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha, A. F., Genzano, G. N., & Marques, A. C. (2015). Reassessment of morphological diagnostic characters and species boundaries requires taxonomical changes for the genus Orthopyxis L. Agassiz, 1862 (Campanulariidae, Hydrozoa) and some related campanulariids. PLoS One, 10(2), e0117553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • Dawson, M. N. (2003). Macro-morphological variation among cryptic species of the moon jellyfish Aurelia (Cnidaria, Scyphozoa). Marine Biology, 143, 369–379.

    Article  Google Scholar 

  • Dawson, M. N. (2005a). Morphological variation and systematics in the Scyphozoa: Mastigias (Rhizostomeae, Mastigiidae)—a golden unstandard? Hydrobiologia, 537, 185–206.

    Article  Google Scholar 

  • Dawson, M. N. (2005b). Five new subspecies of Mastigias from marine lakes, Palau, Micronesia. Journal of the Marine Biological Association of the United Kingdom, 85, 679–694.

    Article  Google Scholar 

  • Dawson, M. N. (2005c). Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa: Semaeostomeae: Cyaneidae) in south-eastern Australia. Invertebrate Systematics, 19, 361–370.

    Article  Google Scholar 

  • Dawson, M. N., & Jacobs, D. K. (2001). Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biological Bulletin, 200, 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Dawson, M. N., & Martin, L. E. (2001). Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia, 451, 259–273.

    Article  Google Scholar 

  • Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415.

    Article  Google Scholar 

  • De Weerdt, W. H. (1981). Transplantation experiments with Caribbean Millepora species (Hydrozoa, Coelenterata), including some ecological observations on growth forms. Bijdragen tot de Dierkunde, 51, 1–19.

    Google Scholar 

  • De Weerdt, W. H. (1984). Taxonomic characters in Caribbean Millepora species (Hydrozoa, Coelenterata). Bijdragen tot de Dierkunde, 54, 243–262.

    Google Scholar 

  • Dudgeon, S. R., & Buss, L. W. (1996). Growing with the flow: on the maintenance and malleability of colony form in the hydroid Hydractinia. The American Naturalist, 147(5), 667–691.

    Article  Google Scholar 

  • Dunn, C. W., & Wagner, G. P. (2006). The evolution of colony-level development in the Siphonophora (Cnidaria: Hydrozoa). Development Genes and Evolution, 216, 743–754.

    Article  PubMed  Google Scholar 

  • Forsman, Z. H., Barshis, D. J., Hunter, C. L., & Toonen, R. J. (2009). Shape-shifting corals: molecular markers show morphology is evolutionary plastic in Porites. BMC Evolutionary Biology, 9, 45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fritz, G. B., Pfannkuchen, M., Reuner, A., Schill, R. O., & Brümmer, F. (2009). Craspedacusta sowerbii, Lankester 1880—population dispersal analysis using COI and ITS sequences. Journal of Limnology, 68(1), 46–52.

    Article  Google Scholar 

  • Galea, H. R., & Leclère, L. (2007). On some morphologically aberrant, auto-epizootic forms of Plumularia setacea (Linnaeus, 1758) (Cnidaria: Hydrozoa) from southern Chile. Zootaxa, 1484, 39–49.

    Google Scholar 

  • Galea, H. R., Häussermann, V., & Försterra, G. (2009). New additions to the hydroids (Cnidaria: Hydrozoa) from the fjords region of southern Chile. Zootaxa, 2019, 1–28.

    Google Scholar 

  • Gershwin, L. A. (1999). Clonal and population variation in jellyfish symmetry. Journal of the Marine Biological Association of the United Kingdom, 79, 993–1000.

    Article  Google Scholar 

  • Gershwin, L. A. (2001). Systematics and biogeography of the jellyfish Aurelia labiata (Cnidaria: Schypozoa). Biological Bulletin, 201, 104–119.

    Article  CAS  PubMed  Google Scholar 

  • Gibbons, M. J., Janson, L. A., Ismail, A., & Samaai, T. (2009). Life cycle strategy, species richness and distribution in marine Hydrozoa (Cnidaria: Hydrozoa). Journal of Biogeography, 37, 441–448.

    Article  Google Scholar 

  • Gili, J., & Hughes, R. G. (1995). The ecology of marine benthic hydroids. Oceanography and Marine Biology: An Annual Review, 33, 351–426.

    Google Scholar 

  • Gomez-Mestre, I., & Buchholz, D. R. (2006). Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences, 103(50), 19021–19026.

    Article  CAS  Google Scholar 

  • Govindarajan, A. F., Halanych, K. M., & Cunningham, C. W. (2005). Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Marine Biology, 146, 213–222.

    Article  CAS  Google Scholar 

  • Gravier-Bonnet, N. (2004). Hydroid nematophores: morphological, structural and behavioural variety from old knowledge and new data. Hydrobiologia, 530(531), 199–208.

    Google Scholar 

  • Gravier-Bonnet, N. (2008). Polymorphism in hydroids: the extensible polyp of Halecium halecinum (Cnidaria: Hydrozoa: Haleciidae). Journal of the Marine Biological Association of the United Kingdom, 88(8), 1731–1736.

    Article  Google Scholar 

  • Griffith, K. A., & Newberry, A. T. (2008). Effect of flow regime on the morphology of a colonial cnidarian. Invertebrate Biology, 127(3), 259–264.

    Article  Google Scholar 

  • Harvell, C. D. (1994). The evolution of polymorphism in colonial invertebrates and social insects. The Quarterly Review of Biology, 69(2), 155–185.

    Article  Google Scholar 

  • Hirano, Y. M. (1997). A review of a supposedly circumboreal species of stauromedusa, Haliclystus auricula (Rathke, 1806). Proceedings of the 6th International Conference on Coelenterate Biology, 247–252.

  • Holland, B. S., Dawson, M. N., Crow, G. L., & Hofmann, D. K. (2004). Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Marine Biology, 145, 1119–1128.

    Article  Google Scholar 

  • Holst, S., & Jarms, G. (2010). Effects of low salinity on settlement and strobilation of Scyphozoa (Cnidaria): is the lion’s mane Cyanea capillata (L.) able to reproduce in the brackish Baltic Sea? Hydrobiologia, 645, 53–68.

    Article  CAS  Google Scholar 

  • Holst, S., Sötje, I., Tiemann, H., & Jarms, G. (2007). Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Marine Biology, 151, 1695–1710.

    Article  Google Scholar 

  • Hughes, R. G. (1986). Differences in the growth, form and life history of Plumularia setacea (Ellis and Solander) (Hydrozoa: Plumulariidae) in two contrasting habitats. Proceedings of the Royal Society of London Biological Sciences, 228(1251), 113–125.

    Article  Google Scholar 

  • Hughes, R. N. (1989). A functional biology of clonal animals. London: Chapman and Hall.

    Google Scholar 

  • Hughes, R. N. (2005). Lessons in modularity: the evolutionary ecology of colonial invertebrates. Scientia Marina, 69(1), 169–179.

    Article  Google Scholar 

  • Kaandorp, J. A. (1999). Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Marine Biology, 134, 295–306.

    Article  Google Scholar 

  • Kawamura, M., & Kubota, S. (2008). Influences of temperature and salinity on asexual budding by hydromedusa Proboscidactyla ornata (Cnidaria: Hydrozoa: Proboscidactylidae). Journal of the Marine Biological Association of the United Kingdom, 88(8), 1601–1606.

    Article  Google Scholar 

  • Kayal, E., Roure, B., Philippe, H., Collins, A. G., & Lavrov, D. V. (2013). Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evolutionary Biology, 13, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosevich, I. A. (2006). Changes in the patterning of a hydroid colony. Zoology, 109, 244–259.

    Article  PubMed  Google Scholar 

  • Leclère, L., Schuchert, P., & Manuel, M. (2007). Phylogeny of the Plumularioidea (Hydrozoa, Leptothecata): evolution of colonial organisation and life cycle. Zoologica Scripta, 36, 371–394.

    Article  Google Scholar 

  • Leclère, L., Schuchert, P., Cruaud, C., Couloux, A., & Manuel, M. (2009). Molecular phylogenetics of Thecata (Hydrozoa, Cnidaria) reveals long-term maintenance of life history traits despite high frequency of recent character changes. Systematic Biology, 58(5), 509–526.

    Article  PubMed  CAS  Google Scholar 

  • Lindner, A., & Migotto, A. E. (2002). The life cycle of Clytia linearis and Clytia noliformis: metagenic campanulariids (Cnidaria: Hydrozoa) with contrasting polyp and medusa stages. Journal of the Marine Biological Association of the United Kingdom, 82, 541–553.

    Article  Google Scholar 

  • Lindner, A., Govindarajan, A.F., & Migotto, A.E. (2011). Cryptic species, life cycles, and the phylogeny of Clytia (Cnidaria: Hydrozoa: Campanulariidae). Zootaxa, 2980, 23–36.

  • Lucas, C. H. (2001). Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia, 451, 229–246.

    Article  Google Scholar 

  • Ma, X., & Purcell, J. E. (2005). Effects of temperature, salinity and predators on mortality of and colonization by the invasive hydrozoan Moerisia lyonsi. Marine Biology, 147, 215–224.

    Article  Google Scholar 

  • Marfenin, N. N. (1997). Adaptation capabilities of marine organisms. Hydrobiologia, 355, 153–158.

    Article  Google Scholar 

  • Maronna, M. M., Miranda, T. P., Peña Cantero, A. L., Barbeitos, M. S., & Marques, A. C. (2016). Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa). Scientific Reports, 6, 18075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques, A. C. (1995). Eudendrium pocaruquarum n. sp. (Hydrozoa, Eudendriidae) from the southeastern coast of Brazil, with remarks on taxonomic approaches to the family Eudendriidae. Contributions to Zoology, 65, 35–40.

    Google Scholar 

  • Marques, A. C. (1996). A critical analysis of a cladistic study of the genus Eudendrium (Cnidaria: Hydrozoa), with some comments on the family Eudendriidae. Journal of Comparative Biology, 1(3/4), 153–162.

    Google Scholar 

  • Marques, A. C., & Collins, A. G. (2004). Cladistic analysis of Medusozoa and cnidarians evolution. Invertebrate Biology, 123(1), 23–42.

    Article  Google Scholar 

  • Mayer, A. G. (1910). Medusae of the world (I, Vol. The hydromedusae). Washington: Carnegie Institution of Washington.

    Google Scholar 

  • Mayr, E. (1964). Systematics and the origin of species from the viewpoint of a zoologist (2nd ed.). New York: Dover Publications.

    Google Scholar 

  • Mayr, E. (1973). Animal species and evolution (5th ed.). Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Mayr, E. (1976). Principles of systematic zoology. New Delhi: Tata McGraw-Hill Publishing Company LTD.

    Google Scholar 

  • McFadden, C. S., McFarland, M. J., & Buss, L. W. (1984). Biology of Hydractiniid hydroids. 1. Colony ontogeny in Hydractinia echinata (Flemming). Biological Bulletin, 166, 54–67.

    Article  Google Scholar 

  • Menezes, N. M., Neves, E. G., Barros, F., Kikuchi, R. K. P., & Johnsson, R. (2013). Intracolonial variation in Siderastrea de Blainville, 1830 (Anthozoa, Scleractinia): taxonomy under challenging morphological constraints. Biota Neotropica, 13(1), 108–116.

    Article  Google Scholar 

  • Meroz-Fine, E., Brickner, I., Loya, Y., & Ilan, M. (2003). The hydrozoan coral Millepora dichotoma: speciation or phenotypic plasticity? Marine Biology, 143, 1175–1183.

    Article  Google Scholar 

  • Miglietta, M. P., & Cunningham, C. W. (2012). Evolution of life cycle, colony morphology, and host specificity in the family Hydractiniidae (Hydrozoa, Cnidaria). Evolution, 66(12), 3876–3901.

    Article  PubMed  Google Scholar 

  • Miglietta, M. P., Piraino, S., Kubota, S., & Schuchert, P. (2007). Species in the genus Turritopsis (Cnidaria, Hydrozoa): a molecular evaluation. Journal of Zoological Systematics and Evolutionary Research, 45(1), 11–19.

    Article  Google Scholar 

  • Miglietta, M. P., Schuchert, P., & Cunningham, C. W. (2009). Reconciling genealogical and morphological species in a worldwide study of the family Hydractiniidae (Cnidaria, Hydrozoa). Zoologica Scripta, 38, 403–430.

    Article  Google Scholar 

  • Millard, N. A. H. (1975). Monograph on the Hydroida of Southern Africa. Annals of the South African Museum, 68, 1–513.

    Google Scholar 

  • Mills, C. E., Marques, A. C., Migotto, A. E., Calder, D. R., & Hand, C. (2007). Hydrozoa: polyps, hydromedusae, and Siphonophora. In J. T. Carlton (Ed.), The Light and Smith manual: intertidal invertebrates from Central California to Oregon (pp. 118–168). California: University of California Press.

    Google Scholar 

  • Miranda, L. S., Morandini, A. C., & Marques, A. C. (2009). Taxonomic review of Haliclystus antarcticus Pfeffer, 1889 (Stauromedusae, Staurozoa, Cnidaria), with remarks on the genus Haliclystus Clark, 1863. Polar Biology, 32, 1507–1519.

    Article  Google Scholar 

  • Miranda, L. S., Collins, A. G., & Marques, A. C. (2010). Molecules clarify a cnidarian life cycle—the “Hydrozoan” Microhydrula limopsicola is an early stage of the Staurozoan Haliclystus antarcticus. PLoS One, 5(4), e10182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morandini, A. C., & Marques, A. C. (2010). Revision of the genus Chrysaora Péron & Lesueur, 1810 (Cnidaria: Scyphozoa). Zootaxa, 2464, 1–97.

    Google Scholar 

  • Moura, C. J., Harris, D. J., Cunha, M. R., & Rogers, A. D. (2008). DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zoologica Scripta, 37, 93–108.

    Google Scholar 

  • Moura, C. J., Cunha, M. R., Porteiro, F. M., & Rogers, A. D. (2011). Polyphyly and cryptic diversity in the hydrozoan families Lafoeidae and Hebellidae (Cnidaria: Hydrozoa). Invertebrate Systematics, 25, 454–470.

    Article  Google Scholar 

  • Moura, C. J., Cunha, M. R., Porteiro, F. M., Yesson, C., & Rogers, A. D. (2012). Evolution of Nemertesia hydroids (Cnidaria: Hydrozoa, Plumulariidae) from the shallow and deep waters of the NE Atlantic and western Mediterranean. Zoologica Scripta, 41, 79–96.

    Article  Google Scholar 

  • Namikawa, H., Mawatari, S. F., & Calder, D. R. (1992). Role of the tentaculozooids of the polymorphic hydroid Stylactaria conchicola (Yamada) in interactions with some epifaunal space competitors. Journal of Experimental Marine Biology and Ecology, 162, 65–75.

    Article  Google Scholar 

  • Naumov, D. V. (1969). Hydroids and hydromedusae of the USSR. Jerusalem: Israel Program for Scientific Translations.

    Google Scholar 

  • Navas-Pereira, D. (1984). On the morphological variability of Phialucium carolinae (Mayer, 1900) (Leptomedusae, Phialuciidae). Dusenia, 14, 51–53.

    Google Scholar 

  • Nawroth, J. C., Feitl, K. E., Colin, P., Costello, J. H., & Dabiri, J. O. (2010). Phenotypic plasticity in juvenile jellyfish medusa facilitates effective animal-fluid interaction. Biology Letters, 6, 389–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira, M., Jr., & Haddad, M. A. (2006). Variações morfológicas em Olindias sambaquiensis (Cnidaria, Hydrozoa, Limnomedusae) no litoral de Guaratuba, Paraná, Brasil. Revista Brasileira de Zoologia, 23, 879–882.

    Article  Google Scholar 

  • Ong, C. W., Reimer, J. D., & Todd, P. A. (2013). Morphologically plastic responses to shading in the zoanthids Zoanthus sansibaricus and Palythoa tuberculosa. Marine Biology, 160, 1053–1064.

    Article  Google Scholar 

  • Östman, C. (1982). Nematocysts and taxonomy in Laomedea, Gonothyraea and Obelia (Hydrozoa, Campanulariidae). Zoologica Scripta, 11(4), 227–241.

    Article  Google Scholar 

  • Östman, C. (1987). New techniques and old problems in hydrozoan systematics. In J. Bouillon, F. Boero, F. Cicogna, & P. F. S. Cornelius (Eds.), Modern trends in the systematics, ecology and evolution of hydroids and hydromedusae (pp. 67–82). Oxford: Oxford University Press.

    Google Scholar 

  • Padial, J. M., Miralles, A., Riva, I. D., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palumbi, S. R. (1992). Marine speciation on a small planet. Trends in Ecology and Evolution, 7(4), 114–118.

    Article  CAS  PubMed  Google Scholar 

  • Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., & Moczek, A. P. (2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology and Evolution, 25(8), 459–467.

    Article  PubMed  Google Scholar 

  • Pigliucci, M. (2007). Do we need an extended evolutionary synthesis? Evolution, 61(12), 2743–2749.

    Article  PubMed  Google Scholar 

  • Piraino, S., Boero, F., Aeschbach, B., & Schmid, V. (1996). Reversing the life cycle: medusa transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biological Bulletin, 190, 302–312.

    Article  Google Scholar 

  • Piraino, S., De Vito, D., Schmich, J., Bouillon, J., & Boero, F. (2004). Reverse development in Cnidaria. Canadian Journal of Zoology, 82, 1748–1754.

    Article  Google Scholar 

  • Price, T. D., Qvarnström, A., & Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London Biological Sciences, 270, 1433–1440.

    Article  Google Scholar 

  • Pugh, P. R. (1999). Siphonophorae. In D. Boltovskoy (Ed.), South Atlantic zooplankton (pp. 467–511). Leiden: Backhuys Publishers.

    Google Scholar 

  • Purcell, J. E. (2007). Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Marine Ecology Progress Series, 348, 183–196.

    Article  Google Scholar 

  • Purcell, J. E., White, J. R., Nemazie, D. A., & Wright, D. A. (1999). Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series, 180, 187–196.

    Article  Google Scholar 

  • Purcell, J. E., Atienza, D., Fuentes, V., Olariaga, A., Tilves, U., Colahan, C., & Gili, J. M. (2012). Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia, 690, 169–180.

    Article  CAS  Google Scholar 

  • R CORE TEAM. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 16 Feb 2016.

  • Ralph, P. M. (1956). Variation in Obelia geniculata (Linnaeus, 1758) and Silicularia bilabiata (Coughtrey, 1875) (Hydroida, F. Campanulariidae). Transactions of the Royal Society of New Zealand, 84(2), 279–296.

    Google Scholar 

  • Russell, F. S. (1953). The medusae of the British Isles. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schierwater, B., & Ender, A. (2000). Sarsia marii n. sp. (Hydrozoa, Anthomedusae) and the use of 16S rDNA sequences for unpuzzling systematic relationships in Hydrozoa. Scientia Marina, 64(1), 117–122.

    Article  Google Scholar 

  • Schierwater, B., & Hadrys, H. (1998). Environmental factors and metagenesis in the hydroid Eleutheria dichotoma. Invertebrate Reproduction and Development, 34(2–3), 139–148.

    Article  Google Scholar 

  • Schlichting, C. D. (2004). The role of phenotypic plasticity in diversification. In T. J. DeWitt & S. M. Scheiner (Eds.), Phenotypic plasticity, functional and conceptual approaches (pp. 191–200). New York: Oxford University Press.

    Google Scholar 

  • Schroth, W., Jarms, G., Streit, B., & Schierwater, B. (2002). Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evolutionary Biology, 2, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuchert, P. (2004). Revision of the European athecate hydroids and their medusa (Hydrozoa, Cnidaria): families Oceanidae and Pachycordylidae. Revue Suisse de Zoologie, 111(2), 315–369.

    Article  Google Scholar 

  • Schuchert, P. (2005). Species boundaries in the hydrozoan genus Coryne. Molecular Phylogenetics and Evolution, 36, 194–199.

    Article  PubMed  Google Scholar 

  • Schuchert, P. (2008). The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Filifera part 3. Revue Suisse de Zoologie, 115(2), 221–302.

    Article  Google Scholar 

  • Schuchert, P. (2014). High genetic diversity in the hydroid Plumularia setacea: a multitude of cryptic species or extensive population subdivision? Molecular Phylogenetics and Evolution, 76, 1–9.

    Article  PubMed  Google Scholar 

  • Schwander, T., & Leimar, O. (2011). Genes as leaders and followers in evolution. Trends in Ecology and Evolution, 26(3), 143–151.

    Article  PubMed  Google Scholar 

  • Silva, C. A., Aguirre, S. G., & Arce, M. G. M. (2003). Variaciones morfológicas en Blackfordia virginica (Hydroidomedusae: Blackfordiidae) en lagunas costeras de Chiapas, México. Revista de Biología Tropical, 51(2), 409–412.

    Google Scholar 

  • Silveira, F. L., & Migotto, A. E. (1991). The variation of Halocordyle disticha (Cnidaria, Athecata) from the Brazilian coast: an environmental indicator species? Hydrobiologia, 216(217), 437–442.

    Article  Google Scholar 

  • Stampar, S. N., Silveira, F. L., & Morandini, A. C. (2008). Food resources influencing the asexual reproductive cycle of coronate Scyphozoa. Cahiers de Biologie Marine, 49, 247–252.

    Google Scholar 

  • Stefani, R. (1959). Sulla variabilità ecologica di un idrozoo (Campanularia caliculata Hincks). Estratto dal Bollettino di Zoologia, 26(2), 115–120.

    Article  Google Scholar 

  • Straehler-Pohl, I., & Jarms, G. (2011). Morphology and life cycle of Carybdea morandinii, sp. nov. (Cnidaria), a cubozoan with zooxanthellae and peculiar polyp anatomy. Zootaxa, 2755, 36–56.

    Google Scholar 

  • Thein, H., Ikeda, H., & Uye, S. (2013). Ecophysiological characteristics of podocysts in Chrysaora pacifica (Goette) and Cyanea nozakii Kishinouye (Cnidaria: Scyphozoa: Semaeostomeae): effects of environmental factors on their production, dormancy and excystment. Journal of Experimental Marine Biology and Ecology, 446, 151–158.

    Article  Google Scholar 

  • Thorpe, J. P., Ryland, J. S., Cornelius, P. F. S., & Beardmore, J. A. (1992). Genetic divergence between branched and unbranched forms of the thecate hydroid Aglaophenia pluma. Journal of the Marine Biological Association of the United Kingdom, 72(4), 887–894.

    Article  Google Scholar 

  • Van Winkle, D. H., Longnecker, K., & Blackstone, N. W. (2000). The effects of hermit crabs on hydractiniid hydroids. Marine Ecology, 21(1), 55–67.

    Article  Google Scholar 

  • Vogt, K. S. C., Geddes, G. C., Bross, L. S., & Blackstone, N. W. (2008). Physiological characterization of stolon regression in a colonial hydroid. The Journal of Experimental Biology, 211, 731–740.

    Article  PubMed  Google Scholar 

  • Vogt, K. S. C., Harmat, K. L., Coulombe, H. L., Bross, L. S., & Blackstone, N. W. (2011). Causes and consequences of stolon regression in a colonial hydroid. The Journal of Experimental Biology, 214, 3197–3205.

    Article  CAS  PubMed  Google Scholar 

  • West-Eberhard, M. J. (1986). Alternative adaptations, speciation, and phylogeny (A Review). Proceedings of the National Academy of Sciences, 83, 1388–1392.

    Article  CAS  Google Scholar 

  • West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20, 249–278.

    Article  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.

    Google Scholar 

  • West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences, 102(1), 6543–6549.

    Article  CAS  Google Scholar 

  • Widmer, C. L. (2004). The hydroid and early medusa stages of Mitrocoma cellularia (Hydrozoa, Mitrocomidae). Marine Biology, 145, 315–321.

    Article  Google Scholar 

  • Zagal, C. J. (2008). Morphological abnormalities in the stauromedusa Haliclystus auricula (Cnidaria) and their possible causes. Journal of the Marine Biological Association of the United Kingdom, 88(2), 259–262.

    Article  Google Scholar 

  • Zamponi, M. O., & Genzano, G. N. (1989). Variaciones de algunas estructuras de valor taxonómico en la familia Geryonidae (Cnidaria; Trachymmedusae) y su relación con la temperature y salinidad. Iheringia Série Zoologia, 69, 31–47.

    Google Scholar 

  • Zamponi, M. O., & Girola, C. V. (1989). Variaciones morfológicas y estructurales de los juveniles de Olindias sambaquiensis Müller, 1861 (Cnidaria, Limnomedusae, Olindiidae). Iheringia Séria Zoologia, 69, 19–30.

    Google Scholar 

Download references

Acknowledgments

The authors thank all their colleagues from Laboratory of Marine Evolution (LEM) and Laboratory of Molecular Evolution (LEMol) of the University of São Paulo, Brazil, for their valuable help and support during the course of this study. We are also very grateful to P.K. Maruyama and two anonymous reviewers for their helpful comments and suggestions on previous versions of this manuscript. This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (AFC, ACM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant no. 490348/2006-8, 562143/2010-6, 563106/2010-7, 477156/2011-8, 305805/2013-4, 445444/2014-2—ACM) and São Paulo Research Foundation (FAPESP) (grant no. 2006/56211-6—MMM, 2010/52324-6, 2011/50242-5, 2013/50484-4—ACM, 2011/22260-9, 2013/25874-3—AFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda F. Cunha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

OnlineResource 1

(PDF 99.8 kb)

OnlineResource 2

(PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, A.F., Maronna, M.M. & Marques, A.C. Variability on microevolutionary and macroevolutionary scales: a review on patterns of morphological variation in Cnidaria Medusozoa. Org Divers Evol 16, 431–442 (2016). https://doi.org/10.1007/s13127-016-0276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-016-0276-4

Keywords

Navigation