Skip to main content
Log in

Whole-genome resequencing analysis of 20 Micro-pigs

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Miniature pigs have been increasingly used as mammalian model animals for biomedical research because of their similarity to human beings in terms of their metabolic features and proportional organ sizes. However, despite their importance, there is a severe lack of genome-wide studies on miniature pigs.

Objective

In this study, we performed whole-genome sequencing analysis of 20 Micro-pigs obtained from Medi Kinetics to elucidate their genomic characteristics.

Results

Approximately 595 gigabase pairs (Gb) of sequence reads were generated to be mapped to the swine reference genome assembly (Sus scrofa 10.2); on average, the sequence reads covered 99.15% of the reference genome at an average of 9.6-fold coverage. We detected a total of 19,518,548 SNPs, of which 8.7% were found to be novel. With further annotation of all of the SNPs, we retrieved 144,507 nonsynonymous SNPs (nsSNPs); of these, 5968 were found in all 20 individuals used in this study. SIFT prediction for these SNPs identified that 812 nsSNPs in 402 genes were deleterious. Among these 402 genes, we identified some genes that could potentially affect traits of interest in Micro-pigs, such as RHEB and FRAS1. Furthermore, we performed runs of homozygosity analysis to locate potential selection signatures in the genome, detecting several loci that might be involved in phenotypic characteristics in Micro-pigs, such as MSTN, GDF5, and GDF11.

Conclusion

In this study, we identified numerous nsSNPs that could be used as candidate genetic markers with involvement in traits of interest. Furthermore, we detected putative selection footprints that might be associated with recent selection applied to miniature pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The raw sequencing data are available from the corresponding authors upon request.

References

  • Bianco E, Nevado B, Ramos-Onsins SE, Perez-Enciso M (2015) A deep catalog of autosomal single nucleotIDe variation in the pig. PLoS One 10:e0118867

    PubMed  PubMed Central  Google Scholar 

  • Bokonyi S (1974) History of domestic mammals in Central and Eastern Europe

  • Bosse M, Megens HJ, Madsen O, Paudel Y, Frantz LA, Schook LB, Crooijmans RP, Groenen MA (2012) Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet 8:e1003100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buxton P, Edwards C, Archer CW, Francis-West P (2001) Growth/differentiation factor-5 (GDF-5) and skeletal development. J Bone Joint Surg Am 83-A(Suppl 1):S23–S30

    Google Scholar 

  • Chen J, Long F (2014) mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis. Development 141:2848–2854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Baas TJ, Mabry JW, Koehler KJ (2003) Genetic correlations between lean growth and litter traits in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J Anim Sci 81:1700–1705

    CAS  PubMed  Google Scholar 

  • Chiotaki R, Petrou P, Giakoumaki E, Pavlakis E, Sitaru C, Chalepakis G (2007) Spatiotemporal distribution of Fras1/Frem proteins during mouse embryonic development. Gene Expr Patterns 7:381–388

    CAS  PubMed  Google Scholar 

  • Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, Lu X (2012) Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front Genet 3:35

    PubMed  PubMed Central  Google Scholar 

  • D'Antonio M, De Meo PDO, Castrignanò T, Erbacci G, Pallocca M, Pesole GODESSA (2014) A high performance analysis pipeline for Ultra Deep targeted Exome Sequencing data. In: 2014 International conference on high performance computing and simulation (HPCS) IEEE, pp 608–615

  • Dalin MG, Engstrom PG, Ivarsson EG, Unneberg P, Light S, Schaufelberger M, Gilljam T, Andersson B, Bergo MO (2017) Massive parallel sequencing questions the pathogenic role of missense variants in dilated cardiomyopathy. Int J Cardiol 228:742–748

    PubMed  Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drake A, Fraser D, Weary DM (2008) Parent–offspring resource allocation in domestic pigs. Behav Ecol Sociobiol 62:309–319

    Google Scholar 

  • Fang X, Mou Y, Huang Z, Li Y, Han L, Zhang Y, Feng Y, Chen Y, Jiang X, Zhao W et al (2012) The sequence and analysis of a Chinese pig genome. Gigascience 1:16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Firtina C, Alkan C (2016) On genomic repeats and reproducibility. Bioinformatics 32:2243–2247

    CAS  PubMed  Google Scholar 

  • Fischer D, Laiho A, Gyenesei A, Sironen A (2015) Identification of reproduction-related gene polymorphisms using whole transcriptome sequencing in the large white pig population. G3 (Bethesda) 5:1351–1360

    CAS  Google Scholar 

  • Goodman CA (2013) The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. In: Reviews of Physiology, Biochemistry and Pharmacology 166. Springer, pp 43–95

  • Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V (2015) Efficacy of the porcine species in biomedical research. Front Genet 6:293

    PubMed  PubMed Central  Google Scholar 

  • He D, Ma J, Long K, Wang X, Li X, Jiang A, Li M (2017) Differential expression of genes related to glucose metabolism in domesticated pigs and wild boar. Biosci Biotechnol Biochem 81:1478–1483

    CAS  PubMed  Google Scholar 

  • Hickford J, Forrest R, Zhou H, Fang Q, Han J, Frampton C, Horrell A (2010) Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Anim Genet 41:64–72

    CAS  PubMed  Google Scholar 

  • Hill EW, Gu J, Eivers SS, Fonseca RG, McGivney BA, Govindarajan P, Orr N, Katz LM, MacHugh DE (2010) A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One 5:e8645

    PubMed  PubMed Central  Google Scholar 

  • Hoffman JI, Simpson F, DavID P, Rijks JM, Kuiken T, Thorne MA, Lacy RC, Dasmahapatra KK (2014) High-throughput sequencing reveals inbreeding depression in a natural population. Proc Natl Acad Sci USA 111:3775–3780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howrigan DP, Simonson MA, Davies G, Harris SE, Tenesa A, Starr JM, Liewald DC, Deary IJ, McRae A, Wright MJ (2016) Genome-wIDe autozygosity is associated with lower general cognitive ability. Mol Psychiatry 21:837

    CAS  PubMed  Google Scholar 

  • Klymiuk N, Aigner B, Brem G, Wolf E (2010) Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 77:209–221

    CAS  PubMed  Google Scholar 

  • Lee KT, Chung WH, Lee SY, Choi JW, Kim J, Lim D, Lee S, Jang GW, Kim B, Choy YH et al (2013) Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genom 14:519

    CAS  Google Scholar 

  • Lemes RB, Nunes K, Carnavalli JEP, Kimura L, Mingroni-Netto RC, Meyer D, Otto PA (2018) Inbreeding estimates in human populations: Applying new approaches to an admixed Brazilian isolate. PLoS One 13:e0196360

    PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Liu W, Ghouri F, Yu H, Li X, Yu S, Shahid MQ, Liu X (2017) Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes. PLoS One 12:e0180662

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li F, Kong X, Tan B, Li Y, Duan Y, Blachier F, Hu CA, Yin Y (2015) Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages. PLoS One 10:e0138277

    PubMed  PubMed Central  Google Scholar 

  • Martin U, Winkler M, Id M, Radeke H, Arseniev L, Takeuchi Y, Simon A, Patience C, Haverich A, Steinhoff G (2000) Productive infection of primary human endothelial cells by pig endogenous retrovirus (PERV). Xenotransplantation 7:138–142

    CAS  PubMed  Google Scholar 

  • McCormick RF, Truong SK, Mullet JE (2015) RIG: Recalibration and interrelation of genomic sequence data with the GATK. G3 (Bethesda) 5:655

    Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1999) Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 22:260–264

    CAS  PubMed  Google Scholar 

  • McPherron AC, Lee S-J (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Investig 109:595–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merks JW, Mathur PK, Knol EF (2012) New phenotypes for new breeding goals in pigs. Animal 6:535–543

    CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: Predicting amino acID changes that affect protein function. Nucleic AcIDs Res 31:3812–3814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunoya T, Shibuya K, Saitoh T, Yazawa H, Nakamura K, Baba Y, Hirai T (2007) Use of miniature pig for biomedical research, with reference to toxicologic studies. J Toxicol Pathol 20:125–132

    CAS  Google Scholar 

  • Olsen HG, Knutsen TM, Lewandowska-Sabat AM, Grove H, Nome T, Svendsen M, Arnyasi M, Sodeland M, Sundsaasen KK, Dahl SR et al (2016) Fine mapping of a QTL on bovine chromosome 6 using imputed full sequence data suggests a key role for the group-specific component (GC) gene in clinical mastitis and milk production. Genet Sel Evol 48:79

    PubMed  PubMed Central  Google Scholar 

  • Petersen B, Carnwath JW, Niemann H (2009) The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 32:91–105

    PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purfield DC, McParland S, Wall E, Berry DP (2017) The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS One 12:e0176780

    PubMed  PubMed Central  Google Scholar 

  • Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D (2015) Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5:14435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samorodnitsky E, Datta J, Jewell BM, Hagopian R, Miya J, Wing MR, Damodaran S, Lippus JM, Reeser JW, Bhatt D et al (2015) Comparison of custom capture for targeted next-generation DNA sequencing. J Mol Diagn 17:64–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sellick GS, Pitchford WS, Morris C, Cullen N, Crawford A, Raadsma H, Bottema C (2007) Effect of myostatin F94L on carcass yield in cattle. Anim Genet 38:440–446

    CAS  PubMed  Google Scholar 

  • Smith AC, Swindle MM (2006) Preparation of swine for the laboratory. ILAR J 47:358–363

    CAS  PubMed  Google Scholar 

  • Suh J, Eom JH, Kim NK, Woo KM, Baek JH, Ryoo HM, Lee SJ, Lee YS (2019) Growth differentiation factor 11 locally controls anterior–posterior patterning of the axial skeleton. J Cell Physiol

  • Suryawan A, Davis TA (2010) The abundance and activation of mTORC1 regulators in skeletal muscle of neonatal pigs are modulated by insulin, amino acids, and age. J Appl Physiol (1985) 109:1448–1454

    CAS  PubMed Central  Google Scholar 

  • Swindle M, Makin A, Herron A, Clubb F Jr, Frazier K (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49:344–356

    CAS  PubMed  Google Scholar 

  • Szpiech ZA, Xu J, Pemberton TJ, Peng W, Zöllner S, Rosenberg NA, Li JZ (2013) Long runs of homozygosity are enriched for deleterious variation. Am J Hum Genet 93:90–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    PubMed  PubMed Central  Google Scholar 

  • van Andel TR, Meyer RS, Aflitos SA, Carney JA, Veltman MA, Copetti D, Flowers JM, Havinga RM, Maat H, Purugganan MD et al (2016) Tracing ancestor rice of Suriname Maroons back to its African origin. Nat Plants 2:16149

    PubMed  Google Scholar 

  • Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J et al (2013) From FastQ data to high confIDence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinform 43:11

    Google Scholar 

  • Vodicka P, Smetana K Jr, Dvorankova B, Emerick T, Xu YZ, Ourednik J, Ourednik V, Motlik J (2005) The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci 1049:161–171

    PubMed  Google Scholar 

  • Vrontou S, Petrou P, Meyer BI, Galanopoulos VK, Imai K, Yanagi M, Chowdhury K, Scambler PJ, Chalepakis G (2003) Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice. Nat Genet 34:209–214

    CAS  PubMed  Google Scholar 

  • Wang X, Liu J, Zhou G, Guo J, Yan H, Niu Y, Li Y, Yuan C, Geng R, Lan X et al (2016) Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci Rep 6:38932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie R, Shi L, Liu J, Deng T, Wang L, Liu Y, Zhao F (2019) Genome-Wide Scan for Runs of Homozygosity Identifies Candidate Genes in Three Pig Breeds. Animals 9:518

    PubMed Central  Google Scholar 

  • Xu Z, Sun H, Zhang Z, Zhao Q, Olasege BS, Li Q, Yue Y, Ma P, Zhang X, Wang Q et al (2019) Assessment of Autozygosity Derived From Runs of Homozygosity in Jinhua Pigs Disclosed by Sequencing Data. Front Genet 10:274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zook JM, Samarov D, McDaniel J, Sen SK, Salit M (2012) Synthetic spike-in standards improve run-specific systematic error analysis for DNA and RNA sequencing. PLoS One 7:e41356

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Core Technology Development Program (10049112, Development of the Validation System for Efficacy Studies using Mini Pigs) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and 2016 Research Grant from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Woo Choi, Kyung-Soo Kang or Yong-Min Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

All experiments and all its procedures were carried out in accordance with the regulation approved by the Medi Kinetics Company (Medi Kinetics Company’s Institutional Animal Care and Use Committee).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, DH., Hwang, NH., Chung, WH. et al. Whole-genome resequencing analysis of 20 Micro-pigs. Genes Genom 42, 263–272 (2020). https://doi.org/10.1007/s13258-019-00891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00891-x

Keywords

Navigation