Skip to main content
Log in

Novel Drug Therapeutics in Celiac Disease: A Pipeline Review

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Celiac disease (CeD) is a chronic, autoimmune systemic disorder triggered by the ingestion of gluten, a protein found in foods such as wheat, rye, and barley. The only effective treatment for CeD is complete removal of gluten from the diet. A strict gluten-free diet (GFD) results in symptomatic, serologic, and histologic remission in most patients. However, GFD may fail to induce clinical or histologic improvement and some patients may alternatively have difficulty strictly adhering to the GFD for other reasons. Despite this, there are currently no FDA-approved drugs for the treatment of CeD. The complex pathogenic process of CeD is becoming increasingly studied and better understood, enabling the identification of various targets for future therapies. Mechanisms under evaluation include probiotics, digestion of peptides, gluten sensitization, tight junction modulation, deamidation, and immune targets. Multiple investigational drugs are in the pipeline, and several drug candidates have entered late-phase clinical trials. Indeed, current and future studies are needed to target specific etiological mechanisms and provide an alternative to GFD alone. This review provides a broad overview of the various investigative treatment approaches for CeD, summarizing the latest progress in the pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet. 2018;391(10115):70–81.

    Article  PubMed  Google Scholar 

  2. Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(6):823-3e62.

    Article  PubMed  Google Scholar 

  3. Lo W, Sano K, Lebwohl B, Diamond B, Green PH. Changing presentation of adult celiac disease. Dig Dis Sci. 2003;48(2):395–8.

    Article  PubMed  Google Scholar 

  4. Fasano A, Catassi C. Clinical practice. Celiac disease. N Engl J Med. 2012;367(25):2419–26.

    Article  CAS  PubMed  Google Scholar 

  5. Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, et al. Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med. 2012;10:13.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Husby S, Olsson, C, Ivarsson, A. Celiac disease and risk management of gluten. In: Risk management for food allergy. 2014. Academic Press, 7, pp 129–152.

  7. Green PH, Cellier C. Celiac disease. N Engl J Med. 2007;357(17):1731–43.

    Article  CAS  PubMed  Google Scholar 

  8. Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. 1997;3(7):797–801.

    Article  CAS  PubMed  Google Scholar 

  9. Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet. 2003;362(9377):30–7.

    Article  CAS  PubMed  Google Scholar 

  10. Mention JJ, Ben Ahmed M, Begue B, Barbe U, Verkarre V, Asnafi V, et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology. 2003;125(3):730–45.

    Article  CAS  PubMed  Google Scholar 

  11. Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology. 2009;137(6):1912–33.

    Article  CAS  PubMed  Google Scholar 

  12. Lagana SM, Bhagat G. biopsy diagnosis of celiac disease: the pathologist’s perspective in light of recent advances. Gastroenterol Clin N Am. 2019;48(1):39–51.

    Article  Google Scholar 

  13. Voisine J, Abadie V. Interplay between gluten, HLA, innate and adaptive immunity orchestrates the development of coeliac disease. Front Immunol. 2021;12: 674313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greco L, Romino R, Coto I, Di Cosmo N, Percopo S, Maglio M, et al. The first large population based twin study of coeliac disease. Gut. 2002;50(5):624–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuja-Halkola R, Lebwohl B, Halfvarson J, Wijmenga C, Magnusson PK, Ludvigsson JF. Heritability of non-HLA genetics in coeliac disease: a population-based study in 107 000 twins. Gut. 2016;65(11):1793–8.

    Article  PubMed  Google Scholar 

  16. Nistico L, Fagnani C, Coto I, Percopo S, Cotichini R, Limongelli MG, et al. Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut. 2006;55(6):803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sollid LM, Lie BA. Celiac disease genetics: current concepts and practical applications. Clin Gastroenterol Hepatol. 2005;3(9):843–51.

    Article  CAS  PubMed  Google Scholar 

  18. Romanos J, van Diemen CC, Nolte IM, Trynka G, Zhernakova A, Fu J, et al. Analysis of HLA and non-HLA alleles can identify individuals at high risk for celiac disease. Gastroenterology. 2009;137(3):834–40 (40 e1-3).

    Article  CAS  PubMed  Google Scholar 

  19. Kaukinen K, Partanen J, Maki M, Collin P. HLA-DQ typing in the diagnosis of celiac disease. Am J Gastroenterol. 2002;97(3):695–9.

    Article  PubMed  Google Scholar 

  20. Gujral N, Freeman HJ, Thomson AB. Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol. 2012;18(42):6036–59.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hunt KA, Zhernakova A, Turner G, Heap GA, Franke L, Bruinenberg M, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet. 2008;40(4):395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhernakova A, Elbers CC, Ferwerda B, Romanos J, Trynka G, Dubois PC, et al. Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am J Hum Genet. 2010;86(6):970–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castellanos-Rubio A, Fernandez-Jimenez N, Kratchmarov R, Luo X, Bhagat G, Green PH, et al. A long noncoding RNA associated with susceptibility to celiac disease. Science. 2016;352(6281):91–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castellanos-Rubio A, Santin I, Irastorza I, Castano L, Carlos Vitoria J, Ramon BJ. TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin. Autoimmunity. 2009;42(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  25. See JA, Kaukinen K, Makharia GK, Gibson PR, Murray JA. Practical insights into gluten-free diets. Nat Rev Gastroenterol Hepatol. 2015;12(10):580–91.

    Article  CAS  PubMed  Google Scholar 

  26. Leffler DA, Dennis M, Hyett B, Kelly E, Schuppan D, Kelly CP. Etiologies and predictors of diagnosis in nonresponsive celiac disease. Clin Gastroenterol Hepatol. 2007;5(4):445–50.

    Article  PubMed  Google Scholar 

  27. Leffler DA, Edwards-George J, Dennis M, Schuppan D, Cook F, Franko DL, et al. Factors that influence adherence to a gluten-free diet in adults with celiac disease. Dig Dis Sci. 2008;53(6):1573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Itzlinger A, Branchi F, Elli L, Schumann M. Gluten-free diet in celiac disease-forever and for all? Nutrients. 2018;10(11):1796.

    Article  PubMed Central  Google Scholar 

  29. Rubio-Tapia A, Murray JA. Classification and management of refractory coeliac disease. Gut. 2010;59(4):547–57.

    Article  PubMed  Google Scholar 

  30. Malamut G, Cellier C. Refractory celiac disease: epidemiology and clinical manifestations. Dig Dis. 2015;33(2):221–6.

    Article  PubMed  Google Scholar 

  31. Ryan BM, Kelleher D. Refractory celiac disease. Gastroenterology. 2000;119(1):243–51.

    Article  CAS  PubMed  Google Scholar 

  32. Hall NJ, Rubin GP, Charnock A. Intentional and inadvertent non-adherence in adult coeliac disease. A cross-sectional survey. Appetite. 2013;68:56–62.

    Article  PubMed  Google Scholar 

  33. Hollon JR, Cureton PA, Martin ML, Puppa EL, Fasano A. Trace gluten contamination may play a role in mucosal and clinical recovery in a subgroup of diet-adherent non-responsive celiac disease patients. BMC Gastroenterol. 2013;13:40.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rubio-Tapia A, Rahim MW, See JA, Lahr BD, Wu TT, Murray JA. Mucosal recovery and mortality in adults with celiac disease after treatment with a gluten-free diet. Am J Gastroenterol. 2010;105(6):1412–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Daveson AJ, Jones DM, Gaze S, McSorley H, Clouston A, Pascoe A, et al. Effect of hookworm infection on wheat challenge in celiac disease–a randomised double-blinded placebo controlled trial. PLoS ONE. 2011;6(3): e17366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Catassi C, Fabiani E, Iacono G, D’Agate C, Francavilla R, Biagi F, et al. A prospective, double-blind, placebo-controlled trial to establish a safe gluten threshold for patients with celiac disease. Am J Clin Nutr. 2007;85(1):160–6.

    Article  CAS  PubMed  Google Scholar 

  37. Lahdeaho ML, Maki M, Laurila K, Huhtala H, Kaukinen K. Small- bowel mucosal changes and antibody responses after low- and moderate-dose gluten challenge in celiac disease. BMC Gastroenterol. 2011;11:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gottlieb K, Dawson J, Hussain F, Murray JA. Development of drugs for celiac disease: review of endpoints for Phase 2 and 3 trials. Gastroenterol Rep (Oxf). 2015;3(2):91–102.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Krishnareddy S. The microbiome in celiac disease. Gastroenterol Clin N Am. 2019;48(1):115–26.

    Article  Google Scholar 

  40. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–7.

    Article  CAS  PubMed  Google Scholar 

  41. Pozo-Rubio T, Olivares M, Nova E, De Palma G, Mujico JR, Ferrer MD, et al. Immune development and intestinal microbiota in celiac disease. Clin Dev Immunol. 2012; Feb  7, p. 654143.

  42. Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venalainen J, Maki M, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152(3):552–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. 2014;11(5):4745–67.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Isolauri E, Rautava S, Salminen S. Probiotics in the development and treatment of allergic disease. Gastroenterol Clin N Am. 2012;41(4):747–62.

    Article  Google Scholar 

  45. Olivares M, Castillejo G, Varea V, Sanz Y. Double-blind, randomised, placebo-controlled intervention trial to evaluate the effects of Bifidobacterium longum CECT 7347 in children with newly diagnosed coeliac disease. Br J Nutr. 2014;112(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  46. Quagliariello A, Aloisio I, Bozzi Cionci N, Luiselli D, D’Auria G, Martinez-Priego L, et al. Effect of bifidobacterium breve on the intestinal microbiota of coeliac children on a gluten free diet: a pilot study. Nutrients. 2016;8(10):660.

    Article  PubMed Central  Google Scholar 

  47. Klemenak M, Dolinsek J, Langerholc T, Di Gioia D, Micetic-Turk D. Administration of bifidobacterium breve decreases the production of TNF-alpha in children with celiac disease. Dig Dis Sci. 2015;60(11):3386–92.

    Article  CAS  PubMed  Google Scholar 

  48. Primec M, Klemenak M, Di Gioia D, Aloisio I, Bozzi Cionci N, Quagliariello A, et al. Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-alpha and short-chain fatty acids. Clin Nutr. 2019;38(3):1373–81.

    Article  CAS  PubMed  Google Scholar 

  49. Francavilla R, Piccolo M, Francavilla A, Polimeno L, Semeraro F, Cristofori F, et al. Clinical and microbiological effect of a multispecies probiotic supplementation in celiac patients with persistent ibs-type symptoms: a randomized, double-blind, placebo-controlled, multicenter trial. J Clin Gastroenterol. 2019;53(3):e117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seiler CL, Kiflen M, Stefanolo JP, Bai JC, Bercik P, Kelly CP, et al. Probiotics for celiac disease: a systematic review and meta-analysis of randomized controlled trials. Am J Gastroenterol. 2020;115(10):1584–95.

    Article  PubMed  Google Scholar 

  51. Pinto-Sanchez MI, Smecuol EC, Temprano MP, Sugai E, Gonzalez A, Moreno ML, et al. Bifidobacterium infantis NLS super strain reduces the expression of alpha-defensin-5, a marker of innate immunity, in the mucosa of active celiac disease patients. J Clin Gastroenterol. 2017;51(9):814–7.

    Article  PubMed  Google Scholar 

  52. Smecuol E, Hwang HJ, Sugai E, Corso L, Chernavsky AC, Bellavite FP, et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol. 2013;47(2):139–47.

    Article  PubMed  Google Scholar 

  53. Fasano A, Uzzau S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest. 1997;99(6):1158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258:25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haghbin M, Rostami-Nejad M, Forouzesh F, Sadeghi A, Rostami K, Aghamohammadi E, et al. The role of CXCR3 and its ligands CXCL10 and CXCL11 in the pathogenesis of celiac disease. Medicine (Baltimore). 2019;98(25): e15949.

    Article  Google Scholar 

  56. Siegel M, Garber ME, Spencer AG, Botwick W, Kumar P, Williams RN, et al. Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating-dose clinical trials. Dig Dis Sci. 2012;57(2):440–50.

    Article  CAS  PubMed  Google Scholar 

  57. Lahdeaho ML, Kaukinen K, Laurila K, Vuotikka P, Koivurova OP, Karja-Lahdensuu T, et al. Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease. Gastroenterology. 2014;146(7):1649–58.

    Article  CAS  PubMed  Google Scholar 

  58. Murray JA, Kelly CP, Green PHR, Marcantonio A, Wu TT, Maki M, et al. No difference between latiglutenase and placebo in reducing villous atrophy or improving symptoms in patients with symptomatic celiac disease. Gastroenterology. 2017;152(4):787-98e2.

    Article  CAS  PubMed  Google Scholar 

  59. Syage JA, Murray JA, Green PHR, Khosla C. Latiglutenase improves symptoms in seropositive celiac disease patients while on a gluten-free diet. Dig Dis Sci. 2017;62(9):2428–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Syage JA, Green PHR, Khosla C, Adelman DC, Sealey-Voyksner JA, Murray JA. Latiglutenase treatment for celiac disease: symptom and quality of life improvement for seropositive patients on a gluten-free diet. GastroHep. 2019;1(6):293–301.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stepniak D, Spaenij-Dekking L, Mitea C, Moester M, de Ru A, Baak-Pablo R, et al. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am J Physiol Gastrointest Liver Physiol. 2006;291(4):G621–9.

    Article  CAS  PubMed  Google Scholar 

  62. Tack GJ, van de Water JM, Bruins MJ, Kooy-Winkelaar EM, van Bergen J, Bonnet P, et al. Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study. World J Gastroenterol. 2013;19(35):5837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Salden BN, Monserrat V, Troost FJ, Bruins MJ, Edens L, Bartholome R, et al. Randomised clinical study: Aspergillus niger-derived enzyme digests gluten in the stomach of healthy volunteers. Aliment Pharmacol Ther. 2015;42(3):273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Konig J, Holster S, Bruins MJ, Brummer RJ. Randomized clinical trial: effective gluten degradation by Aspergillus niger-derived enzyme in a complex meal setting. Sci Rep. 2017;7(1):13100.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ehren J, Moron B, Martin E, Bethune MT, Gray GM, Khosla C. A food-grade enzyme preparation with modest gluten detoxification properties. PLoS ONE. 2009;4(7): e6313.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wolf C, Siegel JB, Tinberg C, Camarca A, Gianfrani C, Paski S, et al. Engineering of Kuma030: a gliadin peptidase that rapidly degrades immunogenic gliadin peptides in gastric conditions. J Am Chem Soc. 2015;137(40):13106–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gordon SR, Stanley EJ, Wolf S, Toland A, Wu SJ, Hadidi D, et al. Computational design of an alpha-gliadin peptidase. J Am Chem Soc. 2012;134(50):20513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pultz IS, Hill M, Vitanza JM, Wolf C, Saaby L, Liu T, et al. Gluten degradation, pharmacokinetics, safety, and tolerability of TAK-062, an engineered enzyme to treat celiac disease. Gastroenterology. 2021;161(1):81-93e3.

    Article  CAS  PubMed  Google Scholar 

  69. Di Sabatino A, Lenti MV, Corazza GR, Gianfrani C. Vaccine Immunotherapy for Celiac Disease. Front Med (Lausanne). 2018;5:187.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Di Sabatino A, Lenti MV, Giuffrida P, Vanoli A, Corazza GR. New insights into immune mechanisms underlying autoimmune diseases of the gastrointestinal tract. Autoimmun Rev. 2015;14(12):1161–9.

    Article  PubMed  Google Scholar 

  71. Goel G, King T, Daveson AJ, Andrews JM, Krishnarajah J, Krause R, et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: two randomised, double-blind, placebo-controlled phase 1 studies. Lancet Gastroenterol Hepatol. 2017;2(7):479–93.

    Article  PubMed  PubMed Central  Google Scholar 

  72. ImmusanT I. A study of the Safety, Efficacy, and Tolerability of Nexvax-2 in Patients with Celiac Disease (CeD) 2018 [Available from: https://clinicaltrials.gov/ct2/show/NCT03644069.

  73. Freitag TL, Podojil JR, Pearson RM, Fokta FJ, Sahl C, Messing M, et al. Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease. Gastroenterology. 2020;158(6):1667-81e12.

    Article  CAS  PubMed  Google Scholar 

  74. Takeda. 2020 [Available from: https://clinicaltrials.gov/ct2/show/NCT03738475.

  75. Kelly CP, Murray JA, Leffler DA, Getts DR, Bledsoe AC, Smithson G, et al. TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: a randomized, double-blind, placebo-controlled study. Gastroenterology. 2021;161(1):66-80.e8.

    Article  CAS  PubMed  Google Scholar 

  76. Sipahi AM, Baptista DM. Helminths as an alternative therapy for intestinal diseases. World J Gastroenterol. 2017;23(33):6009–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith H, Forman R, Mair I, Else KJ. Interactions of helminths with macrophages: therapeutic potential for inflammatory intestinal disease. Expert Rev Gastroenterol Hepatol. 2018;12(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  78. Croese J, Miller GC, Marquart L, Llewellyn S, Gupta R, Becker L, et al. Randomized, placebo controlled trial of experimental hookworm infection for improving gluten tolerance in celiac disease. Clin Transl Gastroenterol. 2020;11(12): e00274.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Giacomin P, Zakrzewski M, Croese J, Su X, Sotillo J, McCann L, et al. Experimental hookworm infection and escalating gluten challenges are associated with increased microbial richness in celiac subjects. Sci Rep. 2015;5:13797.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, et al. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier. Front Nutr. 2021;8: 718356.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jauregi-Miguel A. The tight junction and the epithelial barrier in coeliac disease. Int Rev Cell Mol Biol. 2021;358:105–32.

    Article  PubMed  Google Scholar 

  82. Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4): e1251384.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Valitutti F, Fasano A. Breaking down barriers: how understanding celiac disease pathogenesis informed the development of novel treatments. Dig Dis Sci. 2019;64(7):1748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Troisi J, Venutolo G, Terracciano C, Carri MD, Di Micco S, Landolfi A, et al. The therapeutic use of the zonulin inhibitor AT-1001 (Larazotide) for a variety of acute and chronic inflammatory diseases. Curr Med Chem. 2021;28(28):5788–807.

    Article  CAS  PubMed  Google Scholar 

  85. Paterson BM, Lammers KM, Arrieta MC, Fasano A, Meddings JB. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther. 2007;26(5):757–66.

    Article  CAS  PubMed  Google Scholar 

  86. Leffler DA, Kelly CP, Abdallah HZ, Colatrella AM, Harris LA, Leon F, et al. A randomized, double-blind study of larazotide acetate to prevent the activation of celiac disease during gluten challenge. Am J Gastroenterol. 2012;107(10):1554–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leffler DA, Kelly CP, Green PH, Fedorak RN, DiMarino A, Perrow W, et al. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology. 2015;148(7):1311–9.

    Article  CAS  PubMed  Google Scholar 

  88. Kelly CP, Green PH, Murray JA, Dimarino A, Colatrella A, Leffler DA, et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther. 2013;37(2):252–62.

    Article  CAS  PubMed  Google Scholar 

  89. 9 Meters Biopharma I. Study to Evaluate the Efficacy and Safety of Lazarotide Acetate for the Relief of CeD Symptoms 2022 [Available from: https://clinicaltrials.gov/ct2/show/NCT03569007.

  90. Molberg OM, Mcadam SN, Korner R, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med. 1998;4(6):713–7.

    Article  CAS  PubMed  Google Scholar 

  91. van de Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L, Papadopoulos G, et al. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol. 1998;161(4):1585–8.

    PubMed  Google Scholar 

  92. Abadie V, Kim SM, Lejeune T, Palanski BA, Ernest JD, Tastet O, et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature. 2020;578(7796):600–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Molberg O, McAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med. 1998;4(6):713–7.

    Article  CAS  PubMed  Google Scholar 

  94. Schuppan D, Maki M, Lundin KEA, Isola J, Friesing-Sosnik T, Taavela J, et al. A randomized trial of a transglutaminase 2 inhibitor for celiac disease. N Engl J Med. 2021;385(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  95. Pinier M, Verdu EF, Nasser-Eddine M, David CS, Vezina A, Rivard N, et al. Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology. 2009;136(1):288–98.

    Article  CAS  PubMed  Google Scholar 

  96. Pinier M, Fuhrmann G, Galipeau HJ, Rivard N, Murray JA, David CS, et al. The copolymer P(HEMA-co-SS) binds gluten and reduces immune response in gluten-sensitized mice and human tissues. Gastroenterology. 2012;142(2):316-25e1-12.

    Article  CAS  PubMed  Google Scholar 

  97. Abadie V, Jabri B. IL-15: a central regulator of celiac disease immunopathology. Immunol Rev. 2014;260(1):221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yu Q, Tang C, Xun S, Yajima T, Takeda K, Yoshikai Y. MyD88-dependent signaling for IL-15 production plays an important role in maintenance of CD8 alpha alpha TCR alpha beta and TCR gamma delta intestinal intraepithelial lymphocytes. J Immunol. 2006;176(10):6180–5.

    Article  CAS  PubMed  Google Scholar 

  99. Castillo EF, Schluns KS. Regulating the immune system via IL-15 transpresentation. Cytokine. 2012;59(3):479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature. 2011;471(7337):220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Malamut G, El Machhour R, Montcuquet N, Martin-Lanneree S, Dusanter-Fourt I, Verkarre V, et al. IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease-associated inflammation and lymphomagenesis. J Clin Invest. 2010;120(6):2131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lahdeaho ML, Scheinin M, Vuotikka P, Taavela J, Popp A, Laukkarinen J, et al. Safety and efficacy of AMG 714 in adults with coeliac disease exposed to gluten challenge: a phase 2a, randomised, double-blind, placebo-controlled study. Lancet Gastroenterol Hepatol. 2019;4(12):948–59.

    Article  PubMed  Google Scholar 

  103. Cellier C, Bouma G, van Gils T, Khater S, Malamut G, Crespo L, et al. Safety and efficacy of AMG 714 in patients with type 2 refractory coeliac disease: a phase 2a, randomised, double-blind, placebo-controlled, parallel-group study. Lancet Gastroenterol Hepatol. 2019;4(12):960–70.

    Article  PubMed  Google Scholar 

  104. Daveson AJM, Ee HC, Andrews JM, King T, Goldstein KE, Dzuris JL, et al. Epitope-specific immunotherapy targeting CD4-positive T cells in celiac disease: safety, pharmacokinetics, and effects on intestinal histology and plasma cytokines with escalating dose regimens of Nexvax2 in a randomized, double-blind, placebo-controlled phase 1 study. EBioMedicine. 2017;26:78–90.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Goel G, Tye-Din JA, Qiao SW, Russell AK, Mayassi T, Ciszewski C, et al. Cytokine release and gastrointestinal symptoms after gluten challenge in celiac disease. Sci Adv. 2019;5(8):eaaw7756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Truitt KE, Anderson RP. Editorial: a non-dietary treatment for coeliac disease-two steps forward, one step back? Authors’ reply. Aliment Pharmacol Ther. 2019;50(8):956–7.

    Article  PubMed  Google Scholar 

  107. Sample DA, Sunwoo HH, Huynh HQ, Rylance HL, Robert CL, Xu BW, et al. AGY, a novel egg yolk-derived anti-gliadin antibody, is safe for patients with celiac disease. Dig Dis Sci. 2017;62(5):1277–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanskriti Varma.

Ethics declarations

Funding

No funding was received for the writing of this review.

Conflicts of interest

SV and SK have no conflicts of interest to declare.

Ethics declarations

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Author contributions

SV performed literature review and drafted the manuscript. SV and SK performed critical revisions of the manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, S., Krishnareddy, S. Novel Drug Therapeutics in Celiac Disease: A Pipeline Review. Drugs 82, 1515–1526 (2022). https://doi.org/10.1007/s40265-022-01784-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-022-01784-2

Navigation