Skip to main content

Advertisement

Log in

A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Lithium-metal batteries with high energy/power densities have significant applications in electronics, electric vehicles, and stationary power plants. However, the unstable lithium-metal-anode/electrolyte interface has induced insufficient cycle life and safety issues. To improve the cycle life and safety, understanding the formation of the solid electrolyte interphase (SEI) and growth of lithium dendrites near the anode/electrolyte interface, regulating the electrodeposition/electrostripping processes of Li+, and developing multiple approaches for protecting the lithium-metal surface and SEI layer are crucial and necessary. This paper comprehensively reviews the research progress in SEI and lithium dendrite growth in terms of their classical electrochemical lithium plating/stripping processes, interface interaction/nucleation processes, anode geometric evolution, fundamental electrolyte reduction mechanisms, and effects on battery performance. Some important aspects, such as charge transfer, the local current distribution, solvation, desolvation, ion diffusion through the interface, inhibition of dendrites by the SEI, additives, models for dendrite formation, heterogeneous nucleation, asymmetric processes during stripping/plating, the host matrix, and in situ nucleation characterization, are also analyzed based on experimental observations and theoretical calculations. Several technical challenges in improving SEI properties and reducing lithium dendrite growth are analyzed. Furthermore, possible future research directions for overcoming the challenges are also proposed to facilitate further research and development toward practical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright © 2016, American Chemical Society. Reprinted with permission from Ref. [34]. Copyright © 2010, American Chemical Society. Reprinted with permission from Ref. [35]. Copyright © 2020, Elsevier. Reprinted with permission from Ref. [36]. Copyright © 2013, American Chemical Society. Reprinted with permission from Ref. [37]. Copyright © 2020, John Wiley and Sons. Reprinted with permission from Ref. [38]. Copyright © 2015, Springer Nature. Reprinted with permission from Ref. [39]. Copyright © 2020, Springer Nature. Reprinted with permission from Ref. [40]. Copyright © 2016, John Wiley and Sons. Reprinted with permission from Ref. [41]. Copyright © 2015, American Chemical Society

Fig. 2

Copyright © 1990, American Physical Society. b Profile of the distributions of V (electrostatic potential), Cc, and Ca (ion concentrations of cations and anions), which were obtained from numerical studies with a space-charge model. Reprinted with permission from Ref. [42]. Copyright © 1990, American Physical Society. c The different areas in the diagram can be used to determine whether the size of the embryo is suitable for different nucleation and growth stages. Reprinted with permission from Ref. [32]. Copyright © 2013, The Electrochemical Society. d Profile of a spherical cap-shaped nucleus (N) deposited on a smooth substrate (S) in a liquid electrolyte. a (=  rsin θ) is the radius of the circular contact region between the cap-shaped nucleus and substrate. The height of the electrodeposit is h (=  r(1  –  cos θ)). \(\theta\) is the contact angle, h is the height of the embryo, and r is the radius of curvature. The volume of the cap is \(S_{{\text{V}}} r^{3}\), where \(S_{{\text{V}}} = \frac{\uppi }{3}\left( {2 + \cos \theta } \right)\left( {1 - \cos \theta } \right)^{2}\). The surface area of the cap is \(S_{{\text{A}}} r^{2}\), where \(S_{{\text{A}}} = 2{\uppi }\left( {1 - {\text{cos }}\theta } \right)\). Reprinted with permission from Ref. [32]. Copyright © 2013, The Electrochemical Society

Fig. 3

Copyright © 1979, The Electrochemical Society. b XPS spectra of a Li metal surface. Reprinted with permission from Ref. [46]. Copyright © 1985, The Electrochemical Society. c Schematic diagram of the polyhetero-microphase SEI model. Reprinted with permission from Ref. [47]. Copyright © 1997, The Electrochemical Society. d Schematic presentation of the SEI formation process. Reprinted with permission from Ref. [48]. Copyright © 2000, Elsevier. e Schematic energy diagram of an electrolyte. Reprinted with permission from Ref. [34]. Copyright © 2011, Elsevier. f Schematic illustration of Li+ diffusion through a porous organic layer and a dense inorganic layer. Reprinted with permission from Ref. [49]. Copyright © 2012, American Chemical Society. g Schematic illustration of mosaic and multilayered structures formed on a Li surface. Reprinted with permission from Ref. [50]. Copyright © 2017, The American Association for the Advancement of Science. h Accelerator fluctuations with geometric deformation, and COMSOL simulation with THU. Reprinted with permission from Ref. [51]. Copyright © 2019, John Wiley and Sons

Fig. 4

Copyright © 2016, Elsevier. c Methods to compute the reduction voltage. Molecules/ions in the solution phase, solid phase, and gas phase are denoted by sol., s, and g, respectively. The subscripts sol and vap represent the vaporization and solvation processes, respectively. ∆G is the free energy, ΦM is the work function of the anode, and the subscript e indicates the ionization process. Reprinted with permission from Ref. [62]. Copyright © 2001, American Chemical Society

Fig. 5

Copyright © 2013, American Chemical Society

Fig. 6
Fig. 7

Copyright © 2017, The Electrochemical Society. The growth of the lithium globule was divided into four stages according to the local current density. The local current density is plotted according to the four stages of the growth of the lithium embryo. d In the initial stage, a perturbation at the anode/electrolyte interface results in a higher current density at the tip of the globule than that of the entire region. This current density is measured between time points 0 and 8.27 C cm−2. e With the growth of the embryo, the current is delocalized away from the tip of the globule. Measurement points: 8.27–16.53 C cm−2. f The delocalization behavior spreads. Measurement points: 16.53–35.82 C cm−2. g The globule has grown large enough that the current density concentration is significantly reduced. Measurement points: 35.82–54.72 C cm−2. Reprinted with permission from Ref. [108]. Copyright © 2016, The Electrochemical Society

Fig. 8

Copyright © 2020, Elsevier. d Schematic diagram of the solution structures in a concentrated electrolyte. Reprinted with permission from Ref. [129]. Copyright © 2019, Springer Nature

Fig. 9

Copyright © 2018, American Chemistry Society. The transition state structure lies in the upper left inset, the lower figure shows the energy profile, and the upper right inset shows a schematic diagram of the Lii+ diffusion pathway from site Ai along the [010] direction following the c knock-off and d direct-hopping mechanisms with threefold coordination in the transition structure. Reprinted with permission from Ref. [49]. Copyright © 2012, American Chemistry Society. The migration barrier and diffusion direction of Li diffusion through the LiF/Li2O grain boundary are divided into e Path 1, f Path 2, and g Path 3. Reprinted with permission from Ref. [155]. Copyright © 2019, American Chemistry Society

Fig. 10

Copyright © 2010, American Chemical Society. b Integrated ion densities at the SEI/electrolyte interface as a function of SEI thickness and composition. Solid red lines: total density up to 6 Å into the electrolyte region; black dotted lines: division of the density into an ion-adsorbed region; blue dashed lines: 6 Å from this region into the bulk electrolyte region near the interface. Reprinted with permission from Ref. [169]. Copyright © 2013, American Chemical Society. c Li+ activation energy barriers in different electrolyte composition systems. The reference lines for the activation energy at the bottom are obtained from 1.0 M LiPF6/tetrahydrofuran (THF) (red dotted line) and 1.0 M LiPF6/PEG222 (green dotted line) with LTO. Reprinted with permission from Ref. [164]. Copyright © 2010, American Chemical Society. d Schematic depiction of the Li+ desolvation process near the negative interface. Reprinted with permission from Ref. [171]. Copyright © 2019, American Chemistry Society

Fig. 11

Copyright © 2017, The Electrochemical Society

Fig. 12

Copyright © 2017, Springer Nature

Fig. 13

Copyright © 2013, Springer Nature. b The upper two pictures are electrostatic potential maps based on the electron densities of g-butyrolactone and LiNO3 and of FEC and LiNO3. O, red; Li, purple; C, gray; H, white; N, blue; and F, green. The left end (red color) of the scale bar below the map reflects a lower Coulombic potential, and the right end (blue color) reflects a higher Coulombic potential. The bottom two pictures are SEM images of the Li plating morphology on the copper working electrode with LiNO3 and without LiNO3. Reprinted with permission from Ref. [37]. Copyright © 2020, John Wiley and Sons

Fig. 14

Copyright © 2020, John Wiley and Sons. e Accelerator fluctuations with geometric deformation. f COMSOL simulation with THU; blue represents the electrolyte, and white represents the electrode. Reprinted with permission from Ref. [51]. Copyright © 2019, John Wiley and Sons

Fig. 15

Copyright © 2016, American Chemistry Society. b Cross-sectional operando microscopy images of the lithium-metal-anode surface in earlier cycles and later cycles. Reprinted with permission from Ref. [258]. Copyright © 2017, Royal Society of Chemistry. c Snapshots of the phase parameter (upper), Li+ concentration (middle), and electric potential (lower) during the electrodeposition process. Reprinted with permission from Ref. [259]. Copyright © 2014, AIP Publishing. d Changes in cell polarization (top) correlated with schematic representations of the morphology and energy barrier diagrams (bottom). Reprinted with permission from Ref. [33]. Copyright © 2016, American Chemistry Society

Fig. 16

Copyright © 2015, Springer Nature. b Simulated current densities of the micropatterned lithium metal surface and its 2D cross-section image. Reprinted with permission from Ref. [297]. Copyright © 2018, Elsevier

Fig. 17

Copyright © 2020, Springer Nature. b Three models of the morphology of lithium deposits based on in situ STEM. Reprinted with permission from Ref. [305]. Copyright © 2017, Elsevier. c Utilization of in situ atomic force microscopy (AFM)-environmental transmission electron microscopy (ETEM) to observe the Li nucleation process during electrochemical deposition of Li+ in a CO2 environment. Blue dotted lines highlight the nucleus. The red arrow indicates that the Li embryo grew over time at the electrode/electrolyte interface. Red dotted lines emphasize the side surface and shape of the Li whisker. Reprinted with permission from Ref. [306]. Copyright © 2019, Springer Nature. d SEM images of Li precipitates with various size distributions on various index Cu. Reprinted with permission from Ref. [307]. Copyright © 2017, American Chemistry Society

Fig. 18

Copyright © 2012, American Chemical Society. b Experimental equipment for operando X-ray imaging with a V-slot Li electrode holder, and comparison diagram of lithium deposition before/after 4 h in a Li-Cu cell. Reprinted with permission from Ref. [309]. Copyright © 2019, American Chemical Society. c Li-Cu cell static in situ NMR spectra, and visualization of lithium deposited for 1 cycle. Reprinted with permission from Ref. [310]. Copyright © 2020, Elsevier

Similar content being viewed by others

References

  1. Zhang, H.L., Zhao, H.B., Khan, M.A., et al.: Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 6, 20564–20620 (2018). https://doi.org/10.1039/c8ta05336g

    Article  CAS  Google Scholar 

  2. Umeshbabu, E., Zheng, B.Z., Yang, Y.: Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2, 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3

    Article  CAS  Google Scholar 

  3. Ma, Z., Yuan, X.X., Li, L., et al.: A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 8, 2144–2198 (2015). https://doi.org/10.1039/c5ee00838g

    Article  CAS  Google Scholar 

  4. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Albertus, P., Babinec, S., Litzelman, S., et al.: Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018). https://doi.org/10.1038/s41560-017-0047-2

    Article  CAS  ADS  Google Scholar 

  6. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  PubMed  Google Scholar 

  7. Xin, S., You, Y., Wang, S.F., et al.: Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Lett. 2, 1385–1394 (2017). https://doi.org/10.1021/acsenergylett.7b00175

    Article  CAS  Google Scholar 

  8. Zhao, X.D., Kong, X.L., Liu, Z.L., et al.: The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. Nano Today 40, 101245 (2021). https://doi.org/10.1016/j.nantod.2021.101245

    Article  CAS  Google Scholar 

  9. Wang, H.S., Liu, Y.Y., Li, Y.Z., et al.: Lithium metal anode materials design: interphase and host. Electrochem. Energy Rev. 2, 509–517 (2019). https://doi.org/10.1007/s41918-019-00054-2

    Article  CAS  ADS  Google Scholar 

  10. Feng, X.N., Ouyang, M.G., Liu, X., et al.: Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013

    Article  Google Scholar 

  11. Liu, H.Q., Wei, Z.B., He, W.D., et al.: Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energy Convers. Manag. 150, 304–330 (2017). https://doi.org/10.1016/j.enconman.2017.08.016

    Article  CAS  Google Scholar 

  12. Li, S., Jiang, M.W., Xie, Y., et al.: Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018). https://doi.org/10.1002/adma.201706375

    Article  CAS  Google Scholar 

  13. Amine, R., Liu, J.Z., Acznik, I., et al.: Regulating the hidden solvation-ion-exchange in concentrated electrolytes for stable and safe lithium metal batteries. Adv. Energy Mater. 10, 2000901 (2020). https://doi.org/10.1002/aenm.202000901

    Article  CAS  Google Scholar 

  14. Chen, S.J., Xiang, Y.X., Zheng, G.R., et al.: High-efficiency lithium metal anode enabled by a concentrated/fluorinated ester electrolyte. ACS Appl. Mater. Interfaces 12, 27794–27802 (2020). https://doi.org/10.1021/acsami.0c06930

    Article  CAS  PubMed  Google Scholar 

  15. Drvarič Talian, S., Bobnar, J., Moškon, J., et al.: Effect of high concentration of polysulfides on Li stripping and deposition. Electrochim. Acta 354, 136696 (2020). https://doi.org/10.1016/j.electacta.2020.136696

    Article  CAS  Google Scholar 

  16. Généreux, S., Gariépy, V., Rochefort, D.: On the relevance of reporting water content in highly concentrated electrolytes: the LiTFSI-acetonitrile case. J. Electrochem. Soc. 167, 120536 (2020). https://doi.org/10.1149/1945-7111/abb34c

    Article  CAS  ADS  Google Scholar 

  17. Glaser, R., Wu, F.X., Register, E., et al.: Tuning low concentration electrolytes for high rate performance in lithium-sulfur batteries. J. Electrochem. Soc. 167, 100512 (2020). https://doi.org/10.1149/1945-7111/ab7183

    Article  CAS  ADS  Google Scholar 

  18. Hou, J.X., Lu, L.G., Wang, L., et al.: Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11, 5100 (2020). https://doi.org/10.1038/s41467-020-18868-w

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Jiang, L.H., Liang, C., Li, H., et al.: Safer triethyl-phosphate-based electrolyte enables nonflammable and high-temperature endurance for a lithium ion battery. ACS Appl. Energy Mater. 3, 1719–1729 (2020). https://doi.org/10.1021/acsaem.9b02188

    Article  CAS  Google Scholar 

  20. Kremer, L.S., Danner, T., Hein, S., et al.: Influence of the electrolyte salt concentration on the rate capability of ultra-thick NCM 622 electrodes. Batter. Supercaps 3, 1172–1182 (2020). https://doi.org/10.1002/batt.202000098

    Article  CAS  Google Scholar 

  21. Lee, S., Park, K., Koo, B., et al.: Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes. Adv. Funct. Mater. 30, 2003132 (2020). https://doi.org/10.1002/adfm.202003132

    Article  CAS  Google Scholar 

  22. Lin, S.S., Hua, H.M., Li, Z.S., et al.: Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery. ACS Appl. Mater. Interfaces 12, 33710–33718 (2020). https://doi.org/10.1021/acsami.0c07904

    Article  CAS  PubMed  Google Scholar 

  23. Peng, Z., Cao, X., Gao, P.Y., et al.: High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020). https://doi.org/10.1002/adfm.202001285

    Article  CAS  Google Scholar 

  24. Wang, Z.C., Sun, Y.Y., Mao, Y.Y., et al.: Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Mater. 30, 228–237 (2020). https://doi.org/10.1016/j.ensm.2020.05.020

    Article  Google Scholar 

  25. Zhang, M.M., Hao, H.X., Zhou, D.X., et al.: Understanding the microscopic structure of a “water-in-salt” lithium ion battery electrolyte probed with ultrafast IR spectroscopy. J. Phys. Chem. C 124, 8594–8604 (2020). https://doi.org/10.1021/acs.jpcc.0c00937

    Article  CAS  Google Scholar 

  26. Zhou, Y.F., Su, M., Yu, X.F., et al.: Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15, 224–230 (2020). https://doi.org/10.1038/s41565-019-0618-4

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Nagy, K.S., Kazemiabnavi, S., Thornton, K., et al.: Thermodynamic overpotentials and nucleation rates for electrodeposition on metal anodes. ACS Appl. Mater. Interfaces 11, 7954–7964 (2019). https://doi.org/10.1021/acsami.8b19787

    Article  CAS  PubMed  Google Scholar 

  28. Goodman, J.K.S., Kohl, P.A.: Effect of alkali and alkaline earth metal salts on suppression of lithium dendrites. J. Electrochem. Soc. 161, D418–D424 (2014). https://doi.org/10.1149/2.0301409jes

    Article  CAS  Google Scholar 

  29. Choudhury, S., Tu, Z.Y., Stalin, S., et al.: Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed. 56, 13070–13077 (2017). https://doi.org/10.1002/anie.201707754

    Article  CAS  Google Scholar 

  30. Liu, J.L., Eisenberg, B.: Molecular mean-field theory of ionic solutions: a Poisson-Nernst-Planck-Bkerman model. Entropy 22, 550 (2020). https://doi.org/10.3390/e22050550

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Peled, E., Menkin, S.: Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017). https://doi.org/10.1149/2.1441707jes

    Article  CAS  Google Scholar 

  32. Ely, D.R., García, R.E.: Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 160, A662–A668 (2013). https://doi.org/10.1149/1.057304jes

    Article  CAS  Google Scholar 

  33. Wood, K.N., Kazyak, E., Chadwick, A.F., et al.: Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016). https://doi.org/10.1021/acscentsci.6b00260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goodenough, J.B., Kim, Y.: Challenges for rechargeable batteries. J. Power Sources 196, 6688–6694 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.074

    Article  CAS  ADS  Google Scholar 

  35. Borodin, O., Self, J., Persson, K.A., et al.: Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020). https://doi.org/10.1016/j.joule.2019.12.007

    Article  CAS  Google Scholar 

  36. Bazant, M.Z.: Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 1144–1160 (2013). https://doi.org/10.1021/ar300145c

    Article  CAS  PubMed  Google Scholar 

  37. Jie, Y.L., Liu, X.J., Lei, Z.W., et al.: Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. 59, 3505–3510 (2020). https://doi.org/10.1002/anie.201914250

    Article  CAS  Google Scholar 

  38. Yang, C.P., Yin, Y.X., Zhang, S.F., et al.: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Unocic, R.R., Jungjohann, K.L., Mehdi, B.L., et al.: In situ electrochemical scanning/transmission electron microscopy of electrode-electrolyte interfaces. MRS Bull. 45, 738–745 (2020). https://doi.org/10.1557/mrs.2020.226

    Article  CAS  ADS  Google Scholar 

  40. Cheng, X.B., Hou, T.Z., Zhang, R., et al.: Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016). https://doi.org/10.1002/adma.201506124

    Article  CAS  PubMed  Google Scholar 

  41. Gauthier, M., Carney, T.J., Grimaud, A., et al.: Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015). https://doi.org/10.1021/acs.jpclett.5b01727

    Article  CAS  PubMed  Google Scholar 

  42. Chazalviel, J.N.: Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990). https://doi.org/10.1103/physreva.42.7355

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Ding, J.F., Xu, R., Yan, C., et al.: A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J. Energy Chem. 59, 306–319 (2021). https://doi.org/10.1016/j.jechem.2020.11.016

    Article  CAS  Google Scholar 

  44. Chen, X.R., Zhao, B.C., Yan, C., et al.: Review on Li deposition in working batteries: from nucleation to early growth. Adv. Mater. 33, 2004128 (2021). https://doi.org/10.1002/adma.202004128

    Article  CAS  Google Scholar 

  45. Peled, E.: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). https://doi.org/10.1149/1.2128859

    Article  CAS  ADS  Google Scholar 

  46. Nazri, G., Muller, R.H.: Composition of surface layers on Li electrodes in PC, LiClO4 of very low water content. J. Electrochem. Soc. 132, 2050–2054 (1985). https://doi.org/10.1149/1.211428810.1149/1.2114288

    Article  CAS  ADS  Google Scholar 

  47. Peled, E., Golodnitsky, D., Ardel, G.: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997). https://doi.org/10.1149/1.1837858

    Article  CAS  Google Scholar 

  48. Aurbach, D.: Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6

    Article  CAS  ADS  Google Scholar 

  49. Shi, S.Q., Lu, P., Liu, Z.Y., et al.: Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012). https://doi.org/10.1021/ja305366r

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017). https://doi.org/10.1126/science.aam6014

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Wang, Q., Yang, C.K., Yang, J.J., et al.: Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater. 31, 1903248 (2019). https://doi.org/10.1002/adma.201903248

    Article  CAS  Google Scholar 

  52. Bentley, C.L., Kang, M., Unwin, P.R.: Nanoscale surface structure-activity in electrochemistry and electrocatalysis. J. Am. Chem. Soc. 141, 2179–2193 (2019). https://doi.org/10.1021/jacs.8b09828

    Article  CAS  PubMed  Google Scholar 

  53. Sigman, M.S., Harper, K.C., Bess, E.N., et al.: The development of multidimensional analysis tools for asymmetric catalysis and beyond. Acc. Chem. Res. 49, 1292–1301 (2016). https://doi.org/10.1021/acs.accounts.6b00194

    Article  CAS  PubMed  Google Scholar 

  54. Wagle, D.V., Zhao, H., Baker, G.A.: Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res 47, 2299–2308 (2014). https://doi.org/10.1021/ar5000488

    Article  CAS  PubMed  Google Scholar 

  55. Wang, A.P., Kadam, S., Li, H., et al.: Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Comput. Mater. 4, 15 (2018). https://doi.org/10.1038/s41524-018-0064-0

    Article  CAS  ADS  Google Scholar 

  56. Palacín, M.R., de Guibert, A.: Why do batteries fail? Science 351, 1253292 (2016). https://doi.org/10.1126/science.1253292

    Article  CAS  PubMed  Google Scholar 

  57. Ramos-Sanchez, G., Soto, F.A., Martinez De La Hoz, J.M., et al.: Computational studies of interfacial reactions at anode materials: initial stages of the solid-electrolyte-interphase layer formation. J. Electrochem. Energy Convers. Storage 13, 031002 (2016). https://doi.org/10.1115/1.4034412

    Article  CAS  Google Scholar 

  58. Aurbach, D., Ein-Eli, Y., Chusid, O., et al.: The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable ‘rocking-chair’ type batteries. J. Electrochem. Soc. 141, 603–611 (1994). https://doi.org/10.1149/1.2054777

    Article  CAS  ADS  Google Scholar 

  59. Yan, C., Xu, R., Xiao, Y., et al.: Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 30, 1909887 (2020). https://doi.org/10.1002/adfm.201909887

    Article  CAS  Google Scholar 

  60. Cheng, X.B., Yan, C., Zhang, X.Q., et al.: Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 3, 1564–1570 (2018). https://doi.org/10.1021/acsenergylett.8b00526

    Article  CAS  Google Scholar 

  61. Aurbach, D., Daroux, M.L., Faguy, P.W., et al.: Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 134, 1611–1620 (1987). https://doi.org/10.1149/1.210072210.1149/1.2100722

    Article  CAS  ADS  Google Scholar 

  62. Wang, Y.X., Nakamura, S., Ue, M., et al.: Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 123, 11708–11718 (2001). https://doi.org/10.1021/ja0164529

    Article  CAS  PubMed  Google Scholar 

  63. Borodin, O., Olguin, M., Spear, C.E., et al.: Towards high throughput screening of electrochemical stability of battery electrolytes. Nanotechnology 26, 354003 (2015). https://doi.org/10.1088/0957-4484/26/35/354003

    Article  CAS  PubMed  Google Scholar 

  64. Maibach, J., Lindgren, F., Eriksson, H., et al.: Electric potential gradient at the buried interface between lithium-ion battery electrodes and the SEI observed using photoelectron spectroscopy. J. Phys. Chem. Lett. 7, 1775–1780 (2016). https://doi.org/10.1021/acs.jpclett.6b00391

    Article  CAS  PubMed  Google Scholar 

  65. Chapman, N., Borodin, O., Yoon, T., et al.: Spectroscopic and density functional theory characterization of common lithium salt solvates in carbonate electrolytes for lithium batteries. J. Phys. Chem. C 121, 2135–2148 (2017). https://doi.org/10.1021/acs.jpcc.6b1223410.1021/acs.jpcc.6b12234

    Article  CAS  Google Scholar 

  66. Tang, M., Miyazaki, K., Abe, T., et al.: Effect of graphite orientation and lithium salt on electronic passivation of highly oriented pyrolytic graphite. J. Electrochem. Soc. 159, A634–A641 (2012). https://doi.org/10.1149/2.073205jes

    Article  CAS  Google Scholar 

  67. Kranz, T., Kranz, S., Miß, V., et al.: Interrelation between redox molecule transport and Li+ ion transport across a model solid electrolyte interphase grown on a glassy carbon electrode. J. Electrochem. Soc. 164, A3777–A3784 (2017). https://doi.org/10.1149/2.1171714jes

    Article  CAS  Google Scholar 

  68. Michan, A.L., Leskes, M., Grey, C.P.: Voltage dependent solid electrolyte interphase formation in silicon electrodes: monitoring the formation of organic decomposition products. Chem. Mater. 28, 385–398 (2016). https://doi.org/10.1021/acs.chemmater.5b04408

    Article  CAS  Google Scholar 

  69. Kumar, R., Lu, P., Xiao, X.C., et al.: Strain-induced lithium losses in the solid electrolyte interphase on silicon electrodes. ACS Appl. Mater. Interfaces 9, 28406–28417 (2017). https://doi.org/10.1021/acsami.7b06647

    Article  CAS  PubMed  Google Scholar 

  70. Steinhauer, M., Stich, M., Kurniawan, M., et al.: In situ studies of solid electrolyte interphase (SEI) formation on crystalline carbon surfaces by neutron reflectometry and atomic force microscopy. ACS Appl. Mater. Interfaces 9, 35794–35801 (2017). https://doi.org/10.1021/acsami.7b09181

    Article  CAS  PubMed  Google Scholar 

  71. Attia, P.M., Das, S., Harris, S.J., et al.: Electrochemical kinetics of SEI growth on carbon black: Part I. Experiments. J. Electrochem. Soc. 166, E97–E106 (2019). https://doi.org/10.1149/2.0231904jes

    Article  CAS  Google Scholar 

  72. Keil, P., Schuster, S.F., Wilhelm, J., et al.: Calendar aging of lithium-ion batteries. J. Electrochem. Soc. 163, A1872–A1880 (2016). https://doi.org/10.1149/2.0411609jes

    Article  CAS  Google Scholar 

  73. Keil, P., Jossen, A.: Calendar aging of NCA lithium-ion batteries investigated by differential voltage analysis and coulomb tracking. J. Electrochem. Soc. 164, A6066–A6074 (2016). https://doi.org/10.1149/2.0091701jes

    Article  CAS  Google Scholar 

  74. Chu, Y.L., Shen, Y.B., Guo, F., et al.: Advanced characterizations of solid electrolyte interphases in lithium-ion batteries. Electrochem. Energy Rev. 3, 187–219 (2020). https://doi.org/10.1007/s41918-019-00058-y

    Article  Google Scholar 

  75. Tan, J., Matz, J., Dong, P., et al.: A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021). https://doi.org/10.1002/aenm.202100046

    Article  CAS  Google Scholar 

  76. Delp, S.A., Borodin, O., Olguin, M., et al.: Importance of reduction and oxidation stability of high voltage electrolytes and additives. Electrochim. Acta 209, 498–510 (2016). https://doi.org/10.1016/j.electacta.2016.05.100

    Article  Google Scholar 

  77. Hou, J.B., Yang, M., Wang, D.Y., et al.: Fundamentals and challenges of lithium ion batteries at temperatures between –40 and 60 °C. Adv. Energy Mater. 10, 2070079 (2020). https://doi.org/10.1002/aenm.202070079

    Article  CAS  ADS  Google Scholar 

  78. Yan, C., Li, H.R., Chen, X., et al.: Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141, 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029

    Article  CAS  PubMed  Google Scholar 

  79. Naji, A., Ghanbaja, J., Humbert, B., et al.: Electroreduction of graphite in LiClO4-ethylene carbonate electrolyte. Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy. J. Power Sources 63, 33–39 (1996). https://doi.org/10.1016/S0378-7753(96)02439-1

    Article  CAS  ADS  Google Scholar 

  80. Novák, P., Joho, F., Imhof, R., et al.: In situ investigation of the interaction between graphite and electrolyte solutions. J. Power Sources 81(82), 212–216 (1999). https://doi.org/10.1016/S0378-7753(99)00119-6

    Article  ADS  Google Scholar 

  81. Arora, P., White, R.E., Doyle, M.: Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998). https://doi.org/10.1149/1.1838857

    Article  CAS  ADS  Google Scholar 

  82. Leung, K., Budzien, J.L.: Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes. Phys. Chem. Chem. Phys. 12, 6583–6586 (2010). https://doi.org/10.1039/b925853a

    Article  CAS  PubMed  Google Scholar 

  83. Onuki, M., Kinoshita, S., Sakata, Y., et al.: Identification of the source of evolved gas in Li-ion batteries using 13C-labeled solvents. J. Electrochem. Soc. 155, A794–A797 (2008). https://doi.org/10.1149/1.2897970

    Article  CAS  Google Scholar 

  84. Yu, J.M., Balbuena, P.B., Budzien, J., et al.: Hybrid DFT functional-based static and molecular dynamics studies of excess electron in liquid ethylene carbonate. J. Electrochem. Soc. 158, A400–A410 (2011). https://doi.org/10.1149/1.3545977

    Article  CAS  Google Scholar 

  85. Liu, Q., Cresce, A., Schroeder, M., et al.: Insight on lithium metal anode interphasial chemistry: reduction mechanism of cyclic ether solvent and SEI film formation. Energy Storage Mater. 17, 366–373 (2019). https://doi.org/10.1016/j.ensm.2018.09.024

    Article  CAS  Google Scholar 

  86. Simmen, F., Foelske-Schmitz, A., Verma, P., et al.: Surface layer formation on Li1+xMn2O4−δ thin film electrodes during electrochemical cycling. Electrochim. Acta 56, 8539–8544 (2011). https://doi.org/10.1016/j.electacta.2011.07.046

    Article  CAS  Google Scholar 

  87. Eriksson, T., Andersson, A.M., Bishop, A.G., et al.: Surface analysis of LiMn2O4 electrodes in carbonate-based electrolytes. J. Electrochem. Soc. 149, A69 (2002). https://doi.org/10.1149/1.142639810.1149/1.1426398

    Article  CAS  Google Scholar 

  88. Leroy, S., Martinez, H., Dedryvère, R., et al.: Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: an XPS study. Appl. Surf. Sci. 253, 4895–4905 (2007). https://doi.org/10.1016/j.apsusc.2006.10.071

    Article  CAS  ADS  Google Scholar 

  89. Leroy, S., Blanchard, F., Dedryvère, R., et al.: Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf. Interface Anal. 37, 773–781 (2005). https://doi.org/10.1002/sia.2072

    Article  CAS  Google Scholar 

  90. Aurbach, D., Zaban, A., Gofer, Y., et al.: Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 54, 76–84 (1995). https://doi.org/10.1016/0378-7753(94)02044-4

    Article  CAS  ADS  Google Scholar 

  91. Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Inform 35, 4303–4417 (2004). https://doi.org/10.1002/chin.200450271

    Article  Google Scholar 

  92. Aurbach, D., Zaban, A., Ein-Eli, Y., et al.: Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J. Power Sources 68, 91–98 (1997). https://doi.org/10.1016/S0378-7753(97)02575-5

    Article  CAS  ADS  Google Scholar 

  93. Kawamura, T., Kimura, A., Egashira, M., et al.: Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J. Power Sources 104, 260–264 (2002). https://doi.org/10.1016/S0378-7753(01)00960-0

    Article  CAS  ADS  Google Scholar 

  94. Harris, S.J., Lu, P.: Effects of inhomogeneities—nanoscale to mesoscale—on the durability of Li-ion batteries. J. Phys. Chem. C 117, 6481–6492 (2013). https://doi.org/10.1021/jp311431z

    Article  CAS  Google Scholar 

  95. Eshkenazi, V., Peled, E., Burstein, L., et al.: XPS analysis of the SEI formed on carbonaceous materials. Solid State Ion. 170, 83–91 (2004). https://doi.org/10.1016/S0167-2738(03)00107-3

    Article  CAS  Google Scholar 

  96. Sloop, S.E., Pugh, J.K., Wang, S., et al.: Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem. Solid-State Lett. 4, A42 (2001). https://doi.org/10.1149/1.1353158

    Article  CAS  Google Scholar 

  97. Aurbach, D., Markovsky, B., Shechter, A., et al.: A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 143, 3809–3820 (1996). https://doi.org/10.1149/1.1837300

    Article  CAS  ADS  Google Scholar 

  98. Ren, Y., Qi, Z.H., Zhang, C., et al.: The charge transfer of intercalated Li atoms around islands on Li-halide (F, Br, Cl) surface of SEIs: a first principles calculation. Comput. Mater. Sci. 176, 109535 (2020). https://doi.org/10.1016/j.commatsci.2020.109535

    Article  CAS  Google Scholar 

  99. Qin, X.P., Shao, M.H., Balbuena, P.B.: Elucidating mechanisms of Li plating on Li anodes of lithium-based batteries. Electrochim. Acta 284, 485–494 (2018). https://doi.org/10.1016/j.electacta.2018.07.159

    Article  CAS  Google Scholar 

  100. Tang, M., Lu, S.D., Newman, J.: Experimental and theoretical investigation of solid-electrolyte-interphase formation mechanisms on glassy carbon. J. Electrochem. Soc. 159, A1775–A1785 (2012). https://doi.org/10.1149/2.025211jes

    Article  CAS  Google Scholar 

  101. Li, D.J., Danilov, D., Zhang, Z.R., et al.: Modeling the SEI-formation on graphite electrodes in LiFePO4 batteries. J. Electrochem. Soc. 162, A858–A869 (2015). https://doi.org/10.1149/2.0161506jes

    Article  CAS  Google Scholar 

  102. Krauskopf, T., Mogwitz, B., Hartmann, H., et al.: The fast charge transfer kinetics of the lithium metal anode on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. Adv. Energy Mater. 10, 2000945 (2020). https://doi.org/10.1002/aenm.202000945

    Article  CAS  Google Scholar 

  103. Bertolini, S., Balbuena, P.B.: Buildup of the solid electrolyte interphase on lithium-metal anodes: reactive molecular dynamics study. J. Phys. Chem. C 122, 10783–10791 (2018). https://doi.org/10.1021/acs.jpcc.8b03046

    Article  CAS  Google Scholar 

  104. Takenaka, N., Suzuki, Y., Sakai, H., et al.: On electrolyte-dependent formation of solid electrolyte interphase film in lithium-ion batteries: strong sensitivity to small structural difference of electrolyte molecules. J. Phys. Chem. C 118, 10874–10882 (2014). https://doi.org/10.1021/jp5018696

    Article  CAS  Google Scholar 

  105. Lin, Y.X., Liu, Z., Leung, K., et al.: Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J. Power Sources 309, 221–230 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.078

    Article  CAS  ADS  Google Scholar 

  106. Nie, M.Y., Abraham, D.P., Chen, Y.J., et al.: Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J. Phys. Chem. C 117, 13403–13412 (2013). https://doi.org/10.1021/jp404155y

    Article  CAS  Google Scholar 

  107. Liu, G.Y., Lu, W.: A model of concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth. J. Electrochem. Soc. 164, A1826–A1833 (2017). https://doi.org/10.1149/2.0381709jes

    Article  CAS  Google Scholar 

  108. Harry, K.J., Higa, K., Srinivasan, V., et al.: Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode. J. Electrochem. Soc. 163, A2216–A2224 (2016). https://doi.org/10.1149/2.0191610jes

    Article  CAS  Google Scholar 

  109. Yang, H., Fey, E.O., Trimm, B.D., et al.: Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. J. Power Sources 272, 900–908 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.026

    Article  CAS  ADS  Google Scholar 

  110. Rosso, M., Gobron, T., Brissot, C., et al.: Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97(98), 804–806 (2001). https://doi.org/10.1016/S0378-7753(01)00734-0

    Article  ADS  Google Scholar 

  111. Heine, J., Krüger, S., Hartnig, C., et al.: Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 4, 1300815 (2014). https://doi.org/10.1002/aenm.201300815

    Article  CAS  Google Scholar 

  112. Jin, D., Oh, J., Friesen, A., et al.: Self-healing wide and thin Li metal anodes prepared using calendared Li metal powder for improving cycle life and rate capability. ACS Appl. Mater. Interfaces 10, 16521–16530 (2018). https://doi.org/10.1021/acsami.8b02740

    Article  CAS  PubMed  Google Scholar 

  113. Pu, K.C., Qu, X.L., Zhang, X., et al.: Nanoscaled lithium powders with protection of ionic liquid for highly stable rechargeable lithium metal batteries. Adv. Sci. 6, 1901776 (2019). https://doi.org/10.1002/advs.201901776

    Article  CAS  Google Scholar 

  114. Jin, D., Roh, Y., Jo, T., et al.: Submicron interlayer for stabilizing thin Li metal powder electrode. Chem. Eng. J. 406, 126834 (2021). https://doi.org/10.1016/j.cej.2020

    Article  CAS  Google Scholar 

  115. Jin, D., Bae, H.S., Hong, J., et al.: Scaffold-structured polymer binders for long-term cycle performance of stabilized lithium-powder electrodes. Electrochim. Acta 364, 136878 (2020). https://doi.org/10.1016/j.electacta.2020.136878

    Article  CAS  Google Scholar 

  116. Lu, L.L., Ge, J., Yang, J.N., et al.: Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16, 4431–4437 (2016). https://doi.org/10.1021/acs.nanolett.6b01581

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Wang, J.S., Liu, P., Sherman, E., et al.: Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal foams. J. Power Sources 196, 8714–8718 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.071

    Article  CAS  ADS  Google Scholar 

  118. An, Y.L., Fei, H.F., Zeng, G.F., et al.: Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries. Nano Energy 47, 503–511 (2018). https://doi.org/10.1016/j.nanoen.2018.03.036

    Article  CAS  Google Scholar 

  119. Yun, Q.B., He, Y.B., Lv, W., et al.: Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932–6939 (2016). https://doi.org/10.1002/adma.201601409

    Article  CAS  PubMed  Google Scholar 

  120. Ding, F., Xu, W., Graff, G.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). https://doi.org/10.1021/ja312241y

    Article  CAS  PubMed  Google Scholar 

  121. Yang, X.F., Sun, Q., Zhao, C.T., et al.: Self-healing electrostatic shield enabling uniform lithium deposition in all-solid-state lithium batteries. Energy Storage Mater. 22, 194–199 (2019). https://doi.org/10.1016/j.ensm.2019.07.015

    Article  Google Scholar 

  122. Munaoka, T., Yan, X.Z., Lopez, J., et al.: Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries. Adv. Energy Mater. 8, 1703138 (2018). https://doi.org/10.1002/aenm.201703138

    Article  CAS  Google Scholar 

  123. Nan, Y., Li, S.M., Zhu, M.Q., et al.: Endowing the lithium metal surface with self-healing property via an in situ gas-solid reaction for high-performance lithium metal batteries. ACS Appl. Mater. Interfaces 11, 28878–28884 (2019). https://doi.org/10.1021/acsami.9b07942

    Article  CAS  PubMed  Google Scholar 

  124. Bernal, J.D., Fowler, R.H.: A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933). https://doi.org/10.1063/1.1749327

    Article  CAS  ADS  Google Scholar 

  125. Xu, R., Yan, C., Huang, J.Q.: Competitive solid-electrolyte interphase formation on working lithium anodes. Trends Chem. 3, 5–14 (2021). https://doi.org/10.1016/j.trechm.2020.10.008

    Article  CAS  Google Scholar 

  126. Xu, R., Shen, X., Ma, X.X., et al.: Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface. Angew. Chem. Int. Ed. 60, 4215–4220 (2021). https://doi.org/10.1002/anie.202100788

    Article  CAS  Google Scholar 

  127. von Wald Cresce, A., Gobet, M., Borodin, O., et al.: Anion solvation in carbonate-based electrolytes. J. Phys. Chem. C 119, 27255–27264 (2015). https://doi.org/10.1021/acs.jpcc.5b08895

    Article  CAS  Google Scholar 

  128. Yu, Z., Curtiss, L.A., Winans, R.E., et al.: Asymmetric composition of ionic aggregates and the origin of high correlated transference number in water-in-salt electrolytes. J. Phys. Chem. Lett. 11, 1276–1281 (2020). https://doi.org/10.1021/acs.jpclett.9b03495

    Article  CAS  PubMed  Google Scholar 

  129. Yamada, Y., Wang, J.H., Ko, S., et al.: Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z

    Article  CAS  ADS  Google Scholar 

  130. von Wald Cresce, A., Borodin, O., Xu, K.: Correlating Li+ solvation sheath structure with interphasial chemistry on graphite. J. Phys. Chem. C 116, 26111–26117 (2012). https://doi.org/10.1021/jp303610t

    Article  CAS  Google Scholar 

  131. Jie, Y.L., Liu, X.J., Lei, Z.W., et al.: Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. 132, 3533–3538 (2020). https://doi.org/10.1002/ange.201914250

    Article  ADS  Google Scholar 

  132. Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, pp. 75–153. CRC Press, Boca Raton (2018). https://doi.org/10.1201/9781351069472

    Chapter  Google Scholar 

  133. Besenhard, J.O., Winter, M., Yang, J., et al.: Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J. Power Sources 54, 228–231 (1995). https://doi.org/10.1016/0378-7753(94)02073-C

    Article  CAS  ADS  Google Scholar 

  134. Wagner, M.R., Albering, J.H., Moeller, K.C., et al.: XRD evidence for the electrochemical formation of Li+(PC)yCn− in PC-based electrolytes. Electrochem. Commun. 7, 947–952 (2005). https://doi.org/10.1016/j.elecom.2005.06.009

    Article  CAS  Google Scholar 

  135. Kang, X.: “Charge-transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes. J. Electrochem. Soc. 154, A162 (2007). https://doi.org/10.1149/1.240986610.1149/1.2409866

    Article  Google Scholar 

  136. Xu, K., Lam, Y., Zhang, S.S., et al.: Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111, 7411–7421 (2007). https://doi.org/10.1021/jp068691u

    Article  CAS  Google Scholar 

  137. Chen, S.R., Zheng, J.M., Mei, D.H., et al.: High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1870144 (2018). https://doi.org/10.1002/adma.201870144

    Article  Google Scholar 

  138. Ding, J.F., Xu, R., Yao, N., et al.: Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60, 11442–11447 (2021). https://doi.org/10.1002/anie.202101627

    Article  CAS  Google Scholar 

  139. Yao, Y.X., Chen, X., Yan, C., et al.: Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021). https://doi.org/10.1002/anie.202011482

    Article  CAS  Google Scholar 

  140. Yamada, Y., Furukawa, K., Sodeyama, K., et al.: Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136, 5039–5046 (2014). https://doi.org/10.1021/ja412807w

    Article  CAS  PubMed  Google Scholar 

  141. Yoshida, K., Nakamura, M., Kazue, Y., et al.: Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J. Am. Chem. Soc. 133, 13121–13129 (2011). https://doi.org/10.1021/ja203983r

    Article  CAS  PubMed  Google Scholar 

  142. Yamada, Y., Chiang, C.H., Sodeyama, K., et al.: Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2, 1687–1694 (2015). https://doi.org/10.1002/celc.201500426

    Article  CAS  Google Scholar 

  143. Matsumoto, K., Inoue, K., Nakahara, K., et al.: Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. J. Power Sources 231, 234–238 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.028

    Article  CAS  Google Scholar 

  144. McOwen, D.W., Seo, D.M., Borodin, O., et al.: Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ. Sci. 7, 416–426 (2014). https://doi.org/10.1039/c3ee42351d

    Article  CAS  Google Scholar 

  145. Yamada, Y., Yaegashi, M., Abe, T., et al.: A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem. Commun. 49, 11194 (2013). https://doi.org/10.1039/c3cc46665e

    Article  CAS  Google Scholar 

  146. Suo, L.M., Hu, Y.S., Li, H., et al.: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). https://doi.org/10.1038/ncomms2513

    Article  CAS  PubMed  ADS  Google Scholar 

  147. Wang, J.H., Yamada, Y., Sodeyama, K., et al.: Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  148. Wang, J.H., Yamada, Y., Sodeyama, K., et al.: Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018). https://doi.org/10.1038/s41560-017-0033-8

    Article  CAS  ADS  Google Scholar 

  149. Raguette, L., Jorn, R.: Ion solvation and dynamics at solid electrolyte interphases: a long way from bulk? J. Phys. Chem. C 122, 3219–3232 (2018). https://doi.org/10.1021/acs.jpcc.7b11472

    Article  CAS  Google Scholar 

  150. Zheng, D., Qu, D.Y., Yang, X.Q., et al.: Preferential solvation of lithium cations and impacts on oxygen reduction in lithium-air batteries. ACS Appl. Mater. Interfaces 7, 19923–19929 (2015). https://doi.org/10.1021/acsami.5b04005

    Article  CAS  PubMed  Google Scholar 

  151. Uchida, S., Ishikawa, M.: Lithium bis(fluorosulfonyl)imide based low ethylene carbonate content electrolyte with unusual solvation state. J. Power Sources 359, 480–486 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.090

    Article  CAS  ADS  Google Scholar 

  152. Iddir, H., Curtiss, L.A.: Li ion diffusion mechanisms in bulk monoclinic Li2CO3 crystals from density functional studies. J. Phys. Chem. C 114, 20903–20906 (2010). https://doi.org/10.1021/jp1086569

    Article  CAS  Google Scholar 

  153. Yildirim, H., Kinaci, A., Chan, M.K.Y., et al.: First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF. ACS Appl. Mater. Interfaces 7, 18985–18996 (2015). https://doi.org/10.1021/acsami.5b02904

    Article  CAS  PubMed  Google Scholar 

  154. Shi, S.Q., Qi, Y., Li, H., et al.: Defect thermodynamics and diffusion mechanisms in Li2CO3 and implications for the solid electrolyte interphase in Li-ion batteries. J. Phys. Chem. C 117, 8579–8593 (2013). https://doi.org/10.1021/jp310591u

    Article  CAS  Google Scholar 

  155. Ramasubramanian, A., Yurkiv, V., Foroozan, T., et al.: Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 123, 10237–10245 (2019). https://doi.org/10.1021/acs.jpcc.9b00436

    Article  CAS  Google Scholar 

  156. Zhang, Q.L., Pan, J., Lu, P., et al.: Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16, 2011–2016 (2016). https://doi.org/10.1021/acs.nanolett.5b05283

    Article  CAS  PubMed  ADS  Google Scholar 

  157. Nikitina, V.A., Vassiliev, S.Y., Stevenson, K.J.: Metal-ion coupled electron transfer kinetics in intercalation-based transition metal oxides. Adv. Energy Mater. 10, 1903933 (2020). https://doi.org/10.1002/aenm.201903933

    Article  CAS  Google Scholar 

  158. Chekushkin, P.M., Merenkov, I.S., Smirnov, V.S., et al.: The physical origin of the activation barrier in Li-ion intercalation processes: the overestimated role of desolvation. Electrochim. Acta 372, 137843 (2021). https://doi.org/10.1016/j.electacta.2021.137843

    Article  CAS  Google Scholar 

  159. Yamada, Y., Iriyama, Y., Abe, T., et al.: Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. Langmuir 25, 12766–12770 (2009). https://doi.org/10.1021/la901829v

    Article  CAS  PubMed  Google Scholar 

  160. Abe, T., Ohtsuka, M., Sagane, F., et al.: Lithium ion transfer at the interface between lithium-ion-conductive solid crystalline electrolyte and polymer electrolyte. J. Electrochem. Soc. 151, A1950 (2004). https://doi.org/10.1149/1.1804813

    Article  CAS  Google Scholar 

  161. Abe, T., Fukuda, H., Iriyama, Y., et al.: Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120 (2004). https://doi.org/10.1149/1.1763141

    Article  CAS  Google Scholar 

  162. Abe, T., Sagane, F., Ohtsuka, M., et al.: Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-a key to enhancing the rate capability of lithium-ion batteries. J. Electrochem. Soc. 152, A2151 (2005). https://doi.org/10.1149/1.2042907

    Article  Google Scholar 

  163. Yamada, Y., Sagane, F., Iriyama, Y., et al.: Kinetics of lithium-ion transfer at the interface between Li0.35La0.55TiO3 and binary electrolytes. J. Phys. Chem. C 113, 14528–14532 (2009). https://doi.org/10.1021/jp9043539

    Article  CAS  Google Scholar 

  164. Xu, K., von Cresce, A., Lee, U.: Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26, 11538–11543 (2010). https://doi.org/10.1021/la1009994

    Article  CAS  PubMed  Google Scholar 

  165. Li, Y.S., Qi, Y.: Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy Environ. Sci. 12, 1286–1295 (2019). https://doi.org/10.1039/c8ee03586e

    Article  CAS  Google Scholar 

  166. Borodin, O., Bedrov, D.: Interfacial structure and dynamics of the lithium alkyl dicarbonate SEI components in contact with the lithium battery electrolyte. J. Phys. Chem. C 118, 18362–18371 (2014). https://doi.org/10.1021/jp504598n

    Article  CAS  Google Scholar 

  167. Jorn, R., Raguette, L., Peart, S.: Investigating the mechanism of lithium transport at solid electrolyte interphases. J. Phys. Chem. C 124, 16261–16270 (2020). https://doi.org/10.1021/acs.jpcc.0c03018

    Article  CAS  Google Scholar 

  168. Li, Q.Y., Lu, D.P., Zheng, J.M., et al.: Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Appl. Mater. Interfaces 9, 42761–42768 (2017). https://doi.org/10.1021/acsami.7b13887

    Article  CAS  PubMed  Google Scholar 

  169. Jorn, R., Kumar, R., Abraham, D.P., et al.: Atomistic modeling of the electrode-electrolyte interface in Li-ion energy storage systems: electrolyte structuring. J. Phys. Chem. C 117, 3747–3761 (2013). https://doi.org/10.1021/jp3102282

    Article  CAS  Google Scholar 

  170. Xu, R., Yan, C., Xiao, Y., et al.: The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Mater. 28, 401–406 (2020). https://doi.org/10.1016/j.ensm.2019.12.020

    Article  Google Scholar 

  171. Ming, J., Cao, Z., Li, Q., et al.: Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries. ACS Energy Lett. 4, 1584–1593 (2019). https://doi.org/10.1021/acsenergylett.9b00822

    Article  CAS  Google Scholar 

  172. Nasara, R.N., Ma, W., Kondo, Y., et al.: Charge-transfer kinetics of the solid-electrolyte interphase on Li4Ti5O12 thin-film electrodes. Chemsuschem 13, 4041–4050 (2020). https://doi.org/10.1002/cssc.202001086

    Article  CAS  PubMed  Google Scholar 

  173. Jow, T.R., Delp, S.A., Allen, J.L., et al.: Factors limiting Li+ charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 165, A361–A367 (2018). https://doi.org/10.1149/2.1221802jes

    Article  Google Scholar 

  174. Li, Q.Y., Jiao, S.H., Luo, L.L., et al.: Wide-temperature electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 18826–18835 (2017). https://doi.org/10.1021/acsami.7b04099

    Article  CAS  PubMed  Google Scholar 

  175. Hu, J.Z., Jaegers, N.R., Chen, Y., et al.: Adsorption and thermal decomposition of electrolytes on nanometer magnesium oxide: an in situ 13C MAS NMR study. ACS Appl. Mater. Interfaces 11, 38689–38696 (2019). https://doi.org/10.1021/acsami.9b11888

    Article  CAS  PubMed  Google Scholar 

  176. Ohba, N., Ogata, S., Asahi, R.: Hybrid quantum-classical simulation of Li ion dynamics and the decomposition reaction of electrolyte liquid at a negative-electrode/electrolyte interface. J. Phys. Chem. C 123, 9673–9679 (2019). https://doi.org/10.1021/acs.jpcc.8b11737

    Article  CAS  Google Scholar 

  177. Markevich, E., Salitra, G., Rosenman, A., et al.: The effect of a solid electrolyte interphase on the mechanism of operation of lithium–sulfur batteries. J. Mater. Chem. A 3, 19873–19883 (2015). https://doi.org/10.1039/c5ta04613k

    Article  CAS  Google Scholar 

  178. Marino, C., Boulaoued, A., Fullenwarth, J., et al.: Solvation and dynamics of lithium ions in carbonate-based electrolytes during cycling followed by operando infrared spectroscopy: the example of NiSb2, a typical negative conversion-type electrode material for lithium batteries. J. Phys. Chem. C 121, 26598–26606 (2017). https://doi.org/10.1021/acs.jpcc.7b06685

    Article  CAS  Google Scholar 

  179. Huang, W., Boyle, D.T., Li, Y., et al.: Nanostructural and electrochemical evolution of the solid-electrolyte interphase on CuO nanowires revealed by cryogenic-electron microscopy and impedance spectroscopy. ACS Nano 13, 737–744 (2019). https://doi.org/10.1021/acsnano.8b08012

    Article  CAS  PubMed  Google Scholar 

  180. Lu, P., Harris, S.J.: Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011). https://doi.org/10.1016/j.elecom.2011.06.026

    Article  CAS  Google Scholar 

  181. Ilott, A., Jerschow, A.: Probing solid-electrolyte interphase (SEI) growth and ion permeability at undriven electrolyte-metal interfaces using 7Li NMR. J. Phys. Chem. C 122, 12598–12604 (2018). https://doi.org/10.1021/acs.jpcc.8b01958

    Article  CAS  Google Scholar 

  182. Markevich, E., Fridman, K., Sharabi, R., et al.: Amorphous columnar silicon anodes for advanced high voltage lithium ion full cells: dominant factors governing cycling performance. J. Electrochem. Soc. 160, A1824–A1833 (2013). https://doi.org/10.1149/2.085310jes

    Article  CAS  Google Scholar 

  183. Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014). https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  184. Chen, Y.C., Ouyang, C.Y., Song, L.J., et al.: Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. J. Phys. Chem. C 115, 7044–7049 (2011). https://doi.org/10.1021/jp112202s

    Article  CAS  Google Scholar 

  185. Pan, J., Cheng, Y.T., Qi, Y.: General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Phys. Rev. B 91, 134116 (2015). https://doi.org/10.1103/physrevb.91.134116

    Article  ADS  Google Scholar 

  186. Benitez, L., Seminario, J.M.: Ion diffusivity through the solid electrolyte interphase in lithium-ion batteries. J. Electrochem. Soc. 164, E3159–E3170 (2017). https://doi.org/10.1149/2.0181711jes

    Article  CAS  Google Scholar 

  187. Lu, X., Liao, X.Q.: Oxidization of fluid-like Li metal with inherent Li-Li2O interface from simulation insights. J. Mater. 6, 692–701 (2020). https://doi.org/10.1016/j.jmat.2020.05.007

    Article  ADS  Google Scholar 

  188. Li, Y.S., Leung, K., Qi, Y.: Computational exploration of the Li-electrode|electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer. Acc. Chem. Res. 49, 2363–2370 (2016). https://doi.org/10.1021/acs.accounts.6b00363

    Article  CAS  PubMed  Google Scholar 

  189. Liang, C.C.: Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J. Electrochem. Soc. 120, 1289 (1973). https://doi.org/10.1149/1.2403248

    Article  CAS  ADS  Google Scholar 

  190. Pan, J., Zhang, Q.L., Xiao, X.C., et al.: Design of nanostructured heterogeneous solid ionic coatings through a multiscale defect model. ACS Appl. Mater. Interfaces 8, 5687–5693 (2016). https://doi.org/10.1021/acsami.5b12030

    Article  CAS  PubMed  Google Scholar 

  191. Li, C.L., Maier, J.: Ionic space charge effects in lithium fluoride thin films. Solid State Ion. 225, 408–411 (2012). https://doi.org/10.1016/j.ssi.2012.02.036

    Article  CAS  ADS  Google Scholar 

  192. Wang, X., Zeng, W., Hong, L., et al.: Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018). https://doi.org/10.1038/s41560-018-0104-5

    Article  CAS  ADS  Google Scholar 

  193. Wang, L., Zhou, Z.Y., Yan, X., et al.: Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater. 14, 22–48 (2018). https://doi.org/10.1016/j.ensm.2018.02.014

    Article  Google Scholar 

  194. Luo, J., Fang, C.C., Wu, N.L.: High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 8, 1701482 (2018). https://doi.org/10.1002/aenm.201701482

    Article  CAS  Google Scholar 

  195. Liu, K., Pei, A., Lee, H.R., et al.: Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J. Am. Chem. Soc. 139, 4815–4820 (2017). https://doi.org/10.1021/jacs.6b13314

    Article  CAS  PubMed  Google Scholar 

  196. Gao, Y., Zhao, Y.M., Li, Y.C., et al.: Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017). https://doi.org/10.1021/jacs.7b06437

    Article  CAS  PubMed  Google Scholar 

  197. Li, N.W., Shi, Y., Yin, Y.X., et al.: A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018). https://doi.org/10.1002/anie.201713193

    Article  CAS  Google Scholar 

  198. Gao, Z.G., Zhang, S.J., Huang, Z.G., et al.: Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries. Chin. Chem. Lett. 30, 525–528 (2019). https://doi.org/10.1016/j.cclet.2018.05.016

    Article  CAS  Google Scholar 

  199. Zhu, M., Wu, J.X., Wang, Y., et al.: Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126–142 (2019). https://doi.org/10.1016/j.jechem.2018.12.013

    Article  Google Scholar 

  200. Yang, Q.L., Li, W.L., Dong, C., et al.: PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. J. Energy Chem. 42, 83–90 (2020). https://doi.org/10.1016/j.jechem.2019.06.012

    Article  CAS  Google Scholar 

  201. Peng, Z., Wang, S.W., Zhou, J.J., et al.: Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes. J. Mater. Chem. A 4, 2427–2432 (2016). https://doi.org/10.1039/c5ta10050j

    Article  CAS  ADS  Google Scholar 

  202. Han, X.G., Gong, Y.H., Fu, K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821

    Article  CAS  PubMed  ADS  Google Scholar 

  203. Zhou, W.D., Wang, S.F., Li, Y.T., et al.: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016). https://doi.org/10.1021/jacs.6b05341

    Article  CAS  PubMed  Google Scholar 

  204. Duan, H., Yin, Y.X., Shi, Y., et al.: Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 140, 82–85 (2018). https://doi.org/10.1021/jacs.7b10864

    Article  CAS  PubMed  Google Scholar 

  205. Yan, C., Cheng, X.B., Tian, Y., et al.: Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1870181 (2018). https://doi.org/10.1002/adma.201870181

    Article  Google Scholar 

  206. Xu, R., Cheng, X.B., Yan, C., et al.: Artificial interphases for highly stable lithium metal anode. Matter 1, 317–344 (2019). https://doi.org/10.1016/j.matt.2019.05.016

    Article  Google Scholar 

  207. Tao, F., Liu, Y., Ren, X.Y., et al.: Different surface modification methods and coating materials of zinc metal anode. J. Energy Chem. 66, 397–412 (2022). https://doi.org/10.1016/j.jechem.2021.08.022

    Article  CAS  Google Scholar 

  208. Soto, F.A., Yan, P.F., Engelhard, M.H., et al.: Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv. Mater. 29, 1606860 (2017). https://doi.org/10.1002/adma.20160686010.1002/adma.201606860

    Article  Google Scholar 

  209. Nanda, S., Bhargav, A., Manthiram, A.: Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition. Joule 4, 1121–1135 (2020). https://doi.org/10.1016/j.joule.2020.03.020

    Article  CAS  Google Scholar 

  210. Han, F.D., Yue, J., Zhu, X.Y., et al.: Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018). https://doi.org/10.1002/aenm.201703644

    Article  CAS  Google Scholar 

  211. Dong, Q.Y., Hong, B., Fan, H.L., et al.: Inducing the formation of in situ Li3N-rich SEI via nanocomposite plating of Mg3N2 with lithium enables high-performance 3D lithium-metal batteries. ACS Appl. Mater. Interfaces 12, 627–636 (2020). https://doi.org/10.1021/acsami.9b16156

    Article  CAS  PubMed  Google Scholar 

  212. Fan, X.L., Ji, X., Han, F.D., et al.: Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018). https://doi.org/10.1126/sciadv.aau9245

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  213. Liu, F.F., Wang, L.F., Zhang, Z.W., et al.: A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode. Adv. Funct. Mater. 30, 2001607 (2020). https://doi.org/10.1002/adfm.202001607

    Article  CAS  Google Scholar 

  214. Rangasamy, E., Liu, Z.C., Gobet, M., et al.: An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384–1387 (2015). https://doi.org/10.1021/ja508723m

    Article  CAS  PubMed  Google Scholar 

  215. Ding, F., Xu, W., Chen, X.L., et al.: Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013). https://doi.org/10.1149/2.100310jes

    Article  CAS  Google Scholar 

  216. Zheng, J.M., Engelhard, M.H., Mei, D.H., et al.: Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017). https://doi.org/10.1038/nenergy.2017.12

    Article  CAS  ADS  Google Scholar 

  217. Ding, M.S., von Cresce, A., Xu, K.: Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte. J. Phys. Chem. C 121, 2149–2153 (2017). https://doi.org/10.1021/acs.jpcc.6b12636

    Article  CAS  Google Scholar 

  218. Huang, F.F., Ma, G.Q., Wen, Z.Y., et al.: Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. J. Mater. Chem. A 6, 1612–1620 (2018). https://doi.org/10.1039/c7ta08274f

    Article  CAS  Google Scholar 

  219. Giffin, G.A., Moretti, A., Jeong, S., et al.: Connection between lithium coordination and lithium diffusion in [Pyr12O1][FTFSI] ionic liquid electrolytes. Chemsuschem 11, 1981–1989 (2018). https://doi.org/10.1002/cssc.201702288

    Article  CAS  PubMed  Google Scholar 

  220. Peng, H., Nguyen, A.V.: A link between viscosity and cation-anion contact pairs: adventure on the concept of structure-making/breaking for concentrated salt solutions. J. Mol. Liq. 263, 109–117 (2018). https://doi.org/10.1016/j.molliq.2018.04.145

    Article  CAS  Google Scholar 

  221. Kondou, S., Thomas, M.L., Mandai, T., et al.: Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes. Phys. Chem. Chem. Phys. 21, 5097–5105 (2019). https://doi.org/10.1039/c9cp00425d

    Article  CAS  PubMed  Google Scholar 

  222. Dong, Y., Zhang, N., Li, C.X., et al.: Fire-retardant phosphate-based electrolytes for high-performance lithium metal batteries. ACS Appl. Energy Mater. 2, 2708–2716 (2019). https://doi.org/10.1021/acsaem.9b00027

    Article  CAS  Google Scholar 

  223. Dong, X.L., Lin, Y.X., Li, P.L., et al.: High-energy rechargeable metallic lithium battery at –70 °C enabled by a cosolvent electrolyte. Angew. Chem. Int. Ed. 58, 5623–5627 (2019). https://doi.org/10.1002/anie.201900266

    Article  CAS  Google Scholar 

  224. Jafta, C.J., Sun, X.G., Veith, G.M., et al.: Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering. Energy Environ. Sci. 12, 1866–1877 (2019). https://doi.org/10.1039/c8ee02703j

    Article  CAS  Google Scholar 

  225. Heist, A., Lee, S.H.: Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI. J. Electrochem. Soc. 166, A1860–A1866 (2019). https://doi.org/10.1149/2.0381910jes

    Article  CAS  Google Scholar 

  226. Takada, K., Yamada, Y., Yamada, A.: Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent. ACS Appl Mater Interfaces 11, 35770–35776 (2019). https://doi.org/10.1021/acsami.9b12709

    Article  CAS  PubMed  Google Scholar 

  227. Song, H.Y., Jung, M.H., Jeong, S.K.: Improving electrochemical performance at graphite negative electrodes in concentrated electrolyte solutions by addition of 1,2-dichloroethane. Appl. Sci. 9, 4647 (2019). https://doi.org/10.3390/app9214647

    Article  CAS  Google Scholar 

  228. Miao, R.R., Yang, J., Feng, X.J., et al.: Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.011

    Article  CAS  ADS  Google Scholar 

  229. Xiong, S.Z., Xie, K., Diao, Y., et al.: Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries. J. Power Sources 246, 840–845 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.041

    Article  CAS  ADS  Google Scholar 

  230. Duangdangchote, S., Krittayavathananon, A., Phattharasupakun, N., et al.: Insight into the effect of additives widely used in lithium-sulfur batteries. Chem. Commun. 55, 13951–13954 (2019). https://doi.org/10.1039/c9cc06504ka

    Article  CAS  Google Scholar 

  231. Hou, T.Z., Xu, W.T., Chen, X., et al.: Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem. Int. Ed. 56, 8178–8182 (2017). https://doi.org/10.1002/anie.201704324

    Article  CAS  Google Scholar 

  232. Zhang, X.Q., Chen, X., Hou, L.P., et al.: Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 4, 411–416 (2019). https://doi.org/10.1021/acsenergylett.8b02376

    Article  CAS  ADS  Google Scholar 

  233. Lee, S.H., Hwang, J.Y., Ming, J., et al.: Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry. Adv. Energy Mater. 10, 2000567 (2020). https://doi.org/10.1002/aenm.202000567

    Article  CAS  Google Scholar 

  234. Ouyang, Y., Guo, Y.P., Li, D., et al.: Single additive with dual functional-ions for stabilizing lithium anodes. ACS Appl. Mater. Interfaces 11, 11360–11368 (2019). https://doi.org/10.1021/acsami.8b21420

    Article  CAS  PubMed  Google Scholar 

  235. Shimizu, M., Umeki, M., Arai, S.: Suppressing the effect of lithium dendritic growth by the addition of magnesium bis(trifluoromethanesulfonyl)amide. Phys Chem Chem Phys 20, 1127–1133 (2018). https://doi.org/10.1039/c7cp06057b

    Article  CAS  PubMed  Google Scholar 

  236. Zeng, W.D., Cheng, M.M.C., Ng, S.K.Y.: Effects of transition metal cation additives on the passivation of lithium metal anode in Li-S batteries. Electrochim. Acta 319, 511–517 (2019). https://doi.org/10.1016/j.electacta.2019.06.177

    Article  CAS  Google Scholar 

  237. Tu, Z.Y., Choudhury, S., Zachman, M.J., et al.: Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nat. Energy 3, 310–316 (2018). https://doi.org/10.1038/s41560-018-0096-1

    Article  CAS  ADS  Google Scholar 

  238. Liang, X., Pang, Q., Kochetkov, I.R., et al.: A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017). https://doi.org/10.1038/nenergy.2017.119

    Article  CAS  ADS  Google Scholar 

  239. Xu, X.F., Zhou, D., Qin, X.Y., et al.: A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 9, 3870 (2018). https://doi.org/10.1038/s41467-018-06443-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  240. Pang, Q., Liang, X., Kochetkov, I.R., et al.: Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chem. Int. Ed. 57, 9795–9798 (2018). https://doi.org/10.1002/anie.201805456

    Article  CAS  Google Scholar 

  241. Ye, H., Yin, Y.X., Zhang, S.F., et al.: Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy 36, 411–417 (2017). https://doi.org/10.1016/j.nanoen.2017.04.056

    Article  CAS  Google Scholar 

  242. Ding, F., Xu, W., Chen, X.L., et al.: Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism. J. Phys. Chem. C 118, 4043–4049 (2014). https://doi.org/10.1021/jp4127754

    Article  CAS  Google Scholar 

  243. Zhang, Y.H., Qian, J.F., Xu, W., et al.: Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14, 6889–6896 (2014). https://doi.org/10.1021/nl5039117

    Article  CAS  PubMed  ADS  Google Scholar 

  244. Pasquale, M.A., Gassa, L.M., Arvia, A.J.: Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives. Electrochim. Acta 53, 5891–5904 (2008). https://doi.org/10.1016/j.electacta.2008.03.073

    Article  CAS  Google Scholar 

  245. Böttcher, T., Duda, B., Kalinovich, N., et al.: Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries. Prog. Solid State Chem. 42, 202–217 (2014). https://doi.org/10.1016/j.progsolidstchem.2014.04.013

    Article  CAS  Google Scholar 

  246. Liu, S.F., Ji, X., Piao, N., et al.: An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60, 3661–3671 (2021). https://doi.org/10.1002/anie.202012005

    Article  CAS  Google Scholar 

  247. Guo, J., Wen, Z.Y., Wu, M.F., et al.: Vinylene carbonate-LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 51, 59–63 (2015). https://doi.org/10.1016/j.elecom.2014.12.008

    Article  CAS  Google Scholar 

  248. Liu, M., Cheng, Z., Qian, K., et al.: Efficient Li-metal plating/stripping in carbonate electrolytes using a LiNO3-gel polymer electrolyte, monitored by operando neutron depth profiling. Chem. Mater. 31, 4564–4574 (2019). https://doi.org/10.1021/acs.chemmater.9b01325

    Article  CAS  Google Scholar 

  249. Qi, S.H., He, J., Liu, J.D., et al.: Phosphonium bromides regulating solid electrolyte interphase components and optimizing solvation sheath structure for suppressing lithium dendrite growth. Adv. Funct. Mater. 31, 2009013 (2021). https://doi.org/10.1002/adfm.202009013

    Article  CAS  Google Scholar 

  250. Cheng, X.B., Yan, C., Peng, H.J., et al.: Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. Energy Storage Mater. 10, 199–205 (2018). https://doi.org/10.1016/j.ensm.2017.03.008

    Article  Google Scholar 

  251. Roh, Y., Kim, Y.-J., Lee, J.H., et al.: Sustainable formation of sulfur-enriched solid electrolyte interface on a Li metal electrode by sulfur chain-containing polymer electrolyte interfacial layers. ACS Appl. Energy Mater. 3, 10070–10079 (2020). https://doi.org/10.1021/acsaem.0c01758

    Article  CAS  Google Scholar 

  252. Xu, J.G., Tian, H.K., Qi, J., et al.: Mechanical and electronic stabilization of solid electrolyte interphase with sulfite additive for lithium metal batteries. J. Electrochem. Soc. 166, A3201–A3206 (2019). https://doi.org/10.1149/2.0331914jes

    Article  Google Scholar 

  253. Dai, H.L., Xi, K., Liu, X., et al.: Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J. Am. Chem. Soc. 140, 17515–17521 (2018). https://doi.org/10.1021/jacs.8b08963

    Article  CAS  PubMed  Google Scholar 

  254. Wang, Q., Yang, C.K., Zhang, Y.F., et al.: Surface-based Li+ complex enables uniform lithium deposition for stable lithium metal anodes. ACS Appl. Energy Mater. 2, 4602–4608 (2019). https://doi.org/10.1021/acsaem.9b00929

    Article  CAS  Google Scholar 

  255. Wang, X.S., Mai, W.C., Guan, X.C., et al.: Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques. Energy Environ. Mater. 4, 284–292 (2021). https://doi.org/10.1002/eem2.12109

    Article  CAS  Google Scholar 

  256. Guo, J.Q., Chen, Y.P., Xiao, Y.B., et al.: Flame-retardant composite gel polymer electrolyte with a dual acceleration conduction mechanism for lithium ion batteries. Chem. Eng. J. 422, 130526 (2021). https://doi.org/10.1016/j.cej.2021.130526

    Article  CAS  Google Scholar 

  257. Moffat, T.P., Wheeler, D., Kim, S.K., et al.: Curvature enhanced adsorbate coverage model for electrodeposition. J. Electrochem. Soc. 153, C127 (2006). https://doi.org/10.1149/1.2165580

    Article  CAS  Google Scholar 

  258. Chen, K.H., Wood, K.N., Kazyak, E., et al.: Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017). https://doi.org/10.1039/c7ta00371d10.1039/c7ta00371d

    Article  CAS  Google Scholar 

  259. Liang, L.Y., Chen, L.Q.: Nonlinear phase field model for electrodeposition in electrochemical systems. Appl. Phys. Lett. 105, 263903 (2014). https://doi.org/10.1063/1.4905341

    Article  CAS  ADS  Google Scholar 

  260. Mullins, W.W., Sekerka, R.F.: Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444–451 (1964). https://doi.org/10.1063/1.1713333

    Article  ADS  Google Scholar 

  261. Mullins, W.W., Sekerka, R.F.: Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323–329 (1963). https://doi.org/10.1063/1.1702607

    Article  CAS  ADS  Google Scholar 

  262. Ahmad, Z., Viswanathan, V.: Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119, 056003 (2017). https://doi.org/10.1103/physrevlett.119.056003

    Article  CAS  PubMed  ADS  Google Scholar 

  263. Ahmad, Z., Viswanathan, V.: Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces. Phys. Rev. Mater. 1, 055403 (2017). https://doi.org/10.1103/physrevmaterials.1.055403

    Article  CAS  Google Scholar 

  264. Tikekar, M.D., Archer, L.A., Koch, D.L.: Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016). https://doi.org/10.1126/sciadv.1600320

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  265. Monroe, C., Newman, J.: Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377 (2003). https://doi.org/10.1149/1.1606686

    Article  CAS  Google Scholar 

  266. Monroe, C., Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005). https://doi.org/10.1149/1.1850854

    Article  CAS  Google Scholar 

  267. Monroe, C., Newman, J.: The effect of interfacial deformation on electrodeposition kinetics. J. Electrochem. Soc. 151, A880 (2004). https://doi.org/10.1149/1.1710893

    Article  CAS  Google Scholar 

  268. Legrand, N., Knosp, B., Desprez, P., et al.: Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling. J. Power Sources 245, 208–216 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.130

    Article  CAS  ADS  Google Scholar 

  269. Doh, C.H., Han, B.C., Jin, B.S., et al.: Structures and formation energies of LixC6 (x = 1–3) and its homologues for lithium rechargeable batteries. Bull. Korean Chem. Soc. 32, 2045–2050 (2011). https://doi.org/10.5012/bkcs.2011.32.6.2045

    Article  CAS  Google Scholar 

  270. Mistry, A., Fear, C., Carter, R., et al.: Electrolyte confinement alters lithium electrodeposition. ACS Energy Lett. 4, 156–162 (2019). https://doi.org/10.1021/acsenergylett.8b02003

    Article  CAS  Google Scholar 

  271. López, C.M., Vaughey, J.T., Dees, D.W.: Morphological transitions on lithium metal anodes. J. Electrochem. Soc. 156, A726 (2009). https://doi.org/10.1149/1.3158548

    Article  CAS  Google Scholar 

  272. Cohen, Y.S., Cohen, Y., Aurbach, D.: Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 104, 12282–12291 (2000). https://doi.org/10.1021/jp002526b

    Article  CAS  Google Scholar 

  273. Fan, H.L., Gao, C.H., Jiang, H., et al.: A systematical study on the electrodeposition process of metallic lithium. J. Energy Chem. 49, 59–70 (2020). https://doi.org/10.1016/j.jechem.2020.01.013

    Article  Google Scholar 

  274. Liu, H., Cheng, X.B., Xu, R., et al.: Plating/stripping behavior of actual lithium metal anode. Adv. Energy Mater. 9, 1902254 (2019). https://doi.org/10.1002/aenm.201902254

    Article  CAS  Google Scholar 

  275. Chen, L., Zhang, H.W., Liang, L.Y., et al.: Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power Sources 300, 376–385 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.055

    Article  CAS  ADS  Google Scholar 

  276. Pinson, M.B., Bazant, M.Z.: Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. J. Electrochem. Soc. 160, A243–A250 (2012). https://doi.org/10.1149/2.044302jes

    Article  CAS  Google Scholar 

  277. Williamson, M.J., Tromp, R.M., Vereecken, P.M., et al.: Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532–536 (2003). https://doi.org/10.1038/nmat944

    Article  CAS  PubMed  ADS  Google Scholar 

  278. Liang, Z., Lin, D.C., Zhao, J., et al.: Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. PNAS 113, 2862–2867 (2016). https://doi.org/10.1073/pnas.1518188113

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  279. Liu, Y.Y., Lin, D.C., Liang, Z., et al.: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016). https://doi.org/10.1038/ncomms10992

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  280. Zhang, Y., Luo, W., Wang, C.W., et al.: High-capacity, low-tortuosity, and channel-guided lithium metal anode. PNAS 114, 3584–3589 (2017). https://doi.org/10.1073/pnas.1618871114

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  281. Li, Y.J., Jiao, J.Y., Bi, J.P., et al.: Controlled deposition of Li metal. Nano Energy 32, 241–246 (2017). https://doi.org/10.1016/j.nanoen.2016.12.030

    Article  CAS  Google Scholar 

  282. Li, Q., Zhu, S.P., Lu, Y.Y.: 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 27, 1606422 (2017). https://doi.org/10.1002/adfm.201606422

    Article  CAS  Google Scholar 

  283. Huang, S.B., Zhang, W.F., Ming, H., et al.: Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett. 19, 1832–1837 (2019). https://doi.org/10.1021/acs.nanolett.8b04919

    Article  CAS  PubMed  ADS  Google Scholar 

  284. Zou, P.C., Wang, Y., Chiang, S.W., et al.: Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat. Commun. 9, 464 (2018). https://doi.org/10.1038/s41467-018-02888-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  285. Yang, G.H., Chen, J.D., Xiao, P.T., et al.: Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. J. Mater. Chem. A 6, 9899–9905 (2018). https://doi.org/10.1039/c8ta02810a

    Article  CAS  Google Scholar 

  286. Wang, Y.Y., Wang, Z.J., Lei, D.N., et al.: Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance. ACS Appl. Mater. Interfaces 10, 20244–20249 (2018). https://doi.org/10.1021/acsami.8b04881

    Article  CAS  PubMed  Google Scholar 

  287. Wang, S.H., Yin, Y.X., Zuo, T.T., et al.: Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 29, 1703729 (2017). https://doi.org/10.1002/adma.201703729

    Article  CAS  Google Scholar 

  288. Li, Z.H., Li, X.L., Zhou, L., et al.: A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy 49, 179–185 (2018). https://doi.org/10.1016/j.nanoen.2018.04.040

    Article  CAS  Google Scholar 

  289. Yu, L., Canfield, N.L., Chen, S.R., et al.: Enhanced stability of lithium metal anode by using a 3D porous nickel substrate. ChemElectroChem 5, 761–769 (2018). https://doi.org/10.1002/celc.201701250

    Article  CAS  Google Scholar 

  290. Zhang, R., Wen, S.W., Wang, N., et al.: N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv. Energy Mater. 8, 1800914 (2018). https://doi.org/10.1002/aenm.201800914

    Article  CAS  Google Scholar 

  291. Shen, L., Shi, P.R., Hao, X.G., et al.: Progress on lithium dendrite suppression strategies from the interior to exterior by hierarchical structure designs. Small 16, 2000699 (2020). https://doi.org/10.1002/smll.202000699

    Article  CAS  Google Scholar 

  292. Xue, W.J., Huang, M.J., Li, Y.T., et al.: Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021). https://doi.org/10.1038/s41560-021-00792-y

    Article  CAS  ADS  Google Scholar 

  293. Shin, D.Y., Ahn, H.J.: Interfacial engineering of a heteroatom-doped graphene layer on patterned aluminum foil for ultrafast lithium storage kinetics. ACS Appl. Mater. Interfaces 12, 19210–19217 (2020). https://doi.org/10.1021/acsami.0c01774

    Article  CAS  PubMed  Google Scholar 

  294. Kim, S.J., Moon, S.H., Kim, M.C., et al.: Micro-patterned 3D Si electrodes fabricated using an imprinting process for high-performance lithium-ion batteries. J. Appl. Electrochem. 48, 1057–1068 (2018). https://doi.org/10.1007/s10800-018-1234-y

    Article  CAS  Google Scholar 

  295. Kim, Y.J., Jin, H.S., Lee, D.H., et al.: Guided lithium deposition by surface micro-patterning of lithium-metal electrodes. ChemElectroChem 5, 3169–3175 (2018). https://doi.org/10.1002/celc.201800694

    Article  CAS  Google Scholar 

  296. Li, Q., Quan, B.G., Li, W.J., et al.: Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure. Nano Energy 45, 463–470 (2018). https://doi.org/10.1016/j.nanoen.2018.01.019

    Article  CAS  Google Scholar 

  297. Park, J., Kim, D., Jin, D., et al.: Size effects of micro-pattern on lithium metal surface on the electrochemical performance of lithium metal secondary batteries. J. Power Sources 408, 136–142 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.061

    Article  CAS  ADS  Google Scholar 

  298. Park, J., Jeong, J., Lee, Y., et al.: Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries. Adv. Mater. Interfaces 3, 1600140 (2016). https://doi.org/10.1002/admi.201600140

    Article  CAS  Google Scholar 

  299. Ryou, M.H., Lee, Y.M., Lee, Y., et al.: Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015). https://doi.org/10.1002/adfm.201402953

    Article  CAS  Google Scholar 

  300. Zhai, P.B., Wei, Y., Xiao, J., et al.: In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes. Adv. Energy Mater. 10, 1903339 (2020). https://doi.org/10.1002/aenm.201903339

    Article  CAS  Google Scholar 

  301. Deng, W., Zhou, X.F., Fang, Q.L., et al.: Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 8, 1703152 (2018). https://doi.org/10.1002/aenm.201703152

    Article  CAS  ADS  Google Scholar 

  302. Yan, K., Lu, Z.D., Lee, H.W., et al.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10

    Article  CAS  ADS  Google Scholar 

  303. Ahn, J., Park, J., Kim, J.Y., et al.: Insights into lithium surface: stable cycling by controlled 10 μm deep surface relief, reinterpreting the natural surface defect on lithium metal anode. ACS Appl. Energy Mater. 2, 5656–5664 (2019). https://doi.org/10.1021/acsaem.9b00805

    Article  CAS  Google Scholar 

  304. Shen, X., Zhang, R., Chen, X., et al.: The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10, 1903645 (2020). https://doi.org/10.1002/aenm.202070045

    Article  CAS  Google Scholar 

  305. Kushima, A., So, K.P., Su, C., et al.: Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams. Nano Energy 32, 271–279 (2017). https://doi.org/10.1016/j.nanoen.2016.12.001

    Article  CAS  Google Scholar 

  306. He, Y., Ren, X.D., Xu, Y.B., et al.: Origin of lithium whisker formation and growth under stress. Nat. Nanotechnol. 14, 1042–1047 (2019). https://doi.org/10.1038/s41565-019-0558-z

    Article  CAS  PubMed  ADS  Google Scholar 

  307. Ishikawa, K., Ito, Y., Harada, S., et al.: Crystal orientation dependence of precipitate structure of electrodeposited Li metal on Cu current collectors. Cryst. Growth Des. 17, 2379–2385 (2017). https://doi.org/10.1021/acs.cgd.6b01710

    Article  CAS  Google Scholar 

  308. White, E.R., Singer, S.B., Augustyn, V., et al.: In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308–6317 (2012). https://doi.org/10.1021/nn3017469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Yu, S.H., Huang, X., Brock, J.D., et al.: Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study. J. Am. Chem. Soc. 141, 8441–8449 (2019). https://doi.org/10.1021/jacs.8b13297

    Article  CAS  PubMed  Google Scholar 

  310. Hsieh, Y.C., Leißing, M., Nowak, S., et al.: Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020). https://doi.org/10.1016/j.xcrp.2020.100139

    Article  CAS  Google Scholar 

  311. Magnussen, O.M., Hotlos, J., Nichols, R.J., et al.: Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed by in situ scanning tunneling microscopy. Phys. Rev. Lett. 64, 2929–2932 (1990). https://doi.org/10.1103/physrevlett.64.2929

    Article  CAS  PubMed  ADS  Google Scholar 

  312. Manne, S., Hansma, P.K., Massie, J., et al.: Atomic-resolution electrochemistry with the atomic force microscope: copper deposition on gold. Science 251, 183–186 (1991). https://doi.org/10.1126/science.251.4990.183

    Article  CAS  PubMed  ADS  Google Scholar 

  313. Bard, A.J., Fan, F.R.: Introductory lecture. Studies of the liquid/solid interface by scanning tunnelling microscopy and scanning electrochemical microscopy. Faraday Disc. 94, 1–22 (1992). https://doi.org/10.1039/fd9929400001

    Article  CAS  ADS  Google Scholar 

  314. Schmidt, W.U., Alkire, R.C., Gewirth, A.A.: Mechanic study of copper deposition onto gold surfaces by scaling and spectral analysis of in situ atomic force microscopic images. J. Electrochem. Soc. 143, 3122–3132 (1996). https://doi.org/10.1149/1.1837174

    Article  CAS  ADS  Google Scholar 

  315. Schneeweiss, M.A., Kolb, D.M.: The initial stages of copper deposition on bare and chemically modified gold electrodes. Phys. Stat. Sol. (a) 173, 51–71 (1999). https://doi.org/10.1002/(SICI)1521-396X(199905)173:1%3c51::AID-PSSA51%3e3.0.CO;2-O

    Article  CAS  ADS  Google Scholar 

  316. Hölzle, M.H., Zwing, V., Kolb, D.M.: The influence of steps on the deposition of Cu onto Au(111). Electrochim. Acta 40, 1237–1247 (1995). https://doi.org/10.1016/0013-4686(95)00055-J

    Article  Google Scholar 

  317. Gunawardena, G., Hills, G., Montenegro, I., et al.: Electrochemical nucleation: Part I. General considerations. J. Electroanal. Chem. Interfacial Electrochem. 138, 225–239 (1982). https://doi.org/10.1016/0022-0728(82)85080-8

    Article  CAS  Google Scholar 

  318. Vereecken, P.M., Strubbe, K., Gomes, W.P.: An improved procedure for the processing of chronoamperometric data: application to the electrodeposition of Cu upon (100) n-GaAs. J. Electroanal. Chem. 433, 19–31 (1997). https://doi.org/10.1016/S0022-0728(97)00195-2

    Article  CAS  Google Scholar 

  319. Radisic, A., Long, J.G., Hoffmann, P.M., et al.: Nucleation and growth of copper on TiN from pyrophosphate solution. J. Electrochem. Soc. 148, C41 (2001). https://doi.org/10.1149/1.1344539

    Article  CAS  Google Scholar 

  320. Kamrani Moghaddam, L., Ramezani Paschepari, S., Zaimy, M.A., et al.: The inhibition of epidermal growth factor receptor signaling by hexagonal selenium nanoparticles modified by SiRNA. Cancer Gene Ther. 23, 321–325 (2016). https://doi.org/10.1038/cgt.2016.38

    Article  CAS  PubMed  Google Scholar 

  321. Koch, S.L., Morgan, B.J., Passerini, S., et al.: Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes. J. Power Sources 296, 150–161 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.027

    Article  CAS  ADS  Google Scholar 

  322. Ghassemi, H., Au, M., Chen, N., et al.: Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery. Appl. Phys. Lett. 99, 123113 (2011). https://doi.org/10.1063/1.3643035

    Article  CAS  ADS  Google Scholar 

  323. Liu, X.H., Zhong, L., Zhang, L.Q., et al.: Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl. Phys. Lett. 98, 183107 (2011). https://doi.org/10.1063/1.3585655

    Article  CAS  ADS  Google Scholar 

  324. Kelton, K.F.: Crystal nucleation in liquids and glasses. Solid State Phys. 45, 75–177 (1991). https://doi.org/10.1016/S0081-1947(08)60144-7

    Article  CAS  Google Scholar 

  325. Li, Y.Q., Zhang, L.Y., Liu, S.F., et al.: Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy 62, 367–375 (2019). https://doi.org/10.1016/j.nanoen.2019.05.020

    Article  CAS  Google Scholar 

  326. Mehdi, B.L., Stevens, A., Qian, J.F., et al.: The impact of Li grain size on coulombic efficiency in Li batteries. Sci. Rep. 6, 34267 (2016). https://doi.org/10.1038/srep34267

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  327. Yan, K., Wang, J.Y., Zhao, S.Q., et al.: Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 58, 11364–11368 (2019). https://doi.org/10.1002/anie.201905251

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the National Key Research and Development Program of China (2020YFA0710303), National Natural Science Foundation of China (No. 22109025), Natural Science Foundation of Fujian Province, China (2021J05121). B.R. Li and Y. Chao contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengkai Yang, Yan Yu or Jiujun Zhang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chao, Y., Li, M. et al. A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. Electrochem. Energy Rev. 6, 7 (2023). https://doi.org/10.1007/s41918-022-00147-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00147-5

Keywords

Navigation