Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T10:51:48.620Z Has data issue: false hasContentIssue false

19 - The macrophyte flora of the Crato Formation

Published online by Cambridge University Press:  22 August 2009

David M. Martill
Affiliation:
University of Portsmouth
Günter Bechly
Affiliation:
Staatliches Museum für Naturkunde, Stuttgart
Robert F. Loveridge
Affiliation:
University of Portsmouth
Barbara A. R. Mohr
Affiliation:
Institut für Paläontologie, Museum für Naturkunde, Zentralinstitut der Humboldt-Universitat zu Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany
Mary E. C. Bernardes-de-Oliveira
Affiliation:
Institute of Geosciences, University of Sao Paulo, Cidade Universitaria, Rua do Lago 562 CEP 05508–080, São Paulo, SP, Brazil
Robert F. Loveridge
Affiliation:
Research Fellow in the School of Earth and Environmental Sciences University of Portsmouth
Get access

Summary

Introduction

Plant fossils from the Crato Formation are not only remarkable because of their beauty, but equally because of their scientific value, being on the cusp of the gymnosperm decline and the angiosperm radiation. Many of these fossils are preserved more or less entire, often with roots, stems, leaves, sporangia and flowering structures attached; there is also palaeosoil present in some specimens (Figure 19.1). The more or less complete fossils are not only attractive, but are of immense importance to the palaeobotanist, who often has to deal with dispersed organs, of which the natural connection remains unknown, until a more complete specimen is found.

The original organic material of the Crato plant fossils is generally covered or replaced by goethite, a hydrated iron oxide, which causes the rusty, conspicuous colouring of the weathered fossils. Often, they are very weathered, poorly preserved and can only be seen as reddish brown impressions on the light yellowish slabs. In rare cases, mainly in specimens coming from layers at the base of the section, black organic material with cellular structures can be preserved. Then, fine details, even of reproductive organs – the most indicative parts concerning the taxonomic evaluation of a plant – may be observed three-dimensionally with scanning electron microscopy (SEM).

The palaeoflora is known to be relatively diverse, but has not been fully described. It is now being investigated by an international team of researchers from various Brazilian and European institutions (FAPESP/Fundaçao de Amparo à Pesquisa do Estado de São Paulo).

Type
Chapter
Information
The Crato Fossil Beds of Brazil
Window into an Ancient World
, pp. 537 - 565
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvin, K. L. 1982. Cheirolepidiaceae: biology, structure and palecology. Review of Palaeobotany and Palynology 37: 71–98.CrossRefGoogle Scholar
Arai, M., Coimbra, J. C. and Silva-Telles, Jr, A. C. 2001. Síntese bioestratigráfica da bacia do Araripe (nordeste do Brasil), pp. 109–117, 122–124. InBarros, L. M., Nuvens, P. C. and Filgueira, J. B. M. (eds), Atas do II Simpósio sobre a bacia do Araripe e bacias interiores do Nordeste. Comunicações (Coleção Chapada do Araripe number 1). Crato, Ceará State, Brazil:Universidade Regional do Cariri (URCA).Google Scholar
Archangelsky, S. 1963. A new Mesozoic flora from Ticó. Santa Cruz Province. Argentina. Bulletin of the British Museum (Natural History), Geology 8: 45–92.Google Scholar
Archangelsky, S. 1966. New gymnosperms from the Ticó Flora, Santa Cruz Province, Argentina. Bulletin of the British Museum (Natural History), Geology 13: 259–295.Google Scholar
Archangelsky, S. 1968. On the genus Tomaxellia (Coniferae) from the Lower Cretaceous of Patagonia (Argentina) and its male and female cones. Journal of the Linnean Society London, Botany 61: 153–165.CrossRefGoogle Scholar
Barreto, A. M. F., Bernardes-de-Oliveira, M. E. C., Dilcher, D. L., Mandarim-de-Lacerda, A. F. and Viana, M. S. S. 2000. Early Cretaceous monocarpelar fruit of the Crato Member, Santana Formation, Araripe Basin, Northeastern Brazil. Geosciencias 5: 121–124.Google Scholar
Bernardes-de-Oliveira, M. E. C., Lima, M. R. and Pons, D. 1993. Folhas de Araucariaceae da Formaçao Santana, Cretáceo do Nordeste do Brasil. Anais Academia Brasileira de Ciencias 65: 329–330.Google Scholar
Bino, R. J., Dafni, A. and Meeuse, A. D. J. 1984. Entomophily in the dioecious gymnosperm Ephedra aphylla Forsk., with some notes on E. campylopoda C. A. Mey. Proceedings of Koninkliijke Nederland Akademic van Wetenschapen C 87: 1–24.Google Scholar
Bowe, L. M., Coat, G. and Pamphilis, C. W. 2000. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proceedings of the National Academy of Sciences USA 97: 4092–4097.CrossRefGoogle ScholarPubMed
Cao, Z., Wu, S., Zhang, P. and Li, J. 1998. Discovery of fossil monocotyledons from Yixian Formation, western Liaoning. Chinese Science Bulletin 43: 230–233.CrossRefGoogle Scholar
Chaw, S.- M., Parkinson, C. L., Cheng, Y., Vincent, T. M. and Palmer, J. D. 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales and conifers. Proceedings of the National Academy of Sciences USA 97: 4086–4091.CrossRefGoogle ScholarPubMed
Crane, P. R. 1991. Fossil plants, pp. 414–421. InMaisey, J. G. (ed.), Santana Fossils: an Illustrated Atlas. Neptune City, NJ: T.F.H. Publications.Google Scholar
Crane, P. R. 1996. The fossil history of the Gnerales. International Journal Plant Science 157 (suppl. 6): S50–S57.CrossRefGoogle Scholar
Crane, P. R.and Upchurch, G. R. 1987. Drewria potomacensis gen. et sp. nov., an Early Cretaceous member of Gnetales from the Potomac Group of Virginia. American Journal of Botany 74: 1722–1736.CrossRefGoogle Scholar
Crane, P. R.and Hult, C. M. 1988. The Gnetales: botanical remnants from the age of the dinosaurs. Field Museum Botanical59: 21–29.
Crane, P. R. and Lidgard, S. H. 1989. Paleolatitudinal gradients and temporal trends in Cretaceous floristic diversity. Science 246: 675–678.CrossRefGoogle Scholar
Dettmann, M. E. and Clifford, T. 1992. Phylogeny and biogeography of Ruffordia, Mohria and Anemia (Schizeaceae) and Ceratopteris (Pteridaceae): evidence from in situ and dispersed spores. Alcheringa 16: 269–314.CrossRefGoogle Scholar
Dilcher, D. L., Bernardes-de-Oliveira, M. E. C., Pons, D. and Lott, T. A. 2005a. Welwitschiaceae from the Lower Cretaceous of northeastern Brazil. American Journal of Botany 92: 1294–1310.CrossRefGoogle Scholar
Dilcher, D. L., Dilcher, D. L., Bernardes-de-Oliveira, M. E. C., Pons, D.Bernardes-de-Oliveira, M. E. C.Pons, D. and Lott, T. A. 2005b. Erratum. American Journal of Botany 92: 1957.Google Scholar
Doyle, J. A. 1996. Seed plant phylogeny and the relationships of Gnetales. International Journal of Plant Science 157: 3–39.CrossRefGoogle Scholar
Doyle, J. A. 1998. Phylogeny of vascular plants. Annual Review of Ecology and Systematics 29: 567–599.CrossRefGoogle Scholar
Duan, S. 1998. The oldest Gnetophyte – a tricarpous female reproductive fossil from western Liaoning Province, NE China. Science China 41: 14–20.CrossRefGoogle Scholar
Duarte, L. 1985. Vegetais fósseis da Chapada do Araripe, Brasil. Coletânea de Trabalhos Paleontológicos do VIII Congresso Brasileiro de Paleontologia 1983, Série Geologia 27, Seçäo Paleontologia e Estatigrafia 2, Brasilia: 557–563.Google Scholar
Duarte, L.Duarte, L. 1993. Restos de Araucariaceas da Formação Santana – Membro Crato (Aptiano), NE do Brasil. Anais Academia Brasileira, Ciencias 65: 357–362.Google Scholar
Duek, J. J. 1980. A taxonomical monograph of Anemia subgenus Anemiorrhiza (Filicinae). Feddes Repertorium 91: 69–87.CrossRefGoogle Scholar
Dunlop, J. A. and Martill, D. M. 2004. Four additional specimens of the fossil camel spider Cratosolpuga wunderlichi Selden 1996 (Arachnida: Solifugae) from the Lower Cretaceous Crato Formation of Brazil. Review Iberica Aracnologia 9: 143–156.Google Scholar
Endress, P. K. 1993. Eupomatiaceae, pp. 296–298. InKubitzki, K. (ed.), The Families and Genera of Vascular Plants, vol. II. Berlin: Springer.Google Scholar
Endress, P. K. 1996. Structure and function of female and bisexual organ complexes in Gnetales. International Journal of Plant Science157 (suppl. 6): S113–S125.
Ervik, F. and Knudsen, J. T. 2003. Water lilies and scarabs: faithful partners for 100 million years?Biological Journal of the Linnean Society 80: 539–543.CrossRefGoogle Scholar
Feild, T. S., Arens, N. C. and Dawson, T. E. 2003. The ancestral ecology of angiosperms. Emerging perspectives from extant basal lineages. International Journal of Plant Science 164 (suppl. 3): S129–S142.CrossRefGoogle Scholar
Feild, T. S., Feild, T. S., Arens, N. C., and Dawson, T. E.. Arens, N. C., Doyle, J. A., Dawson, T. E. and Donoghue, M. J. 2004. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology 30: 82–107.2.0.CO;2>CrossRefGoogle Scholar
Friedman, W. E. 1996. Introduction to biology and evolution of the Gnetales. International Journal of Plant Science 157 (suppl. 6): S1–S2.CrossRefGoogle Scholar
Friis, E. M., Crane, P. R. and Pedersen, K. R. 1988. Reproductive structures of Cretaceous Platanaceae. Biologiske Skrifter 31: 1–55.Google Scholar
Friis, E. M., Crane, P. R., and Pedersen, K. R.., Pedersen, K. R. and Crane, P. R. 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 357–360.CrossRefGoogle ScholarPubMed
Friis, E. M., Pedersen, K. R. and Crane, P. R. 2004. Araceae from the Early Cretaceous of Portugal: evidence on the emergence of monocotyledons. Proceedings of the National Academy of Sciences USA 101: 16565–16570.CrossRefGoogle ScholarPubMed
Gandolfo, M. A., Nixon, K. C. and Crepet, W. L. 2000. Monocotyledons: a review of their Early Cretaceous record, pp. 44–51. InWilson, K. L. and Morrison, D. A. (eds), Monocots: Systematics and Evolution. Melbourne: CSIRO.Google Scholar
Goremykin, V., Bobrova, V., Pahnke, J.et al. 1996. Non-coding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Molecular Biology and Evolution 13: 383–396.CrossRefGoogle Scholar
Guo, S.-X. and Wu, X.-W. 2000. Ephedrites from latest Jurassic Yixian Formation in Western Liaoning, Northeast China. Acta Palaeontogia Sinica 39: 89–91.Google Scholar
Harris, T. M. and Miller, J. 1974. The Yorkshire Jurassic Flora. IV. 2. Czekanowskiales. London: British Museum (Natural History).Google Scholar
Jung, W. 1974. Die Konifere Brachyphyllum nepos Saporta aus den Solnhofener Plattenkalken (unteres Untertithon), ein Halophyt. Mitteilungen Bayerische Staatssammlung für Paläontologie und Historische Geologie 14: 49–58.Google Scholar
Krassilov, V. A. 1982. Early Cretaceous flora of Mongolia. Palaeontographica 181: 1–43.Google Scholar
Krassilov, V. A.,Krassilov, V. A.Tekleva, M., Meyer-Melikan, N. and Rasnitsyn, A. 2003. New pollen morphotype from gut compression of a Cretaceous insect, and its bearing on palynomorphological evolution and palaeoecology. Cretaceous Research 24: 149–156.CrossRefGoogle Scholar
Kunzmann, L., Mohr, B. A. R. and Bernardes-de-Oliveira, M. E. C. 2004. Gymnosperms from the Lower Cretaceous Crato Formation (Brazil). I. Araucariaceae and Lindleycladus (incertae sedis). Mitteilungen Museum für Naturkunde Berlin, Geowissenschaften 7: 155–174.Google Scholar
Kunzmann, L.,Kunzmann, L., Mohr, B. A. R.Mohr, B. A. R. and Bernardes-de-Oliveira, M. E. C. 2006. Gymnosperms from the Lower Cretaceous Crato Formation (Brazil). II. Fossil Record 9(2): 213–225.CrossRefGoogle Scholar
Kunzmann, L.,Kunzmann, L., Mohr, B. A. R. Mohr, B. A. R. and Bernardes-de-Oliveira, M. E. C. 2007. Novaolindia dubia gen. et sp. nov., an enigmatic seed plant from the Early Cretaceous of northern Gondwana. Review of Palaeobotany and Palynology (in press).
Labandeira, C. C. 2002. The history of associations between plants and animals, pp. 26–74, 248–261. InHerrera, C. and Pellmyr, O. (eds), Plant-Animal Interactions: an Evolutionary Approach. Oxford: Blackwell Science.Google Scholar
Leme, E., Brown, G. K., Dilcher, D., Bernardes-de-Oliveira, M., Siqueira, J. and Sales, A. 2005. Protananaceae, a new fossil monocot family from the Lower Cretaceous Santana Formation, northeastern Brazil. Botany 2005, Abstract: 666.Google Scholar
Lima, M. R. 1978. Palinologia da Formação Santana (Cretaceo do Nordeste do Brasil). I. Introduçao geologica e descriçao sistematicados esporos da Subturma Azonotriletes. Ameghiniana 15: 333–365.Google Scholar
Lima, M. R.. 1979. Palinologia da Formação Santana (Cretaceo do Nordeste do Brasil). II. Descrição sistematica dos espores da Subturma Zonotriletes e Turma Monoletes, e dos polens das Turmas Saccites a Aletes. Ameghiniana 16: 27–63.Google Scholar
Lima, M. R.. 1980. Palinologia da Formação Santana (Cretáceo do Nordeste do Brasil). III. Descrição systematica dos polens da Turma Plicates (Subturma Costates). Ameghiniana 17: 15–47.Google Scholar
Lima, M. R. de. 1983. Paleoclimatic reconstruction of the Brazilian basin on palynological data. Brasileira de Geociencias13: 223–228.
Lima, M. R.. 1989. Palinologia da Formaçao Santana (Cretaceo do Nordeste do Brasil). IV. Descriçao systematica dos polens da Turma Plicates e Poroses, incertae sedis e Microplancton Marinho. Ameghiniana 26: 63–81.Google Scholar
Magallon, S. and Sanderson, M. J. 2002. Relationship among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. American Journal of Botany 89: 1991–2006.CrossRefGoogle Scholar
Martill, D. M. (ed.) 1993. Fossils of the Santana and Crato Formations, Brazil. Palaeontological Association Field Guides to Fossils Series 5. London: The Palaeontological Association.Google Scholar
Martill, D. M.,Martill, D. M.Loveridge, R. F., Ferreira, Gomes de Andrade J. A. and Herzog, Cardoso A. 2005. An unusual occurrence of amber in laminated limestones: the Crato Formation Lagerstätte (Early Cretaceous) of Brazil. Palaeontology 48: 1399–1408.CrossRefGoogle Scholar
Mohr, B. A. R. and Friis, E. M. 2000. Early angiosperms from the Lower Cretaceous Crato Formation (Brazil), a preliminary report. International Journal of Plant Science 161: 155–167.CrossRefGoogle Scholar
Mohr, B. A. R. and Rydin, C. 2002. Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). Mitteilungen des Museums für Naturkunde Berlin, Geowissenschaftliche Reihe 5: 335–344.Google Scholar
Mohr, B. A. R. and Eklund, H. 2003. Araripia florifera, a magnoliid angiosperm from the Lower Cretaceous Crato Formation (Brazil). Review of Palaeobotany and Palynology 126: 279–292.CrossRefGoogle Scholar
Mohr, B. A. R. and Bernardes-de-Oliveira, M. E. C. 2004. Endressinia brasiliana, a magnolialean angiosperm from the Lower Cretaceous Crato Formation (Brazil). International Journal of Plant Science 165: 1121–1133.CrossRefGoogle Scholar
Mohr, B. A. R.,Mohr, B. A. R.Bernardes-de-Oliveira, M. E. C. and Castro-Fernandes, C. M. 2005. Diversity of putative nymphaealean waterplants in the Lower Cretaceous of the Araripe Basin, Brazil. 17th International Botany Congress, Vienna: 425.Google Scholar
Mohr, B. A. R.,Mohr, B. A. R.Bernardes-de-Oliveira, M. E. C., Barale, G. and Ouaja, M. 2006. Palaeogeographic distribution and ecology of Klitzschophyllites, an Early Cretaceous angiosperm in southern Laurasia and northern Gondwana. Cretaceous Research 27: 464–472.CrossRefGoogle Scholar
Oliveira-Babinski, M. E. C. and Lima, M. R. 1991. Pteridophyte remains from the Lower Cretaceous, Santana Formation, Araripe Basin, Northeastern Brazil. 12° Congresso Brasileiro de Paleontologia (Sao Paulo), Boletim de Resumos: 491.Google Scholar
Osborn, J. M., Taylor, T. N. and Lima, M. R. 1993. The ultrastructure of fossil ephedroid pollen with gnetalean affinities from the Lower Cretaceous of Brazil. Review of Palaeobotany and Palynology 77: 171–184.CrossRefGoogle Scholar
Pons, D., Oliveira-Babinski, M. E. C. and de Lima, M. R. 1992. Les Ephedrales de la Formation Santana, Cretacé Inférieur du Bassin d' Araripe (Brésil). Fourth International Organization of Palaeobotany Conference, Abstracts 1992: 125.
—, Berthou, P. Y., Melo-Filgueiras, J. B. and Alcantara-Sampaio, J. J. 1996. Palynologie des unités, Fundão Crato et Ipubi (Aptien supérieur à Albien inférieur –moyen, bassin d'Araripe, nord-est du Brésil): enseignements paléoécologiques, stratigraphiques et climatologiques. Géologie de l'Afrique et de l'Atlantique Sud: Actea Colloques Angers, 1994: 383–401.Google Scholar
Raven, P. H., Evert, R. F. and Eichhorn, S. E. 2001. Biologia Vegetal, 6th edn. Rio de Janeiro: Guanabara Koogan S. A.
Rydin, C., Källersjö, M. and Friis, E. M. 2002. Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: Conflicting data, rooting problems, and the monophyly of Conifers. International Journal of Plant Science 163: 197–214.CrossRefGoogle Scholar
Rydin, C.,Rydin, C., Källersjö, M.Mohr, B. A. R. and Friis, E. M. 2003. Cratonia cotyledon gen. et sp. nov.: a unique Cretaceous seedling related to Welwitschia. Proceedings of the Royal Society, London B (Supplement), Biology Letters 270: 1–4.Google ScholarPubMed
Rydin, C.,Rydin, C., Källersjö, M.Pedersen, K. R. and Friis, E. M. 2004. On the evolutionary history of Ephedra; Cretaceous fossils and extant molecules. Proceedings of the National Academy of Science USA 101: 16571–16576.CrossRefGoogle ScholarPubMed
Rydin, C.,Rydin, C., Källersjö, M.Pedersen, K. R., Crane, P. R. and Friis, E. M. 2006. Former diversity of Ephedra (Gnetales): evidence from Early Cretaceous seeds from Portugal and North America. Annals of Botany (London) 98: 123–140.CrossRefGoogle ScholarPubMed
Skelton, P. (ed.) 2003. The Cretaceous World. Milton Keynes and Cambridge: The Open University and Cambridge University Press.Google Scholar
Soltis, D. E., Soltis, P. S., Endress, P. K. and Chase, M. 2005. Phylogeny and Evolution of Angiosperms. Sunderland, MA: Sinauer Associates.Google Scholar
Sun, G., Zheng, S., Dilcher, D. L., Wang, Y. and Mei, S. 2001. Early Angiosperms and Their Associated Plants from Western Liaoning, China. Shanghai: Shanghai Scientific and Technological Education Publishing House.Google Scholar
Teixeira, C. 1948. Flora Mesozoica Portuguesa. Servicios Geologicos de Portugal.Google Scholar
Thien, L. B., Azuma, H. and Kawono, S. 2000. New perspectives on the pollination biology of basal angiosperms. International Journal of Plant Science 161 (suppl. 6): S225–S235.CrossRefGoogle Scholar
Trewin, N. H. 2001. The Rhynie chert, pp. 342–346. InBriggs, D. E. G. and Crowther, P. R. (eds), Palaeobiology II. Oxford: Blackwell Science.CrossRefGoogle Scholar
Tryon, R. M. and Tryon, A. F. 1982. Ferns and Allied Plants with Special Reference to Tropical America. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Upchurch, G. R. Jr 1984. Cuticular anatomy of angiosperm leaves from the Lower Cretaceous Potomac Group. 1. Zone I leaves. American Journal of Botany 71: 192–202.CrossRefGoogle Scholar
Villar, Seoane L. 2000. Ruflorinia papillosa sp. nov. from the Lower Cretaceous of Patagonia, Argentina. Palaeontographica B 255: 79–85.Google Scholar
Van Konijnenburg-van Cittert, J. H. A. 1991. Diversification of spores in fossil and extant Schizaeaceae, pp. 103–118. In Blackmore, S. and Barnes, S. H. (eds), Pollen and Spores, Systematic Association, Special Volume 44, Oxford: Clarendon Press.
Van, Waweren I. M., Cittert, Konijnenburg-van J. H. A., Burgh, J. and Dilcher, D. L. 2002. Macrofloral remains from the Lower Cretaceous of the Leivia region (Colombia). Scripta Geologica 123: 1–39.Google Scholar
Balthazar, M., Pedersen, K. R. and Friis, E. M. 2005. Teixeiraea lusitanica, a new fossil flower from the Early Cretaceous of Portugal with affinities to Ranunculales. Plant Systematics and Evolution 255: 55–75.CrossRefGoogle Scholar
Won, H. and Renner, S. S. 2003. Horizontal gene transfer from flowering plants to Gnetum. Proceedings of the National Academy of Sciences USA 100: 10824–10829.CrossRefGoogle ScholarPubMed
Yang, Y., Geng, B.-Y., Dilcher, D. L., Chen, Z.-D. and Lott, T. A. 2005. Morphology and affinities of an Early Cretaceous Ephedra (Ephedraceae) from China. American Journal of Botany 92: 231–241.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×