Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T10:06:31.340Z Has data issue: false hasContentIssue false

2 - Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations

Published online by Cambridge University Press:  05 July 2014

John J. Flynn
Affiliation:
American Museum of Natural History, New York
John A. Finarelli
Affiliation:
University of Michigan
Michelle Spaulding
Affiliation:
Columbia University
Anjali Goswami
Affiliation:
University College London
Anthony Friscia
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Phylogeny of the Carnivora – molecules, fossils, and total evidence

Fossil taxa are inherently at a disadvantage in resolving phylogenetic relationships, relative to living forms, as soft anatomy, DNA, physiology, and most life-history attributes are not readily available for the vast majority of these taxa, other than some fascinating new sequences available for Pleistocene fossil taxa (e.g. Smilodon, Homotherium, Miracinonyx, Ursus spelaeus, etc.; Loreille et al., 2001; Barnett et al., 2005). Nevertheless, fossil data possess several key advantages in phylogenetic analyses, including the ability to break-up ‘long branches’ in phylogenies, where the divergence between modern-day clades occurred deep in geological time. Fossils preserve morphologies that can become obscured along these long branches, and also provide temporal context for the evolution of living clades that may be crucial for accurately reconstructing ancestral conditions and partitioning synapomorphic versus homoplasious resemblances among modern-day taxa. Some workers feel that molecular data are inherently superior for reconstructing phylogeny than morphological characters (see for example: Scotland et al., 2003; but see Jenner, 2004), and as a consequence, phylogenies for many clades, particularly those that are not well represented in the fossil record, often are based solely on molecular sequence data. Within Carnivora, for example, the most recent studies reconstructing phylogenetic relationships among living taxa have relied principally on molecular sequences (e.g. Flynn et al., 2000, 2005).

Type
Chapter
Information
Carnivoran Evolution
New Views on Phylogeny, Form and Function
, pp. 25 - 63
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, M. W. and Carpenter, J. M. (1996). On weighting and congruence. Cladistics, 12, 183–98.CrossRefGoogle Scholar
Alroy, J. (1998). Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280, 731–34.CrossRefGoogle ScholarPubMed
Anyonge, W. (1993). Body-mass in large extant and extinct carnivores. Journal of Zoology, 231, 339–50.CrossRefGoogle Scholar
Arango, C. P. and Wheeler, W. C. (2007). Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics, 23, 255–93.CrossRefGoogle Scholar
Arnason, U., Bodin, K., Gullberg, A., Ledje, C. and Mouchaty, S. (1995). A molecular view of pinniped relationships with particular emphasis on the true seals. Journal of Molecular Evolution, 40, 78–85.CrossRefGoogle ScholarPubMed
Arnason, U., Gullberg, A., Janke, A., et al. (2006). Pinniped phylogeny and a new hypothesis for their origin and dispersal. Molecular Phylogenetics and Evolution, 41, 345–54.CrossRefGoogle Scholar
Arnason, U., Gullberg, A., Janke, A. and Kullberg, M. (2007). Mitogenomic analyses of caniform relationships. Molecular Phylogenetics and Evolution, 45, 863–74.CrossRefGoogle ScholarPubMed
Asher, R. J. (2007). A web-database of mammalian morphology and a reanalysis of placental phylogeny. BMC Evolutionary Biology 2007, 7, 108 (10 pages; doi 10.1186/1471–2148–7–108).Google Scholar
Asher, R. J., Emry, R. J. and McKenna, M. C. (2005). New material of Centetodon (Mammalia, Lipotyphla) and the importance of (missing) DNA sequences in systematic paleontology. Journal of Vertebrate Paleontology, 25, 911–23.CrossRefGoogle Scholar
Baker, R. H. and DeSalle, R. (1997). Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology, 46, 654–73.CrossRefGoogle ScholarPubMed
Bardeleben, C., Moore, R. L. and Wayne, R. K. (2005). A molecular phylogeny of the Canidae based on six nuclear loci. Molecular Phylogenetics and Evolution, 37, 815–31.CrossRefGoogle ScholarPubMed
Barnett, R., Barnes, I., Phillips, M. J., et al. (2005). Evolution of the extinct sabretooths and the American cheetah-like cat. Current Biology, 15(15), R589–90.CrossRefGoogle ScholarPubMed
Berta, A., Sumich, J. L. and Kovacs, K. M. (2006). Marine Mammals: Evolutionary Biology, 2nd edn. San Diego, CA: Academic Press, 560 pp.Google Scholar
Bond, J. E. and Hedin, M. (2006). A total evidence assessment of the phylogeny of North American euctenizine trapdoor spiders (Araneae, Mygalomorphae, Cyrtaucheniidae) using Bayesian inference. Molecular Phylogenetics and Evolution, 41, 70–85.CrossRefGoogle ScholarPubMed
Bookstein, F. L., Gingerich, P. D. and Kluge, A. G. (1978). Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology, 4, 120–34.CrossRefGoogle Scholar
Bryant, H. N. (1991). Phylogenetic relationships and systematics of the Nimravidae (Carnivora). Journal of Mammalogy, 72, 56–78.CrossRefGoogle Scholar
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York, NY: Springer, 488 pp.Google Scholar
Cantino, P. D. and deQuiroz, K. (eds.) (2007). Phylocode. International Code of Phylogenetic Nomenclature, version 4b (12 September 2007; ).
Carbone, C., Mace, G. M., Roberts, S. C. and Macdonald, D. W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature, 402, 286–88.CrossRefGoogle ScholarPubMed
Carbone, C., Teacher, A. and Rowcliffe, J. M. (2007). The cost of carnivory. PLoS Biology, 5, 363–68.CrossRefGoogle Scholar
Clark, J. (1939) Miacis gracilis, a new carnivore from the Uinta Eocene. Annals of Carnegie Museum, 27, 349–70.Google Scholar
Conroy, G. C. (1987). Problems of body weight estimation in fossil Primates. International Journal of Primatology, 8, 115–38.CrossRefGoogle Scholar
Cope, E. D. (1880). On the genera of the Creodonta. Proceedings of the American Philosophical Society, 19, 76–82.Google Scholar
Dagosto, M. and Terranova, C. J. (1992). Estimating the body size of Eocene Primates: A comparison of results from dental and postcranial variables. International Journal of Primatology, 13, 307–44.CrossRefGoogle Scholar
Dalerum, F. (2007). Phylogenetic reconstruction of carnivore social organizations. Journal of Zoology, 273, 90–97.CrossRefGoogle Scholar
Damuth, J. and MacFadden, B. J. (1990). Introduction: body size and its estimation. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 1–9.Google Scholar
Davis, C. S., Delisle, I., Stirling, I., Siniff, D. B. and Strobeck, C. (2004). A phylogeny of the extant Phocidae inferred from complete mitochondrial DNA coding regions. Molecular Phylogenetics and Evolution, 33, 363–77.CrossRefGoogle ScholarPubMed
Davis, D. D. (1964). The giant panda: a morphological study of evolutionary mechanisms. Fieldiana Zoology Memoirs, 3: 1–339.Google Scholar
Delisle, I. and Strobeck, C. (2005). A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes. Molecular Phylogenetics and Evolution, 37, 192–201.CrossRefGoogle ScholarPubMed
Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J., Jablonski, N. G. and Dechow, P. C. (2000). Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Anthropological Papers of the American Museum of Natural History, 83, 1–159.Google Scholar
Delsuc, F., Scally, M., Madsen, O., et al. (2002). Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Molecular Biology and Evolution, 19, 1656–71.CrossRefGoogle ScholarPubMed
Dragoo, J. W., Bradley, R. D., Honeycutt, R. L. and Templeton, J. W. (1993). Phylogenetic relationships among the skunks: a molecular perspective. Journal of Mammalian Evolution, 1(4), 255–67.CrossRefGoogle Scholar
Dragoo, J. W. and Honeycutt, R. L. (1997). Systematics of mustelid-like carnivores. Journal of Mammalogy, 78, 426–43.CrossRefGoogle Scholar
Dunbar, R. I. M. and Bever, J. (1998). Neocortex size predicts group size in carnivores and some insectivores. Ethology, 104, 695–708.CrossRefGoogle Scholar
Eisenberg, J. F. (1990). The behavioral/ecological significance of body size in the Mammalia. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 25–37.Google Scholar
Elton, S., Bishop, L. C. and Wood, B. (2001). Comparative context of Plio-Pleistocene hominin brain evolution. Journal of Human Evolution, 41, 1–27.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.CrossRefGoogle Scholar
Finarelli, J. A. (2006). Estimation of endocranial volume through the use of external skull measures in the Carnivora (Mammalia). Journal of Mammalogy, 87, 1027–36.CrossRefGoogle Scholar
Finarelli, J. A. (2007). Mechanisms behind active trends in body size evolution in the Canidae (Carnivora: Mammalia). American Naturalist, 170, 876–85.CrossRefGoogle Scholar
Finarelli, J. A. (2008a). Testing hypotheses of the evolution of brain–body size scaling in the Canidae (Carnivora, Mammalia). Paleobiology, 34, 48–58.CrossRefGoogle Scholar
Finarelli, J. A. (2008b). A total evidence phylogeny of the Arctoidea (Carnivora: Mammalia): relationships among basal taxa. Journal of Mammalian Evolution, 15, 231–59.CrossRefGoogle Scholar
Finarelli, J. A. and Flynn, J. J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology, 55, 301–13.CrossRefGoogle ScholarPubMed
Finarelli, J. A. and Flynn, J. J. (2007). The evolution of encephalization in caniform carnivorans. Evolution, 61, 1758–72.CrossRefGoogle ScholarPubMed
Flynn, J. J. (1996). Phylogeny and rates of evolution: morphological, taxic and molecular. In Carnivore Behavior, Ecology, and Evolution, Vol. 2, ed. Gittleman, J.. Ithaca, NY: Cornell University Press, pp. 542–81.Google Scholar
Flynn, J. J. (1998). Early Cenozoic Carnivora (‘Miacoidea’). In Evolution of Tertiary Mammals of North America (Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals), ed. Janis, C. M., Scott, K. M. and Jacobs, L. L.. Cambridge: Cambridge University Press, pp. 110–23.
Flynn, J. J. and Galiano, H. (1982). Phylogeny of Early Tertiary Carnivora, with a description of a new species of Protictis from the Middle Eocene of Northwestern Wyoming. American Museum Novitates, 2725, 1–64.Google Scholar
Flynn, J. J. and Wyss, A. R. (1988). Letter to the Editor [re: S. J. O'Brien, ‘The ancestry of the giant panda’, Scientific American, November, 1987]. Scientific American, June 1988, 8.
Flynn, J. J. and Nedbal, M. A. (1998). Phylogeny of the Carnivora (Mammalia): congruence vs. incompatibility among multiple data sets. Molecular Phylogenetics and Evolution, 9, 414–26.CrossRefGoogle ScholarPubMed
Flynn, J. J. and Wesley-Hunt, G. D. (2005). Carnivora. In Origin, Timing, and Relationships of the Major Clades of Extant Placental Mammals, ed. Archibald, D., and Rose, K. D.. Baltimore, MD: Johns Hopkins University Press, pp. 175–98.Google Scholar
Flynn, J. J., Neff, N. A. and Tedford, R. H. (1988). Phylogeny of the Carnivora. In Phylogeny and Classification of the Tetrapods, ed. Benton, M. J.. Oxford: Clarendon Press, pp. 73–116.Google Scholar
Flynn, J. J, Nedbal, M. A., Dragoo, J. W. and Honeycutt, R. L. (2000). Whence the red panda? Molecular Phylogenetics and Evolution, 17, 190–99.CrossRefGoogle ScholarPubMed
Flynn, J. J., Finarelli, J. A., Zehr, S., Hsu, J. and Nedbal, M. A. (2005). Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology, 54, 317–37.CrossRefGoogle ScholarPubMed
Friscia, A. R., Van Valkenburgh, B. and Biknevicius, A. R. (2007). An ecomorphological analysis of extant small carnivorans. Journal of Zoology, 272, 82–100.CrossRefGoogle Scholar
Fulton, T. L. and Strobeck, C. (2006). Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Molecular Phylogenetics and Evolution, 41, 165–81.CrossRefGoogle ScholarPubMed
Fulton, T. L. and Strobeck, C. (2007). Novel phylogeny of the raccoon family (Procyonidae: Carnivora) based on nuclear and mitochondrial DNA evidence. Molecular Phylogenetics and Evolution, 43, 1171–77.CrossRefGoogle ScholarPubMed
Fyler, C. A., Reeder, T. W., Berta, A., Antonelis, G., Aguilar, A. and Androukaki, E. (2005). Historical biogeography and phylogeny of monachine seals (Pinnipedia: Phocidae) based on mitochondrial and nuclear DNA data. Journal of Biogeography, 32, 1267–79.CrossRefGoogle Scholar
Garland, T. and Ives, A. R. (2000). Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist, 155, 346–64.CrossRefGoogle ScholarPubMed
Garland, T., Midford, P. E. and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. American Zoologist, 39, 374–88.CrossRefGoogle Scholar
Gatesy, J. and Baker, R. H. (2005). Hidden likelihood support in genomic data: can forty-five wrongs make a right?Systematic Biology, 54, 483–92.CrossRefGoogle ScholarPubMed
Gatesy, J. and O'Leary, M. A. (2001). Deciphering whale origins with molecules and fossils. Trends in Ecology & Evolution, 16, 562–70.CrossRefGoogle Scholar
Gatesy, J., Amato, G., Norell, M., DeSalle, R. and Hayashi, C. (2003). Combined support for wholesale taxic atavism in gavialine crocodylians. Systematic Biology, 52, 403–22.CrossRefGoogle ScholarPubMed
Gaubert, P. and Begg, C. M. (2007). Re-assessed molecular phylogeny and evolutionary scenario within genets (Carnivora, Viverridae, Genettinae). Molecular Phylogenetics and Evolution, 44, 920–27.CrossRefGoogle Scholar
Gaubert, P. and Cordeiro-Estrela, P. (2006). Phylogenetic systematics and tempo of evolution of the Viverrinae (Mammalia, Carnivora, Viverridae) within feliformians: implications for faunal exchanges between Asia and Africa. Molecular Phylogenetics and Evolution, 41, 266–78.CrossRefGoogle ScholarPubMed
Gaubert, P. and Veron, G. (2003). Exhaustive sample set among Viverridae reveals the sister-group of felids: the linsangs as a case of extreme morphological convergence within Feliformia. Proceedings of the Royal Society London B Biological Sciences, 270, 2523–30.CrossRefGoogle ScholarPubMed
Gingerich, P. D. (1977). Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size in Aegyptopithecus and Proconsul. American Journal of Physical Anthropology, 47, 395–98.CrossRefGoogle ScholarPubMed
Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, The University of Michigan, 28, 79–92.Google Scholar
Gingerich, P. D., Smith, H. B. and Rosenberg, K. (1982). Allometric scaling in the dentition of Primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58, 81–100.CrossRefGoogle ScholarPubMed
Giribet, G., Edgecombe, G. D. and Wheeler, W. C. (2001). Arthropod phylogeny based on eight molecular loci and morphology. Nature, 413, 157–61.CrossRefGoogle ScholarPubMed
Gittleman, J. L. (1986a). Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67, 23–36.CrossRefGoogle Scholar
Gittleman, J. L. (1986b). Carnivore life history patterns: allometric, phylogenetic, and ecological associations. American Naturalist, 127, 744–71.CrossRefGoogle Scholar
Gittleman, J. L. (1991). Carnivore olfactory bulb size: allometry, phylogeny and ecology. Journal of Zoology, 225, 253–72.CrossRefGoogle Scholar
Gittleman, J. L. (1993). Carnivore life histories: a reanalysis in light of new models. Symposia of the Zoological Society of London, 65, 65–86.Google Scholar
Gittleman, J. L. (1994). Female brain size and parental care in carnivores. Proceedings of the National Academy of Sciences USA, 91, 5495–97.CrossRefGoogle ScholarPubMed
Gittleman, J. L. and Harvey, P. H. (1982). Carnivore home-range size, metabolic needs and ecology. Behavioral Ecology and Sociobiology, 10, 57–63.CrossRefGoogle Scholar
Gittleman, J. L. and Purvis, A. (1998). Body size and species-richness in carnivores and primates. Proceedings of the Royal Society of London Series B Biological Sciences, 265, 113–19.CrossRefGoogle ScholarPubMed
Gittleman, J. L. and Van Valkenburgh, B. (1997). Sexual dimorphism in the canines and skulls of carnivores: effects of size, phylogeny, and behavioral ecology. Journal of Zoology, 242, 97–117.CrossRefGoogle Scholar
Grant, T., Frost, D. R., Caldwell, J. P., et al. (2006). Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1–262.CrossRefGoogle Scholar
Gunnell, G. F. (1998). Creodonta. In Evolution of Tertiary Mammals of North America (Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals), ed. Janis, C. M., Scott, K. M. and Jacobs, L. L.. Cambridge: Cambridge University Press, pp. 91–109.Google Scholar
Harvey, P. H., Pagel, M. D. and Rees, J. A. (1991). Mammalian metabolism and life histories. American Naturalist, 137, 556–66.CrossRefGoogle Scholar
Heinrich, R. E. and Houde, P. (2006). Postcranial anatomy of Viverravus (Mammalia, Carnivora) and implications for substrate use in basal Carnivora. Journal of Vertebrate Paleontology, 26, 422–35.CrossRefGoogle Scholar
Heinrich, R. E. and Rose, K. D. (1995). Partial skeleton from the primitive carnivoran Miacis petilus from the early Eocene of Wyoming. Journal of Mammalogy, 76, 148–62.CrossRefGoogle Scholar
Heinrich, R. E. and Rose, K. D. (1997). Postcranial morphology and locomotor behaviour of two early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology, 40, 279–305.Google Scholar
Higdon, J. W., Bininda-Emonds, O. R. P., Beck, R. M. D. and Ferguson, S. H. (2007). Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset. BMC (BioMed Central) Evolutionary Biology, 7, 216 (doi:10.1186/1471–2148–7–216, 19 pages).Google Scholar
Hunt, R. M.. (1977). Basicranial anatomy of Cynelos Jourdan (Mammalia: Carnivora), an Aquitanian amphicyonid from the Allier Basin, France. Journal of Paleontology, 51, 826–43.Google Scholar
Hunt, R. M.. (1987). Evolution of the aeluroid Carnivora: significance of auditory structure in the nimravid cat Dinictis. American Museum Novitates, 2886, 1–74.Google Scholar
Hunt, R. M.. (1996). Amphicyonidae. In The Terrestrial Eocene–Oligocene Transition in North America, ed. Prothero, D. and Emry, R. J.. Cambridge: Cambridge University Press, pp. 476–85.CrossRefGoogle Scholar
Iwaniuk, A. N., Pellis, S. M. and Whishaw, I. Q. (1999). Brain size is not correlated with forelimb dexterity in fissiped carnivores (Carnivora): a comparative test of the principle of proper mass. Brain Behavior and Evolution, 54, 167–80.CrossRefGoogle Scholar
Jenkins, F. A. and Camazine, S. M. (1977). Hip structure and locomotion in ambulatory and cursorial carnivores. Journal of Zoology, 181, 351–70.CrossRefGoogle Scholar
Jenner, R. A. (2004). Accepting partnership by submission? Morphological phylogenetics in a molecular millennium. Systematic Biology, 52, 333–42.CrossRefGoogle Scholar
Jerison, H. (1961). Quantitative analysis of evolution of the brain in mammals. Science, 133, 1012–14.CrossRefGoogle ScholarPubMed
Jerison, H. (1970). Brain evolution: new light on old principles. Science, 170, 1224–25.CrossRefGoogle ScholarPubMed
Jerison, H. (1973). Evolution of the Brain and Intelligence. New York, NY: Academic Press, 482 pp.Google Scholar
Jerison, H. (1991). Brain Size and the Evolution of Mind. New York, NY: American Museum of Natural History, 99 pp.Google Scholar
Johnson, W. E., Eizirik, E., Pecon-Slattery, J., et al. (2006). The Late Miocene radiation of modern Felidae: a genetic assessment. Science, 311, 73–77.CrossRefGoogle ScholarPubMed
Jungers, W. L. (1990). Problems and methods in reconstructing body size in fossil Primates. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 103–18.Google Scholar
Kjer, K. M. and Honeycutt, R. L. (2007). Site specific rates of mitochondrial genomes and the phylogeny of eutheria. BMC Evolutionary Biology, 7, 8 (doi:10.1186/1471–2148–7–8).CrossRefGoogle ScholarPubMed
Koepfli, K.-P., Jenks, S. M., Eizirik, E., Zahirpour, T., Van Valkenburgh, B. and Wayne, R. K. (2006). Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Molecular Phylogenetics and Evolution, 38, 603–20.CrossRefGoogle ScholarPubMed
Koepfli, K.-P., Gompper, M. E., Eizirik, E., et al. (2007). Phylogeny of the Procyonidae (Mammalia: Carnivora): molecules, morphology and the Great American Interchange. Molecular Phylogenetics and Evolution, 43, 1076–95.CrossRefGoogle ScholarPubMed
Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata, 16, 191–212.Google Scholar
Legendre, S. and Roth, C. (1988). Correlation of carnassial tooth size and body weight in Recent carnivores (Mammalia). Historical Biology, 1, 85–98.CrossRefGoogle Scholar
Lento, G. M., Hickson, R. E., Chambers, G. K. and Penny, D. (1995). Use of spectral analysis to test hypotheses on the origin of pinnipeds. Molecular Biology and Evolution, 12, 28–52.CrossRefGoogle ScholarPubMed
Loreille, O., Orlando, L., Patou-Mathis, M., Philippe, M., Taberlet, P. and Hänni, C. (2001). Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages. Current Biology, 11, 200–03.CrossRefGoogle Scholar
Maddison, W. P. (1991). Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology, 40, 304–14.CrossRefGoogle Scholar
Maddison, W. P. and Maddison, D. R. (2007). Mesquite: a modular system for evolutionary analysis. Version 2.01.
Magallon, S. (2007). From fossils to molecules: phylogeny and the core eudicot floral groundplan in Hamamelidoideae (Hamamelidaceae, Saxifragales). Systematic Botany, 32, 317–47.CrossRefGoogle Scholar
Manos, P. S., Soltis, P. S., Soltis, D. E., et al. (2007). Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Systematic Biology, 56, 412–30.CrossRefGoogle ScholarPubMed
Marino, L. (1998). A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain Behavior and Evolution, 51, 230–38.CrossRefGoogle ScholarPubMed
Marino, L., McShea, D. W. and Uhen, M. D. (2004). Origin and evolution of large brains in toothed whales. Anatomical Record Part A – Discoveries in Molecular Cellular and Evolutionary Biology, 281A, 1247–55.CrossRefGoogle Scholar
Marmi, J., López-Giráldez, J. F. and Domingo-Roura, X. (2004). Phylogeny, evolutionary history and taxonomy of the Mustelidae based on sequences of the cytochrome b gene and a complex repetitive flanking region. Zoologica Scripta, 33(6), 481–99.CrossRefGoogle Scholar
Martin, R. D. (1981). Relative brain size and basal metabolic-rate in terrestrial vertebrates. Nature, 293, 57–60.CrossRefGoogle ScholarPubMed
Martin, R. D. (1984). Body size, brain size and feeding strategies. In Food Acquisition and Processing in Primates, ed. Chivers, D. J., Wood, B. A. and Bilsborough, A.. New York, NY: Plenum Press, pp. 73–103.CrossRefGoogle Scholar
Martin, R. D. (1990). Primate Origins and Evolution: A Phylogenetic Reconstruction. London: Chapman and Hall, 828 pp.Google Scholar
Martin, R. D. (1996). Scaling of the mammalian brain: the maternal energy hypothesis. News in Physiological Sciences, 11, 149–56.Google Scholar
Martin, R. D., Genoud, M. and Hemelrijk, C. K. (2005). Problems of allometric scaling analysis: examples from mammalian reproductive biology. Journal of Experimental Biology, 208, 1731–47.CrossRefGoogle ScholarPubMed
Matthew, W. D. (1909). The Carnivora and Insectivora of the Bridger Basin, middle Eocene. Memoirs of the American Museum of Natural History, 9, 289–567.Google Scholar
McNab, B. K. (1988). Complications inherent in scaling the basal rate of metabolism in mammals. Quarterly Review of Biology, 63, 25–54.CrossRefGoogle ScholarPubMed
McShea, D. W. (1994). Mechanisms of large-scale evolutionary trends. Evolution, 48, 1747–63.CrossRefGoogle ScholarPubMed
Meiri, S., Dayan, T. and Simberloff, D. (2004a). Body size of insular carnivores: little support for the island rule. American Naturalist, 163, 469–79.CrossRefGoogle ScholarPubMed
Meiri, S., Dayan, T. and Simberloff, D. (2004b). Carnivores, biases and Bergmann's rule. Biological Journal of the Linnean Society, 81, 579–88.CrossRefGoogle Scholar
Mivart, S. G. J. (1885). On the anatomy, classification and distribution of the Arctoidea. Proceedings of the Zoological Society of London, 23, 340–404.Google Scholar
Morlo, M., Peigné, S. and Nagel, D. (2004). A new species of Prosansanosmilus: implications for the systematic relationships of the family Barbourofelidae new rank (Carnivora, Mammalia). Zoological Journal of the Linnean Society, 140, 43–61.CrossRefGoogle Scholar
Muñoz-Garcia, A. and Williams, J. B. (2005). Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiological and Biochemical Zoology, 78, 1039–56.CrossRefGoogle ScholarPubMed
Munthe, K. (1998). Canidae. In Evolution of Tertiary Mammals of North America (Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals), ed. Janis, C. M., Scott, K. M. and Jacobs, L. L.. New York, NY: Cambridge University Press, pp. 124–43.Google Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A. and O'Brien, S. J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–18.CrossRefGoogle ScholarPubMed
Murphy, W. J., Pringle, T. H., Crider, T. A., Springer, M. S. and Miller, W. (2007). Using genomic data to unravel the root of the placental mammal phylogeny. Genome Research, 17, 413–21.CrossRefGoogle ScholarPubMed
Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P. and Nieves-Aldrey, J. L. (2004). Bayesian phylogenetic analysis of combined data. Systematic Biology, 53, 47–67.CrossRefGoogle ScholarPubMed
O'Leary, M. A. (1999). Parsimony analysis of total evidence from extinct and extant taxa and the cetacean–artiodactyl question (Mammalia, Ungulata). Cladistics, 15, 315–30.CrossRefGoogle Scholar
O'Leary, M. A. (2001). The phylogenetic position of cetaceans: further combined data analyses, comparisons with the stratigraphic record and a discussion of character optimization. American Zoologist, 41, 487–506.Google Scholar
Oakley, T. H. and Cunningham, C. W. (2000). Independent contrasts succeed where ancestor reconstruction fails in a known bacteriophage phylogeny. Evolution, 54, 397–405.CrossRefGoogle Scholar
Pagel, M. D. and Harvey, P. H. (1988a). The taxon-level problem in the evolution of mammalian brain size: facts and artifacts. American Naturalist, 132, 344–59.CrossRefGoogle Scholar
Pagel, M. D. and Harvey, P. H. (1988b). How mammals produce large-brained offspring. Evolution, 42, 948–57.CrossRefGoogle ScholarPubMed
Pagel, M. D. and Harvey, P. H. (1989). Taxonomic differences in the scaling of brain on body-weight among mammals. Science, 244, 1589–93.CrossRefGoogle ScholarPubMed
Polly, P. D. (1996). The skeleton of Gazinocyon vulpeculus Gen. et Comb. Nov. and the cladistic relationships of Hyaenodontidae (Eutheria, Mammalia). Journal of Vertebrate Paleontology, 16, 303–19.CrossRefGoogle Scholar
Polly, P. D. (2001). Paleontology and the comparative method: ancestral node reconstructions versus observed node values. American Naturalist, 157, 596–609.CrossRefGoogle ScholarPubMed
Polly, P. D., Wesley-Hunt, G. D., Heinrich, R. E., Davis, G. and Houde, P. (2006). Earliest known carnivoran auditory bulla and support for a recent origin of crown-group Carnivora (Eutheria, Mammalia). Palaeontology 49, 1019–27.CrossRefGoogle Scholar
Radinsky, L. B. (1973). Aegyptopithecus endocasts: oldest records of a pongid brain. American Journal of Physical Anthropology, 39, 239–47.CrossRefGoogle Scholar
Radinsky, L. B. (1977a). Brains of early carnivores. Paleobiology, 3, 333–49.CrossRefGoogle Scholar
Radinsky, L. B. (1977b). Early primate brains: facts and fiction. Journal of Human Evolution, 6, 79–86.CrossRefGoogle Scholar
Radinsky, L. B. (1978). Evolution of brain size in carnivores and ungulates. American Naturalist, 112, 815–31.CrossRefGoogle Scholar
Rothwell, G. W. and Nixon, K. C. (2006). How does the inclusion of fossil data change our conclusions about the phylogenetic history of euphyllophytes?International Journal of Plant Sciences, 167, 737–49.CrossRefGoogle Scholar
Ruff, C. (1990). Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid Primates. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 119–50.Google Scholar
Sanders, K. L., Malhotra, A. and Thorpe, R. S. (2006). Combining molecular, morphological and ecological data to infer species boundaries in a cryptic tropical pitviper. Biological Journal of the Linnean Society, 87, 343–64.CrossRefGoogle Scholar
Sato, J. J., Hosoda, T., Wolsan, M. and Suzuki, H. (2004). Molecular phylogeny of arctoids (Mammalia: Carnivora) with emphasis on phylogenetic and taxonomic positions of the ferret-badgers and skunks. Zoological Science, 21, 111–18.CrossRefGoogle ScholarPubMed
Sato, J. J., Wolsan, M., Suzuki, H., et al. (2006). Evidence from nuclear DNA sequences sheds light on the phylogenetic relationships of Pinnipedia: single origin with affinity to Musteloidea. Zoological Science, 23, 125–46.CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size so Important?Cambridge: Cambridge University Press, 239 pp.CrossRefGoogle Scholar
Scotland, R. W., Olmstead, R. G. and Bennett, J. R. (2003). Phylogeny reconstruction: the role of morphology. Systematic Biology, 52, 539–48.CrossRefGoogle ScholarPubMed
Sears, K. E., Finarelli, J. A., Flynn, J. J. and Wyss, A. R. (2008). Estimating body mass in New World ‘monkeys’ (Platyrrhini, Primates) from craniodental measurements, with a consideration of the Miocene platyrrhine, Chilecebus carrascoensis. American Museum Novitates, 3617, 1–29.CrossRefGoogle Scholar
Simons, E. L. (1993). New endocasts of Aegyptopithecus: oldest well-preserved record of the brain in Anthropoidea. American Journal of Science, 293–A, 383–90.CrossRefGoogle Scholar
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
Smith, F. A., Lyons, S. K., Ernest, S. K. M., et al. (2003). Body mass of late Quaternary mammals. Ecology, 84, 3403.CrossRefGoogle Scholar
Spaulding, M. (2007). The impact of postcranial characters on reconstructing the phylogeny of Carnivoramorpha. Journal of Vertebrate Paleontology, 27(3 suppl.), 151A.Google Scholar
Spaulding, M. and Flynn, J. J. (2009). Anatomy of the postcranial skeleton of ‘Miacis’ uintensis (Mammalia: Carnivoramorpha). Journal of Vertebrate Paleontology, 29(4), 1212–23.CrossRefGoogle Scholar
Spaulding, M., Flynn, J. J. and Stucky, R. (in press). A new basal carnivoramorphan (Mammalia) from the ‘Bridger B’ (Bridger Formation, Bridgerian NALMA, Middle Eocene) of Wyoming. Palaeontology.
Stanley, S. M. (1973). An explanation for Cope's rule. Evolution, 27, 1–26.CrossRefGoogle ScholarPubMed
Swofford, D. L. and Maddison, W. P. (1987). Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences, 87, 199–229.CrossRefGoogle Scholar
Tedford, R. H., Taylor, B. E. and Wang, X. M. (1995). Phylogeny of the Caninae (Carnivora: Canidae): the living taxa. American Museum Novitates, 3146, 1–37.Google Scholar
Van Valkenburgh, B. (1989). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In Carnivore Behavior, Ecology, and Evolution, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 410–36.CrossRefGoogle Scholar
Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in carnivores. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 181–206.Google Scholar
Van Valkenburgh, B. (1991). Iterative evolution of hypercarnivory in canids (Mammalia, Carnivora) – evolutionary interactions among sympatric predators. Paleobiology, 17, 340–62.CrossRefGoogle Scholar
Van Valkenburgh, B., Sacco, T. and Wang, X. M. (2003). Pack hunting in Miocene borophagine dogs: evidence from craniodental morphology and body size. Bulletin of the American Museum of Natural History, 279, 147–62.2.0.CO;2>CrossRefGoogle Scholar
Van Valkenburgh, B., Wang, X. M. and Damuth, J. (2004). Cope's Rule, hypercarnivory, and extinction in North American canids. Science, 306, 101–04.CrossRefGoogle ScholarPubMed
Veron, G. (1995). La position systématique de Cryptoprocta ferox (Carnivora). Analyse cladistique des caractères morphologiques de carnivores Aeluroidea actuels et fossiles. Mammalia, 59, 551–82.CrossRefGoogle Scholar
Veron, G., Colyn, M., Dunham, A. E., Taylor, P. and Gaubert, P. (2004). Molecular systematics and origin of sociality in mongooses (Herpestidae, Carnivora). Molecular Phylogenetics and Evolution, 30, 582–98.CrossRefGoogle Scholar
Viranta, S. (1996). European Miocene Amphicyonidae – taxonomy, systematics and ecology. Acta Zoologica Fennica, 204, 1–61.Google Scholar
Vrana, P. B., Milinkovitch, M. C., Powell, J. R. and Wheeler, W. C. (1994). Higher level relationships of the arctoid Carnivora based on sequence data and total evidence. Molecular Phylogenetics and Evolution, 3, 47–58.CrossRefGoogle ScholarPubMed
Wang, X. M. (1994). Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 221, 1–207.Google Scholar
Wang, X. M. and Tedford, R. H. (1994). Basicranial anatomy and phylogeny of primitive canids and closely related miacids (Carnivora: Mammalia). American Museum Novitates, 3092, 1–34.Google Scholar
Wang, X. M., Tedford, R. H. and Taylor, B. E. (1999). Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 243, 1–391.Google Scholar
Wayne, R. K., Geffen, E., Girman, D. J., Koepfli, K.-P., Lau, L. M. and Marshall, C. R. (1997). Molecular systematics of the Canidae. Systematic Biology, 46, 622–53.CrossRefGoogle ScholarPubMed
Webster, A. J. and Purvis, A. (2002). Ancestral states and evolutionary rates of continuous characters. In Morphology, Shape and Phylogeny, ed. McLeod, N. and Forey, P. L.. New York, NY: Taylor and Francis, pp. 247–68.CrossRefGoogle Scholar
Webster, A. J., Gittleman, J. L. and Purvis, A. (2004). The life history legacy of evolutionary body size change in carnivores. Journal of Evolutionary Biology, 17, 396–407.CrossRefGoogle ScholarPubMed
Wesley-Hunt, G. D. and Flynn, J. J. (2005). Phylogeny of the Carnivora: basal relationships among the carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to crown-clade Carnivora. Journal of Systematic Palaeontology, 3, 1–28.CrossRefGoogle Scholar
Wesley-Hunt, G. D. and Werdelin, L. (2005). Basicranial morphology and phylogenetic position of the upper Eocene carnivoramorphan Quercygale. Acta Palaeontologica Polonica, 50, 837–46.Google Scholar
Wheeler, W. C. and Hayashi, C. Y. (1998). The phylogeny of the extant chelicerate orders. Cladistics, 14, 173–92.CrossRefGoogle Scholar
Wolsan, M. (1993). Phylogeny and classification of early European Mustelida (Mammalia: Carnivora). Acta Theriologica, 38, 345–84.CrossRefGoogle Scholar
Wynen, L. P., Goldsworthy, S. D., Insley, S. J., et al. (2001). Phylogenetic relationships within the eared seals (Otariidae: Carnivora): implications for the historical biogeography of the family. Molecular Phylogenetics and Evolution, 21(2), 270–84.CrossRefGoogle Scholar
Wyss, A. R. (1987). The walrus auditory region and the monophyly of pinnipeds. American Museum Novitates, 2871, 1–31.Google Scholar
Wyss, A. R. and Flynn, J. J. (1993). A phylogenetic analysis and definition of the Carnivora. In Mammal Phylogeny: Placentals, ed. Szalay, F., Novacek, M., and McKenna, M.. New York, NY: Springer-Verlag, pp. 32–52.CrossRefGoogle Scholar
Yoder, A. D. and Flynn, J. J. (2003). Origin of Malagasy Carnivora. In The Natural History of Madagascar, ed. Goodman, S. M. and Benstead, J.. Chicago, IL: University of Chicago Press, pp. 1253–56.Google Scholar
Yoder, A. D., Burns, M. M., Zehr, S., et al. (2003). Single origin of Malagasy Carnivora from an African ancestor. Nature, 421, 734–37.CrossRefGoogle ScholarPubMed
Yonezawa, T., Nikaido, M., Kohno, N., Fukumoto, Y., Okada, N. and Hasegawa, M. (2007). Molecular phylogenetic study on the origin and evolution of Mustelidae. Gene, 396, 1–12.CrossRefGoogle ScholarPubMed
Yu, L. and Zhang, Y. P. (2006). Phylogeny of the caniform carnivora: evidence from multiple genes. Genetica, 127, 65–79.CrossRefGoogle ScholarPubMed
Yu, L., Li, Q., Ryder, O. A. and Zhang, Y. (2004a). Phylogenetic relationships within mammalian Order Carnivora indicated by sequences of two nuclear DNA genes. Molecular Phylogenetics and Evolution, 33, 694–705.CrossRefGoogle ScholarPubMed
Yu, L., Li, Q., Ryder, O. A. and Zhang, Y. (2004b). Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 32, 480–94.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×