Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T21:24:48.627Z Has data issue: false hasContentIssue false

The Fossil Record of Plant Physiology and Development—What Leaves Can Tell Us

Published online by Cambridge University Press:  21 July 2017

C. Kevin Boyce*
Affiliation:
Department of the Geophysical Sciences University of Chicago 5734 S. Ellis Ave., HGS 267 Chicago, IL 60637
Get access

Abstract

Plants provide unmatched opportunities to evaluate long debated evolutionary patterns in terms of the detailed biology of the fossil organisms. Leaves serve here as an example of how those advantages can be exploited. Over the history of vascular plants, three important transitions in leaf evolution—the origin of laminate leaves, the progressive loss of seed plant morphological diversity, and the evolution of more angiosperm-like leaves—also represent major shifts in leaf development and physiology. These transitions often occurred in parallel in different lineages, such as the evolution of marginal growth in each of at least four independent origins of laminate leaves during the Devonian and Carboniferous. Each also entailed dramatic reorganizations of leaf hydraulics. For example, the length of the finest distributary vein order varies from up to tens of centimeters down to hundreds of microns in successive groups of dominant seed plants. Angiosperms impose an additional trend upon these patterns with the evolution of their uniquely high vein densities. Vein density strongly influences and can provide a proxy for other physiological characteristics, such as assimilation and transpiration rates. The large increase in transpiration capacity accompanying the evolution of angiosperm leaf traits may even play an important role in feeding precipitation and thereby altering local climate.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloni, R., Schwalm, K., Langhans, M., and Ullrich, C. 2003. Gradual shifts in sites of freeauxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis . Planta, 216:841853.CrossRefGoogle ScholarPubMed
Andrews, H. N., and Murdy, W. H. 1958. Lepidophloios—And ontogeny in arborescent lycopods. American Journal of Botany, 45:552560.CrossRefGoogle Scholar
Asama, K. 1985. Permian to Triassic floral change and some problems of the paleobiogeography, parallelism, mixed floras, and the origin of the angiosperms, p. 199218. In Nakazawa, K. and Dickens, J. M. (eds.), The Tethys. Tokyo University Press, Tokyo.Google Scholar
Beerling, D. J., and Fleming, A. J. 2007. Zimmermann's telome theory of megaphyll leaf evolution: a molecular and cellular critique. Current Opinion in Plant Biology, 10:412.CrossRefGoogle ScholarPubMed
Beerling, D. J., and Woodward, F. I. 1997. Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Botanical Journal of the Linnean Society, 124:137153.CrossRefGoogle Scholar
Berleth, T., Mattson, J., and Hardtke, C. S. 2000. Vascular continuity and auxin signals. Trends in Plant Science, 5:387393.CrossRefGoogle ScholarPubMed
Bierhorst, D. W. 1971. Morphology of vascular plants. MacMillan, New York, 560 p.Google Scholar
Boureau, E., and Doubinger, J. 1975. Traité de paléobotanique. Tome IV, Fasc.2: Pteridophylla (Première Partie). Masson, Paris, 768 p.Google Scholar
Boyce, C. K. 2005a. The evolutionary history of roots and leaves, p. 479499. In Zwieniecki, M. A. and Holbrook, N. M. (eds.), Vascular transport in plants. Elsevier.CrossRefGoogle Scholar
Boyce, C. K. 2005b. Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies. Paleobiology, 31:117140.2.0.CO;2>CrossRefGoogle Scholar
Boyce, C. K. 2007. Mechanisms of laminar growth in morphologically convergent leaves and flower petals. International Journal of Plant Science, 168:11511156.CrossRefGoogle Scholar
Boyce, C. K., Brodribb, T. J., Feild, T. S., and Zwieniecki, M. A. In Review. Evolution of the angiosperm leaf put the rain in tropical rainforests.Google Scholar
Boyce, C. K., and Knoll, A. H. 2002. Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology, 28:70100.2.0.CO;2>CrossRefGoogle Scholar
Brodribb, T. J., Feild, T. S., and Jordan, G. J. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144:18901898.CrossRefGoogle ScholarPubMed
Carlquist, S. 1996. Wood, bark, and stem anatomy of Gnetales: a summary. International Journal of Plant Science, 157:S58S76.CrossRefGoogle Scholar
Carlquist, S., and Schneider, E. L. 2001. Vessels in ferns: structural, ecological, and evolutionary significance. American Journal of Botany, 88:113.CrossRefGoogle ScholarPubMed
Chaney, D. S., Dimichele, W. A., and Mamay, S. H. 2006. A new peltasperm with affinities to Comia from the Lower Permian of north central Texas. Abstracts Botanical Society of America Annual Meeting, Chico, CA, 510.Google Scholar
Cichan, M. A. 1985. Vascular cambium and wood development in selected Carboniferous plants. II. Sphenophyllum plurifoliatum Williamson and Scott (Sphenophyllales). Botanical Gazette, 146:395403.CrossRefGoogle Scholar
Cochard, H., Nardini, A., and Coll, L. 2004. Hydraulic architecture of leaf blades: where is the main resistance? Plant, Cell and Environment, 27:12571267.CrossRefGoogle Scholar
Cornet, B. 1986. The leaf venation and reproductive structures of a Late Triassic angiosperm, Sanmiguelia lewisii . Evolutionary Theory, 7:231309.Google Scholar
Dimichele, W. A., and Aronson, R. B. 1992. The Pennsylvanian-Permian vegetational transition: a terrestrial analogue to the onshore-offshore hypothesis. Evolution, 46:807824.CrossRefGoogle Scholar
Dolan, L., and Poethig, R. S. 1998. Clonal analysis of leaf development in cotton. American Journal of Botany, 85:315321.CrossRefGoogle ScholarPubMed
Doyle, J. A., and Hickey, L. J. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution, p. 139206. In Beck, C. B. (ed.), Origin and Early Evolution of Angiosperms. Columbia University Press, New York.Google Scholar
Eggert, D. A. 1961. The ontogeny of Carboniferous arborescent Lycopsida. Palaeontographica Abt. B., 108:4392.Google Scholar
Erwin, D. H. 2007. Disparity: morphological pattern and developmental context. Palaentology 50:5773.CrossRefGoogle Scholar
Esau, K. 1953. Plant Anatomy. John Wiley & Sons, New York, 735 p.Google Scholar
Esau, K. 1960. Anatomy of seed plants. John Wiley & Sons, New York, 376 p.Google Scholar
Feild, T. S., Arens, N. C., Doyle, J. A., Dawson, T. E., and Donoghue, M. J. 2004. Dark and disturbed: a new image of early angiosperm ecology. Paleobiology, 30:82107.2.0.CO;2>CrossRefGoogle Scholar
Feild, T. S., and Balun, L. 2008. Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea. New Phytologist, 177:665675.CrossRefGoogle ScholarPubMed
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology, 21:273299.CrossRefGoogle Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.CrossRefGoogle Scholar
Foster, A. S. 1952. Foliar venation in angiosperms from an ontogenetic standpoint. American Journal of Botany 39:752766.CrossRefGoogle Scholar
Gälweiler, L., Guan, C., Müller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 282:22262230.CrossRefGoogle ScholarPubMed
Givnish, T. J. 1979. On the adaptive significance of leaf form, p. 375407. In Solbrig, O. T., Jain, S., Johnson, G. B., and Raven, P. H. (eds.), Topics in plant population biology. Columbia University Press, New York.Google Scholar
Harms, V. L., and Leisman, G. A. 1961. The anatomy and morphology of certain Cordaites leaves. Journal of Paleontology, 35:10411064.Google Scholar
Harrison, C. J., Cronk, Q. C. B., and Hudson, A. 2002. An overview of seed plant leaf evolution, p. 395403. In Cronk, Q. C. B., Bateman, R. M., and Hawkins, J. A. (eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London.Google Scholar
Kaplan, D. R. 2001. The science of plant morphology: definition, history, and role in modern biology. American Journal of Botany, 88:17111741.CrossRefGoogle ScholarPubMed
Kenrick, P. 2002. The telome theory, p. 365387. In Cronk, Q. C. B., Bateman, R. M., and Hawkins, J. A. (eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London.CrossRefGoogle Scholar
Kerp, H., and Krings, M. 1998. Climbing and scrambling growth habits: common life strategies among Late Carboniferous seed ferns. Comptes Rendus de l'Académie des Sciences. Série deux, Sciences de la Terre et des Planètes 326:583588.Google Scholar
Knoll, A. H., Niklas, K. J., and Tiffney, B. H. 1979. Phanerozoic land-plant diversity in North America. Science, 206:14001402.CrossRefGoogle ScholarPubMed
Kosanke, R. M. 1979. A long-leaved specimen of Lepidodendron . Geological Society of America Bulletin, 90:431434.2.0.CO;2>CrossRefGoogle Scholar
Kreft, H., and Jetz, W. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104:59255930.CrossRefGoogle ScholarPubMed
Langdale, J. A., Scotland, R. W., and Corley, S. B. 2002. A developmental perspective on the evolution of leaves, p. 388394. In Cronk, Q. C. B., Bateman, R. M., and Hawkins, J. A. (eds.), Developmental Genetics and Plant Evolution. Taylor & Francis, London.CrossRefGoogle Scholar
Leslie, A. B. In Press. Interpreting the function of saccate pollen in ancient conifers and other seed plants. International Journal of Plant Science.Google Scholar
Li, H., and Taylor, D. W. 1999. Vessel-bearing stems of Vasovinea tianii gen. et sp. nov. (Gigantopteridales) from the Upper Permian of Guizhou Province, China. American Journal of Botany, 86:15631575.CrossRefGoogle ScholarPubMed
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Creataceous angiosperm radiation: North American pollen record. Paleobiology, 25:128.Google Scholar
Ma, Y., and Steeves, T. A. 1992. Auxin effects on vascular differentiation in Ostrich Fern. Annals of Botany, 70:277282.CrossRefGoogle Scholar
McElwain, J. C., and Chaloner, W. G. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. Annals of Botany, 76:389395.CrossRefGoogle Scholar
Melville, R. 1969. Leaf venation patterns and the origin of the angiosperms. Nature, 224:121125.CrossRefGoogle Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology, 22:304309.CrossRefGoogle ScholarPubMed
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of fossil plants: a preliminary assessment. Evolutionary Biology, 12:189.Google Scholar
Niklas, K. J. 1983. The influence of Paleozoic ovule and cupule morphologies on wind pollination. Evolution, 39:968986.CrossRefGoogle Scholar
Niklas, K. J. 1985. The aerodynamics of wind pollination. Botanical Review, 51:328386.CrossRefGoogle Scholar
Niklas, K. J. 1992. Plant biomechanics. University of Chicago Press, Chicago, 607 p.Google Scholar
Niklas, K. J. 1994. Morphological evolution through complex domains of fitness. Proceedings of the National Academy of Sciences, 91:67726779.CrossRefGoogle ScholarPubMed
Niklas, K. J. 1997. The Evolutionary Biology of Plants. University of Chicago Press, Chicago, 468 p.Google Scholar
Niklas, K. J. 2004. Computer models of early land plant evolution. Annual Review of Earth and Planetary Science, 32:4766.CrossRefGoogle Scholar
Poethig, R. S., and Sussex, I. M. 1985a. The developmental morphology and growth dynamics of the tobacco leaf. Planta, 165:158169.CrossRefGoogle ScholarPubMed
Poethig, R. S., and Sussex, I. M. 1985b. The cellular parameters of leaf development in tobacco: a clonal analysis. Planta, 165:170184.CrossRefGoogle ScholarPubMed
Poli, D., Jacobs, M., and Cooke, T. J. 2003. Auxin regulation of axial growth in bryophyte sporophytes: its potential significance for the evolution of early land plants. American Journal of Botany, 90:14051415.CrossRefGoogle ScholarPubMed
Pray, T. R. 1955a. Foliar venation of angiosperms. II. Histogenesis of the venation of Liriodendron . American Journal of Botany, 42:1827.CrossRefGoogle Scholar
Pray, T. R. 1955b. Foliar venation of angiosperms. III. Pattern and histology of the venation of Hosta . American Journal of Botany, 42:611618.CrossRefGoogle Scholar
Pray, T. R. 1960. Ontogeny of the open dichotomous venation in the pinna of the fern Nephrolepsis . American Journal of Botany, 47:319328.CrossRefGoogle Scholar
Pray, T. R. 1962. Ontogeny of the closed dichotomous venation of Regnellidium . American Journal of Botany, 49:464472.CrossRefGoogle Scholar
Pryer, K. M., Schneider, H., Smith, A. R., Cranfill, R., Wolf, P. G., Hunt, J. S., and Sipes, S. D. 2001. Horsetails and ferns are a monophyletic group and the closest living relatives to the seed plants. Nature, 409:618622.CrossRefGoogle Scholar
Roth-Nebelsick, A., Uhl, D., Mosbrugger, V., and Kerp, H. 2001. Evolution and function of leaf venation architecture: a review. Annals of Botany, 87:553566.CrossRefGoogle Scholar
Rothwell, G. W. 1999. Fossils and ferns in the resolution of land plant phylogeny. Botanical Review, 65:188218.CrossRefGoogle Scholar
Rothwell, G. W., and Lev-Yadun, S. 2005. Evidence of polar auxin flow in 375 million-year-old fossil wood. American Journal of Botany, 92:903906.CrossRefGoogle ScholarPubMed
Rothwell, G. W., and Nixon, K. C. 2006. How does the inclusion of fossil data change our conclusions about the phylogenetic history of euphyllophytes. International Journal of Plant Science, 167:737749.CrossRefGoogle Scholar
Sachs, T. 1975. Control of Differentiation of vascular networks. Annals of Botany, 39:197204.CrossRefGoogle Scholar
Sachs, T. 1991. Pattern formation in plant tissues. Cambridge University Press, Cambridge, 234 p.CrossRefGoogle Scholar
Sack, L., Cowan, P. D., and Holbrook, N. M. 2003. The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). American Journal of Botany, 90:3239.CrossRefGoogle ScholarPubMed
Sack, L., and Holbrook, N. M. 2006. Leaf Hydraulics. Annual Review of Plant Biology, 57:361381.CrossRefGoogle ScholarPubMed
Sanders, H., Rothwell, G. W., and Wyatt, S. 2007. Paleontological context for the developmental mechanisms of evolution. International Journal of Plant Science, 168:719728.CrossRefGoogle Scholar
Scarpella, E., Marcos, D., Friml, J., and Berleth, T. 2006. Control of leaf vascular patterning by polar auxin transport. Genes & Development, 20:10151027.CrossRefGoogle ScholarPubMed
Scott, D. H. 1909. Studies in Fossil Botany. Adam and Charles Black, London.Google Scholar
Speck, T. S., and Rowe, N. P. 2001. Plant growth forms and biomechanics, p. 379384. In Briggs, D. E. G. and Crowther, P. R. (eds.), Paleobiology II. Blackwell Sciences, London.CrossRefGoogle Scholar
Stein, W. 1993. Modeling the evolution of stelar architecture in vascular plants. International Journal of Plant Science, 154:229263.CrossRefGoogle Scholar
Stein, W. E., and Boyer, J. S. 2006. Evolution of land plant architecture: beyond the telome theory. Paleobiology, 32:450482.CrossRefGoogle Scholar
Stewart, W. N. 1964. An upward outlook in plant morphology. Phytomorphology, 14:120134.Google Scholar
Stewart, W. N., and Rothwell, G. W. 1993. Paleobotany and the evolution of plants. Cambridge University Press, Cambridge, 521 p.Google Scholar
Sussex, I. M., and Kerk, N. M. 2001. The evolution of plant architecture. Current Opinion in Plant Biology, 4:3337.CrossRefGoogle ScholarPubMed
Taylor, T. N., and Taylor, E. L. 1993. The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs, 982 p.Google Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology, 23:115150.CrossRefGoogle Scholar
Wardlaw, C. W. 1950. The comparative investigation of apices of vascular plants by experimental methods. Philosophical Transactions of the Royal Society of London B, 234:583604.Google ScholarPubMed
Wilf, P. 1997. When are leaves good thermometers? A new case for Leaf Margin Analysis. Paleobiology, 23:373390.CrossRefGoogle Scholar
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L. 1998. Using leaf fossils as paleoprecipitation indicators: An Eocene example. Geology, 26:203206.2.3.CO;2>CrossRefGoogle Scholar
Wilson, C. L. 1953. The telome theory. Botanical Review, 19:417437.CrossRefGoogle Scholar
Wilson, J. P. and Knoll, A. H. 2006. A physiologically explicit morphospace for water transport in vascular plants. Abstracts Geological Society of America Annual Meeting, Philadelphia, 64–13.Google Scholar
Wolfe, J. A. 1993. A method of obtaining climatic parameters from leaf assemblages. United States Geological Survey Bulletin, 2040:171.Google Scholar
Worden, J., Noone, D., Bowman, K., AND THE TROPOSPHERIC EMISSION SPECTROMETER SCIENCE TEAM AND DATA CONTRIBUTORS. 2007. Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 445:528532.CrossRefGoogle ScholarPubMed
Zimmerman, W. 1952. Main results of the “Telome Theory”. Palaeobotanist, 1:456470.Google Scholar
Zurakowski, K. A., and Gifford, E. M. 1988. Quantitative studies of pinnule development in the ferns Adiantum raddianum and Cheilanthes viridis . American Journal of Botany, 75:15591570.CrossRefGoogle Scholar
Zwieniecki, M. A., Boyce, C. K., and Holbrook, N. M. 2004. Functional design space of single veined leaves: role of tissue hydraulic properties in constraining leaf size and shape. Annals of Botany, 94:507513.CrossRefGoogle ScholarPubMed
Zwieniecki, M. A., Melcher, P. J., Boyce, C. K., Sack, L., and Holbrook, N. M. 2002. Hydraulic architecture of leaf venation Laurus nobilis L. Plant, Cell and Environment, 25:14451450.CrossRefGoogle Scholar
Zwieniecki, M. A., Stone, H. A., Leigh, A., Boyce, C. K., and Holbrook, N. M. 2005. Hydraulic design of pine needles: one-dimensional optimization for single-vein leaves. Plant, Cell and Environment, 29:803809.CrossRefGoogle Scholar