ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Collision Cross Sections of Proteins and Their Complexes: A Calibration Framework and Database for Gas-Phase Structural Biology

View Author Information
Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, Waters Corporation, Floats Road, Wythenshawe, Manchester M23 9LZ, United Kingdom, and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
* To whom correspondence should be addressed. E-mail: [email protected] (C.V.R.), [email protected] (B.T.R.).
†University of Oxford.
‡Waters Corporation.
§University of Michigan.
Cite this: Anal. Chem. 2010, 82, 22, 9557–9565
Publication Date (Web):October 27, 2010
https://doi.org/10.1021/ac1022953
Copyright © 2010 American Chemical Society

    Article Views

    10720

    Altmetric

    -

    Citations

    656
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Collision cross sections in both helium and nitrogen gases were measured directly using a drift cell with RF ion confinement inserted within a quadrupole/ion mobility/time-of-flight hybrid mass spectrometer (Waters Synapt HDMS, Manchester, U.K.). Collision cross sections for a large set of denatured peptide, denatured protein, native-like protein, and native-like protein complex ions are reported here, forming a database of collision cross sections that spans over 2 orders of magnitude. The average effective density of the native-like ions is 0.6 g cm−3, which is significantly lower than that for the solvent-excluded regions of proteins and suggests that these ions can retain significant memory of their solution-phase structures rather than collapse to globular structures. Because the measurements are acquired using an instrument that mimics the geometry of the commercial Synapt HDMS instrument, this database enables the determination of highly accurate collision cross sections from traveling-wave ion mobility data through the use of calibration standards with similar masses and mobilities. Errors in traveling-wave collision cross sections determined for native-like protein complexes calibrated using other native-like protein complexes are significantly less than those calibrated using denatured proteins. This database indicates that collision cross sections in both helium and nitrogen gases can be well-correlated for larger biomolecular ions, but non-correlated differences for smaller ions can be more significant. These results enable the generation of more accurate three-dimensional models of protein and other biomolecular complexes using gas-phase structural biology techniques.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Method for calculating effective densities, Tables S1−S3, and Figures S1 and S2. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 656 publications.

    1. Yaroslav Lyutvinskiy, Konstantin O. Nagornov, Anton N. Kozhinov, Natalia Gasilova, Laure Menin, Zhaowei Meng, Xuepei Zhang, Amir Ata Saei, Tingting Fu, Julia Chamot-Rooke, Yury O. Tsybin, Alexander Makarov, Roman A. Zubarev. Adding Color to Mass Spectra of Biopolymers: Charge Determination Analysis (CHARDA) Assigns Charge State to Every Ion Peak. Journal of the American Society for Mass Spectrometry 2024, 35 (5) , 902-911. https://doi.org/10.1021/jasms.3c00442
    2. Iuliia Stroganova, Hannah Willenberg, Thaleia Tente, Agathe Depraz Depland, Sjors Bakels, Anouk M. Rijs. Exploring the Aggregation Propensity of PHF6 Peptide Segments of the Tau Protein Using Ion Mobility Mass Spectrometry Techniques. Analytical Chemistry 2024, 96 (13) , 5115-5124. https://doi.org/10.1021/acs.analchem.3c04974
    3. Nadjali A. Chung, Jody C. May, Renã A. S. Robinson, John A. McLean. Solvent Composition Can Have a Measurable Influence on the Ion Mobility-Derived Collision Cross Section of Small Molecules. Journal of the American Society for Mass Spectrometry 2024, 35 (2) , 234-243. https://doi.org/10.1021/jasms.3c00338
    4. Hannah M. Hynds, Kelly M. Hines. MOCCal: A Multiomic CCS Calibrator for Traveling Wave Ion Mobility Mass Spectrometry. Analytical Chemistry 2024, 96 (3) , 1185-1194. https://doi.org/10.1021/acs.analchem.3c04290
    5. Carter Lantz, Jaybree Lopez, Andrew K. Goring, Muhammad A. Zenaidee, Karl Biggs, Julian P. Whitelegge, Rachel R. Ogorzalek Loo, Frank-Gerrit Klärner, Thomas Schrader, Gal Bitan, Joseph A. Loo. Characterization of Molecular Tweezer Binding on α-Synuclein with Native Top-Down Mass Spectrometry and Ion Mobility-Mass Spectrometry Reveals a Mechanism for Aggregation Inhibition. Journal of the American Society for Mass Spectrometry 2023, 34 (12) , 2739-2747. https://doi.org/10.1021/jasms.3c00281
    6. Nickolas P. Fisher, John P. McGee, Kyle P. Bowen, Michael Goodwin, Michael W. Senko, Neil L. Kelleher, Jared O. Kafader. Determining Collisional Cross Sections from Ion Decay with Individual Ion Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2023, 34 (12) , 2625-2629. https://doi.org/10.1021/jasms.3c00340
    7. Fanny C. Liu, Tyler C. Cropley, Christian Bleiholder. Elucidating Structures of Protein Complexes by Collision-Induced Dissociation at Elevated Gas Pressures. Journal of the American Society for Mass Spectrometry 2023, 34 (10) , 2247-2258. https://doi.org/10.1021/jasms.3c00191
    8. Komal Kedia, Rachel Harris, Kim Ekroos, Kelly W Moser, Daniel DeBord, Paolo Tiberi, Laura Goracci, Nanyan Rena Zhang, Weixun Wang, Daniel S. Spellman, Kevin Bateman. Investigating Performance of the SLIM-Based High Resolution Ion Mobility Platform for Separation of Isomeric Phosphatidylcholine Species. Journal of the American Society for Mass Spectrometry 2023, 34 (10) , 2176-2186. https://doi.org/10.1021/jasms.3c00157
    9. Mengxuan Jia, Yang Song, Chen Du, Vicki H. Wysocki. Oxidized and Reduced Dimeric Protein Complexes Illustrate Contrasting CID and SID Charge Partitioning. Journal of the American Society for Mass Spectrometry 2023, 34 (10) , 2166-2175. https://doi.org/10.1021/jasms.3c00142
    10. Jiahao Wan, Marianna Nytka, Haocheng Qian, Karel Lemr, František Tureček. Do d(GCGAAGC) Cations Retain the Hairpin Structure in the Gas Phase? A Cyclic Ion Mobility Mass Spectrometry and Density Functional Theory Computational Study. Journal of the American Society for Mass Spectrometry 2023, 34 (10) , 2323-2340. https://doi.org/10.1021/jasms.3c00228
    11. Mohammed Khaled, Isabel Rönnbäck, Leopold L. Ilag, Astrid Gräslund, Birgit Strodel, Nicklas Österlund. A Hairpin Motif in the Amyloid-β Peptide Is Important for Formation of Disease-Related Oligomers. Journal of the American Chemical Society 2023, 145 (33) , 18340-18354. https://doi.org/10.1021/jacs.3c03980
    12. Tyler C. Cropley, Fanny C. Liu, Thais Pedrete, Md Amin Hossain, Jeffrey N. Agar, Christian Bleiholder. Structure Relaxation Approximation (SRA) for Elucidation of Protein Structures from Ion Mobility Measurements (II). Protein Complexes. The Journal of Physical Chemistry B 2023, 127 (25) , 5553-5565. https://doi.org/10.1021/acs.jpcb.3c01024
    13. Benjamin P. Zercher, Seoyeon Hong, Addison E. Roush, Yuan Feng, Matthew F. Bush. Are the Gas-Phase Structures of Molecular Elephants Enduring or Ephemeral? Results from Time-Dependent, Tandem Ion Mobility. Analytical Chemistry 2023, 95 (25) , 9589-9597. https://doi.org/10.1021/acs.analchem.3c01222
    14. Christina Glen Robb, Thuy P. Dao, Jakub Ujma, Carlos A. Castañeda, Rebecca Beveridge. Ion Mobility Mass Spectrometry Unveils Global Protein Conformations in Response to Conditions that Promote and Reverse Liquid–Liquid Phase Separation. Journal of the American Chemical Society 2023, 145 (23) , 12541-12549. https://doi.org/10.1021/jacs.3c00756
    15. Samuel Cajahuaringa, Daniel L. Z. Caetano, Leandro N. Zanotto, Guido Araujo, Munir S. Skaf. MassCCS: A High-Performance Collision Cross-Section Software for Large Macromolecular Assemblies. Journal of Chemical Information and Modeling 2023, 63 (11) , 3557-3566. https://doi.org/10.1021/acs.jcim.3c00405
    16. Rachel M. Eaton, Benjamin P. Zercher, AnneClaire Wageman, Matthew F. Bush. A Flexible, Modular Platform for Multidimensional Ion Mobility of Native-like Ions. Journal of the American Society for Mass Spectrometry 2023, 34 (6) , 1175-1185. https://doi.org/10.1021/jasms.3c00112
    17. Elizaveta I. Shestoperova, Daniil G. Ivanov, Eric R. Strieter. Quantitative Analysis of Diubiquitin Isomers Using Ion Mobility Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2023, 34 (5) , 931-938. https://doi.org/10.1021/jasms.3c00016
    18. Cameron N. Naylor, Elvin R. Cabrera, Brian H. Clowers. A Comparison of the Performance of Modular Standalone Do-It-Yourself Ion Mobility Spectrometry Systems. Journal of the American Society for Mass Spectrometry 2023, 34 (4) , 586-594. https://doi.org/10.1021/jasms.2c00308
    19. Simon Ollivier, Laurent Legentil, Oznur Yeni, Louis-Philippe David, Vincent Ferrières, Isabelle Compagnon, Hélène Rogniaux, David Ropartz. Gas-Phase Behavior of Galactofuranosides upon Collisional Fragmentation: A Multistage High-Resolution Ion Mobility Study. Journal of the American Society for Mass Spectrometry 2023, 34 (4) , 627-639. https://doi.org/10.1021/jasms.2c00333
    20. Emilia Christofi, Perdita Barran. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chemical Reviews 2023, 123 (6) , 2902-2949. https://doi.org/10.1021/acs.chemrev.2c00600
    21. Emily J. Byrd, Martin Wilkinson, Sheena E. Radford, Frank Sobott. Taking Charge: Metal Ions Accelerate Amyloid Aggregation in Sequence Variants of α-Synuclein. Journal of the American Society for Mass Spectrometry 2023, 34 (3) , 493-504. https://doi.org/10.1021/jasms.2c00379
    22. Guusje van Schaick, Elena Domínguez-Vega, Jérôme Castel, Manfred Wuhrer, Oscar Hernandez-Alba, Sarah Cianférani. Online Collision-Induced Unfolding of Therapeutic Monoclonal Antibody Glyco-Variants through Direct Hyphenation of Cation Exchange Chromatography with Native Ion Mobility–Mass Spectrometry. Analytical Chemistry 2023, 95 (8) , 3932-3939. https://doi.org/10.1021/acs.analchem.2c03163
    23. Cheng-Wei Lin, Shelby D. Oney-Hawthorne, Syuan-Ting Kuo, David P. Barondeau, David H. Russell. Mechanistic Insights into IscU Conformation Regulation for Fe–S Cluster Biogenesis Revealed by Variable Temperature Electrospray Ionization Native Ion Mobility Mass Spectrometry. Biochemistry 2022, 61 (23) , 2733-2741. https://doi.org/10.1021/acs.biochem.2c00429
    24. Charles Eldrid, Tristan Cragnolini, Aisha Ben-Younis, Junjie Zou, Daniel P. Raleigh, Konstantinos Thalassinos. Linking Gas-Phase and Solution-Phase Protein Unfolding via Mobile Proton Simulations. Analytical Chemistry 2022, 94 (46) , 16113-16121. https://doi.org/10.1021/acs.analchem.2c03352
    25. Virginia K. James, James D. Sanders, Konstantin Aizikov, Kyle L. Fort, Dmitry Grinfeld, Alexander Makarov, Jennifer S. Brodbelt. Advancing Orbitrap Measurements of Collision Cross Sections to Multiple Species for Broad Applications. Analytical Chemistry 2022, 94 (45) , 15613-15620. https://doi.org/10.1021/acs.analchem.2c02146
    26. Michael T. Marty. Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry?. Journal of the American Society for Mass Spectrometry 2022, 33 (10) , 1807-1812. https://doi.org/10.1021/jasms.2c00218
    27. Susannah L. Brown, Muhammad A. Zenaidee, Joseph A. Loo, Rachel R. Ogorzalek Loo, William A. Donald. On the Mechanism of Theta Capillary Nanoelectrospray Ionization for the Formation of Highly Charged Protein Ions Directly from Native Solutions. Analytical Chemistry 2022, 94 (38) , 13010-13018. https://doi.org/10.1021/acs.analchem.2c01654
    28. Paul Fremdling, Tim K. Esser, Bodhisattwa Saha, Alexander A. Makarov, Kyle L. Fort, Maria Reinhardt-Szyba, Joseph Gault, Stephan Rauschenbach. A Preparative Mass Spectrometer to Deposit Intact Large Native Protein Complexes. ACS Nano 2022, 16 (9) , 14443-14455. https://doi.org/10.1021/acsnano.2c04831
    29. Bailey S. Rose, Jody C. May, Allison R. Reardon, John A. McLean. Collision Cross-Section Calibration Strategy for Lipid Measurements in SLIM-Based High-Resolution Ion Mobility. Journal of the American Society for Mass Spectrometry 2022, 33 (7) , 1229-1237. https://doi.org/10.1021/jasms.2c00067
    30. Sarah N. Sipe, James D. Sanders, Tobias Reinecke, Brian H. Clowers, Jennifer S. Brodbelt. Separation and Collision Cross Section Measurements of Protein Complexes Afforded by a Modular Drift Tube Coupled to an Orbitrap Mass Spectrometer. Analytical Chemistry 2022, 94 (26) , 9434-9441. https://doi.org/10.1021/acs.analchem.2c01653
    31. Kellen DeLaney, Dashuang Jia, Laxmi Iyer, Zhe Yu, Sam B. Choi, Paul J. Marvar, Peter Nemes. Microanalysis of Brain Angiotensin Peptides Using Ultrasensitive Capillary Electrophoresis Trapped Ion Mobility Mass Spectrometry. Analytical Chemistry 2022, 94 (25) , 9018-9025. https://doi.org/10.1021/acs.analchem.2c01062
    32. Evolène Deslignière, Simon Ollivier, Anthony Ehkirch, Armelle Martelet, David Ropartz, Nelly Lechat, Oscar Hernandez-Alba, Jean-Michel Menet, Séverine Clavier, Hélène Rogniaux, Bruno Genet, Sarah Cianférani. Combination of IM-Based Approaches to Unravel the Coexistence of Two Conformers on a Therapeutic Multispecific mAb. Analytical Chemistry 2022, 94 (22) , 7981-7989. https://doi.org/10.1021/acs.analchem.2c00928
    33. Ashley Phetsanthad, Gongyu Li, Chae Kyung Jeon, Brandon T. Ruotolo, Lingjun Li. Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization. Journal of the American Society for Mass Spectrometry 2022, 33 (6) , 944-951. https://doi.org/10.1021/jasms.2c00004
    34. Jihyeon Lee, Brian H. Clowers, Christopher J. Hogan. Condensable Vapor Sorption by Low Charge State Protein Ions. Analytical Chemistry 2022, 94 (19) , 7050-7059. https://doi.org/10.1021/acs.analchem.2c00357
    35. Daniel D. Vallejo, Chae Kyung Jeon, Kristine F. Parson, Hayley R. Herderschee, Joseph D. Eschweiler, Dana I. Filoti, Brandon T. Ruotolo. Ion Mobility–Mass Spectrometry Reveals the Structures and Stabilities of Biotherapeutic Antibody Aggregates. Analytical Chemistry 2022, 94 (18) , 6745-6753. https://doi.org/10.1021/acs.analchem.2c00160
    36. Rivkah Rogawski, Michal Sharon. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chemical Reviews 2022, 122 (8) , 7386-7414. https://doi.org/10.1021/acs.chemrev.1c00217
    37. Amber D. Rolland, James S. Prell. Approaches to Heterogeneity in Native Mass Spectrometry. Chemical Reviews 2022, 122 (8) , 7909-7951. https://doi.org/10.1021/acs.chemrev.1c00696
    38. Daniel D. Vallejo, Carolina Rojas Ramírez, Kristine F. Parson, Yilin Han, Varun V. Gadkari, Brandon T. Ruotolo. Mass Spectrometry Methods for Measuring Protein Stability. Chemical Reviews 2022, 122 (8) , 7690-7719. https://doi.org/10.1021/acs.chemrev.1c00857
    39. Jae-ung Lee, Sang Tak Lee, Chae Ri Park, Bongjin Moon, Hugh I. Kim, Han Bin Oh. TEMPO-Assisted Free-Radical-Initiated Peptide Sequencing Mass Spectrometry for Ubiquitin Ions: An Insight on the Gas-Phase Conformations. Journal of the American Society for Mass Spectrometry 2022, 33 (3) , 471-481. https://doi.org/10.1021/jasms.1c00313
    40. Amber D. Rolland, Lejla S. Biberic, James S. Prell. Investigation of Charge-State-Dependent Compaction of Protein Ions with Native Ion Mobility–Mass Spectrometry and Theory. Journal of the American Society for Mass Spectrometry 2022, 33 (2) , 369-381. https://doi.org/10.1021/jasms.1c00351
    41. Gongyu Li, Ashley Phetsanthad, Min Ma, Qinying Yu, Ashita Nair, Zhen Zheng, Fengfei Ma, Kellen DeLaney, Seungpyo Hong, Lingjun Li. Native Ion Mobility–Mass Spectrometry-Enabled Fast Structural Interrogation of Labile Protein Surface Modifications at the Intact Protein Level. Analytical Chemistry 2022, 94 (4) , 2142-2153. https://doi.org/10.1021/acs.analchem.1c04503
    42. Mia L. Abramsson, Cagla Sahin, Jonathan T. S. Hopper, Rui M. M. Branca, Jens Danielsson, Mingming Xu, Shane A. Chandler, Nicklas Österlund, Leopold L. Ilag, Axel Leppert, Joana Costeira-Paulo, Lisa Lang, Kaare Teilum, Arthur Laganowsky, Justin L. P. Benesch, Mikael Oliveberg, Carol V. Robinson, Erik G. Marklund, Timothy M. Allison, Jakob R. Winther, Michael Landreh. Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry. JACS Au 2021, 1 (12) , 2385-2393. https://doi.org/10.1021/jacsau.1c00458
    43. Julia A. Townsend, Henry M. Sanders, Amber D. Rolland, Chad K. Park, Nancy C. Horton, James S. Prell, Jun Wang, Michael T. Marty. Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment. Analytical Chemistry 2021, 93 (48) , 16273-16281. https://doi.org/10.1021/acs.analchem.1c04660
    44. Roch Andrzejewski, Andrew Entwistle, Roger Giles, Alexandre A. Shvartsburg. Ion Mobility Spectrometry of Superheated Macromolecules at Electric Fields up to 500 Td. Analytical Chemistry 2021, 93 (35) , 12049-12058. https://doi.org/10.1021/acs.analchem.1c02299
    45. Simon Ollivier, Mathieu Fanuel, Hélène Rogniaux, David Ropartz. Molecular Networking of High-Resolution Tandem Ion Mobility Spectra: A Structurally Relevant Way of Organizing Data in Glycomics?. Analytical Chemistry 2021, 93 (31) , 10871-10878. https://doi.org/10.1021/acs.analchem.1c01244
    46. John R. F. B. Connolly, Jordi Munoz-Muriedas, Cris Lapthorn, David Higton, Johannes P. C. Vissers, Alison Webb, Claire Beaumont, Gordon J. Dear. Investigation into Small Molecule Isomeric Glucuronide Metabolite Differentiation Using In Silico and Experimental Collision Cross-Section Values. Journal of the American Society for Mass Spectrometry 2021, 32 (8) , 1976-1986. https://doi.org/10.1021/jasms.0c00427
    47. James R. Arndt, Kelly L. Wormwood Moser, Gregory Van Aken, Rory M. Doyle, Tatjana Talamantes, Daniel DeBord, Laura Maxon, George Stafford, John Fjeldsted, Bryan Miller, Melissa Sherman. High-Resolution Ion-Mobility-Enabled Peptide Mapping for High-Throughput Critical Quality Attribute Monitoring. Journal of the American Society for Mass Spectrometry 2021, 32 (8) , 2019-2032. https://doi.org/10.1021/jasms.0c00434
    48. Cameron N. Naylor, Tobias Reinecke, Mark E. Ridgeway, Melvin A. Park, Brian H. Clowers. Implications of Blanc’s Law for Use in Trapped Ion Mobility Spectrometry. Journal of the American Society for Mass Spectrometry 2021, 32 (8) , 2241-2250. https://doi.org/10.1021/jasms.1c00168
    49. Thomas Auth, Márkó Grabarics, Maria Schlangen, Kevin Pagel, Konrad Koszinowski. Modular Ion Mobility Calibrants for Organometallic Anions Based on Tetraorganylborate Salts. Analytical Chemistry 2021, 93 (28) , 9797-9807. https://doi.org/10.1021/acs.analchem.1c01333
    50. Nuwani W. Weerasinghe, Yeganeh Habibi, Kevin A. Uggowitzer, Christopher J. Thibodeaux. Exploring the Conformational Landscape of a Lanthipeptide Synthetase Using Native Mass Spectrometry. Biochemistry 2021, 60 (19) , 1506-1519. https://doi.org/10.1021/acs.biochem.1c00085
    51. Bénédicte Favreau, Oznur Yeni, Simon Ollivier, Joël Boustie, Françoise Le Dévéhat, Jean-Paul Guégan, Mathieu Fanuel, Hélène Rogniaux, Richard Brédy, Isabelle Compagnon, David Ropartz, Laurent Legentil, Vincent Ferrières. Synthesis of an Exhaustive Library of Naturally Occurring Galf-Manp and Galp-Manp Disaccharides. Toward Fingerprinting According to Ring Size by Advanced Mass Spectrometry-Based IM-MS and IRMPD. The Journal of Organic Chemistry 2021, 86 (9) , 6390-6405. https://doi.org/10.1021/acs.joc.1c00250
    52. Katie Mae Wilson, Aurora Burkus-Matesevac, Samuel W. Maddox, Christopher D. Chouinard. Native Ubiquitin Structural Changes Resulting from Complexation with β-Methylamino-l-alanine (BMAA). Journal of the American Society for Mass Spectrometry 2021, 32 (4) , 895-900. https://doi.org/10.1021/jasms.0c00372
    53. Yang Liu, Yue Liu, Marianna Nytka, Shu R. Huang, Karel Lemr, František Tureček. Probing d- and l-Adrenaline Binding to β2-Adrenoreceptor Peptide Motifs by Gas-Phase Photodissociation Cross-Linking and Ion Mobility Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2021, 32 (4) , 1041-1052. https://doi.org/10.1021/jasms.1c00019
    54. Cameron N. Naylor, Brian H. Clowers. Reevaluating the Role of Polarizability in Ion Mobility Spectrometry. Journal of the American Society for Mass Spectrometry 2021, 32 (3) , 618-627. https://doi.org/10.1021/jasms.0c00338
    55. K. Richardson, D. Langridge, S. M. Dixit, B. T. Ruotolo. An Improved Calibration Approach for Traveling Wave Ion Mobility Spectrometry: Robust, High-Precision Collision Cross Sections. Analytical Chemistry 2021, 93 (7) , 3542-3550. https://doi.org/10.1021/acs.analchem.0c04948
    56. Kevin Jeanne Dit Fouque, Alyssa Garabedian, Fenfei Leng, Yuk-Ching Tse-Dinh, Mark E. Ridgeway, Melvin A. Park, Francisco Fernandez-Lima. Trapped Ion Mobility Spectrometry of Native Macromolecular Assemblies. Analytical Chemistry 2021, 93 (5) , 2933-2941. https://doi.org/10.1021/acs.analchem.0c04556
    57. Chun-Pei Shih, Kai-Chiang Yu, Hsuan-Ting Ou, Pawel L. Urban. Portable Pen-Probe Analyzer Based on Ion Mobility Spectrometry for in Situ Analysis of Volatile Organic Compounds Emanating from Surfaces and Wireless Transmission of the Acquired Spectra. Analytical Chemistry 2021, 93 (4) , 2424-2432. https://doi.org/10.1021/acs.analchem.0c04369
    58. Daniel W. Woodall, Lucas W. Henderson, Shannon A. Raab, Kenji Honma, David E. Clemmer. Understanding the Thermal Denaturation of Myoglobin with IMS-MS: Evidence for Multiple Stable Structures and Trapped Pre-equilibrium States. Journal of the American Society for Mass Spectrometry 2021, 32 (1) , 64-72. https://doi.org/10.1021/jasms.0c00075
    59. Christopher R. Conant, Isaac K. Attah, Sandilya V. B. Garimella, Gabe Nagy, Aivett Bilbao, Richard D. Smith, Yehia M. Ibrahim. Evaluation of Waveform Profiles for Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations. Journal of the American Society for Mass Spectrometry 2021, 32 (1) , 225-236. https://doi.org/10.1021/jasms.0c00282
    60. Alexander I. M. Sever, Victor Yin, Lars Konermann. Interrogating the Quaternary Structure of Noncanonical Hemoglobin Complexes by Electrospray Mass Spectrometry and Collision-Induced Dissociation. Journal of the American Society for Mass Spectrometry 2021, 32 (1) , 270-280. https://doi.org/10.1021/jasms.0c00320
    61. Frederik Lermyte, Alina Theisen, Peter B. O’Connor. Solution Condition-Dependent Formation of Gas-Phase Protomers of Alpha-Synuclein in Electrospray Ionization. Journal of the American Society for Mass Spectrometry 2021, 32 (1) , 364-372. https://doi.org/10.1021/jasms.0c00373
    62. Christian Bleiholder, Fanny C. Liu, Mengqi Chai. Comment on Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry. Analytical Chemistry 2020, 92 (24) , 16329-16333. https://doi.org/10.1021/acs.analchem.0c02052
    63. Daniela Mesa Sanchez, Steve Creger, Veerupaksh Singla, Ruwan T. Kurulugama, John Fjeldsted, Julia Laskin. Ion Mobility-Mass Spectrometry Imaging Workflow. Journal of the American Society for Mass Spectrometry 2020, 31 (12) , 2437-2442. https://doi.org/10.1021/jasms.0c00142
    64. Varun V. Gadkari, Carolina Rojas Ramírez, Daniel D. Vallejo, Ruwan T. Kurulugama, John C. Fjeldsted, Brandon T. Ruotolo. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. Analytical Chemistry 2020, 92 (23) , 15489-15496. https://doi.org/10.1021/acs.analchem.0c03372
    65. Ailin Li, Christopher R. Conant, Xueyun Zheng, Kent J. Bloodsworth, Daniel J. Orton, Sandilya V.B. Garimella, Isaac K. Attah, Gabe Nagy, Richard D. Smith, Yehia M. Ibrahim. Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations. Analytical Chemistry 2020, 92 (22) , 14976-14982. https://doi.org/10.1021/acs.analchem.0c02829
    66. Shannon A. Raab, Tarick J. El-Baba, Daniel W. Woodall, Wen Liu, Yang Liu, Zane Baird, David A. Hales, Arthur Laganowsky, David H. Russell, David E. Clemmer. Evidence for Many Unique Solution Structures for Chymotrypsin Inhibitor 2: A Thermodynamic Perspective Derived from vT-ESI-IMS-MS Measurements. Journal of the American Chemical Society 2020, 142 (41) , 17372-17383. https://doi.org/10.1021/jacs.0c05365
    67. Michael Landreh, Cagla Sahin, Joseph Gault, Samira Sadeghi, Chester L. Drum, Povilas Uzdavinys, David Drew, Timothy M. Allison, Matteo T. Degiacomi, Erik G. Marklund. Predicting the Shapes of Protein Complexes through Collision Cross Section Measurements and Database Searches. Analytical Chemistry 2020, 92 (18) , 12297-12303. https://doi.org/10.1021/acs.analchem.0c01940
    68. Jacob W. McCabe, Christopher S. Mallis, Klaudia I. Kocurek, Michael L. Poltash, Mehdi Shirzadeh, Michael J. Hebert, Liqi Fan, Thomas E. Walker, Xueyun Zheng, Ting Jiang, Shiyu Dong, Cheng-Wei Lin, Arthur Laganowsky, David H. Russell. First-Principles Collision Cross Section Measurements of Large Proteins and Protein Complexes. Analytical Chemistry 2020, 92 (16) , 11155-11163. https://doi.org/10.1021/acs.analchem.0c01285
    69. Timothy M. Allison, Perdita Barran, Sarah Cianférani, Matteo T. Degiacomi, Valérie Gabelica, Rita Grandori, Erik G. Marklund, Thomas Menneteau, Lukasz G. Migas, Argyris Politis, Michal Sharon, Frank Sobott, Konstantinos Thalassinos, Justin L. P. Benesch. Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology. Analytical Chemistry 2020, 92 (16) , 10872-10880. https://doi.org/10.1021/acs.analchem.9b05791
    70. Fabrice Saintmont, Julien De Winter, Fabien Chirot, Emilie Halin, Philippe Dugourd, Patrick Brocorens, Pascal Gerbaux. How Spherical Are Gaseous Low Charged Dendrimer Ions: A Molecular Dynamics/Ion Mobility Study?. Journal of the American Society for Mass Spectrometry 2020, 31 (8) , 1673-1683. https://doi.org/10.1021/jasms.0c00113
    71. Kevin Jeanne Dit Fouque, Francisco Fernandez-Lima. Following Structural Changes by Thermal Denaturation Using Trapped Ion Mobility Spectrometry–Mass Spectrometry. The Journal of Physical Chemistry B 2020, 124 (29) , 6257-6265. https://doi.org/10.1021/acs.jpcb.0c04276
    72. Jody C. May, Richard Knochenmuss, John C. Fjeldsted, John A. McLean. Resolution of Isomeric Mixtures in Ion Mobility Using a Combined Demultiplexing and Peak Deconvolution Technique. Analytical Chemistry 2020, 92 (14) , 9482-9492. https://doi.org/10.1021/acs.analchem.9b05718
    73. Thomas Botzanowski, Oscar Hernandez-Alba, Martine Malissard, Elsa Wagner-Rousset, Evolène Deslignière, Olivier Colas, Jean-François Haeuw, Alain Beck, Sarah Cianférani. Middle Level IM–MS and CIU Experiments for Improved Therapeutic Immunoglobulin Subclass Fingerprinting. Analytical Chemistry 2020, 92 (13) , 8827-8835. https://doi.org/10.1021/acs.analchem.0c00293
    74. Jie Hong, Chenyue Hou, Zuqiang Xu, Muyi He, Wei Xu. Liquid-Phase Ion Trap for Ion Trapping, Transfer, and Sequential Ejection in Solutions. Analytical Chemistry 2020, 92 (13) , 9065-9071. https://doi.org/10.1021/acs.analchem.0c01261
    75. Sanjit S. Uppal, Abhigya Mookherjee, Rick Harkewicz, Sarah E. Beasley, Matthew F. Bush, Miklos Guttman. High-Precision, Gas-Phase Hydrogen/Deuterium-Exchange Kinetics by Mass Spectrometry Enabled by Exchange Standards. Analytical Chemistry 2020, 92 (11) , 7725-7732. https://doi.org/10.1021/acs.analchem.0c00749
    76. Adam L. Hollerbach, Ailin Li, Aneesh Prabhakaran, Gabe Nagy, Christopher P. Harrilal, Christopher R. Conant, Randolph V. Norheim, Colby E. Schimelfenig, Gordon A. Anderson, Sandilya V. B. Garimella, Richard D. Smith, Yehia M. Ibrahim. Ultra-High-Resolution Ion Mobility Separations Over Extended Path Lengths and Mobility Ranges Achieved using a Multilevel Structures for Lossless Ion Manipulations Module. Analytical Chemistry 2020, 92 (11) , 7972-7979. https://doi.org/10.1021/acs.analchem.0c01397
    77. Xueyun Zheng, Ruwan T. Kurulugama, Arthur Laganowsky, David H. Russell. Collision-Induced Unfolding Studies of Proteins and Protein Complexes using Drift Tube Ion Mobility-Mass Spectrometer. Analytical Chemistry 2020, 92 (10) , 7218-7225. https://doi.org/10.1021/acs.analchem.0c00772
    78. Veronica V. Carvalho, Melanie Cheung See Kit, Ian K. Webb. Ion Mobility and Gas-Phase Covalent Labeling Study of the Structure and Reactivity of Gaseous Ubiquitin Ions Electrosprayed from Aqueous and Denaturing Solutions. Journal of the American Society for Mass Spectrometry 2020, 31 (5) , 1037-1046. https://doi.org/10.1021/jasms.9b00138
    79. Shay Vimer, Gili Ben-Nissan, David Morgenstern, Fanindra Kumar-Deshmukh, Caley Polkinghorn, Royston S. Quintyn, Yury V. Vasil’ev, Joseph S. Beckman, Nadav Elad, Vicki H. Wysocki, Michal Sharon. Comparative Structural Analysis of 20S Proteasome Ortholog Protein Complexes by Native Mass Spectrometry. ACS Central Science 2020, 6 (4) , 573-588. https://doi.org/10.1021/acscentsci.0c00080
    80. Sugyan M. Dixit, Keith Richardson, David Langridge, Kevin Giles, Brandon T. Ruotolo. A Novel Ion Pseudo-trapping Phenomenon within Traveling Wave Ion Guides. Journal of the American Society for Mass Spectrometry 2020, 31 (4) , 880-887. https://doi.org/10.1021/jasms.9b00095
    81. Oliver J. Hale, Emma K. Sisley, Rian L. Griffiths, Iain B. Styles, Helen J. Cooper. Native LESA TWIMS-MSI: Spatial, Conformational, and Mass Analysis of Proteins and Protein Complexes. Journal of the American Society for Mass Spectrometry 2020, 31 (4) , 873-879. https://doi.org/10.1021/jasms.9b00122
    82. Aidan P. France, Lukasz G. Migas, Eleanor Sinclair, Bruno Bellina, Perdita E. Barran. Using Collision Cross Section Distributions to Assess the Distribution of Collision Cross Section Values. Analytical Chemistry 2020, 92 (6) , 4340-4348. https://doi.org/10.1021/acs.analchem.9b05130
    83. Fanny C. Liu, Tyler C. Cropley, Mark E. Ridgeway, Melvin A. Park, Christian Bleiholder. Structural Analysis of the Glycoprotein Complex Avidin by Tandem-Trapped Ion Mobility Spectrometry–Mass Spectrometry (Tandem-TIMS/MS). Analytical Chemistry 2020, 92 (6) , 4459-4467. https://doi.org/10.1021/acs.analchem.9b05481
    84. Alyssa Q. Stiving, Benjamin J. Jones, Jakub Ujma, Kevin Giles, Vicki H. Wysocki. Collision Cross Sections of Charge-Reduced Proteins and Protein Complexes: A Database for Collision Cross Section Calibration. Analytical Chemistry 2020, 92 (6) , 4475-4483. https://doi.org/10.1021/acs.analchem.9b05519
    85. Denis Morsa, Emeline Hanozin, Gauthier Eppe, Loïc Quinton, Valérie Gabelica, Edwin De Pauw. Effective Temperature and Structural Rearrangement in Trapped Ion Mobility Spectrometry. Analytical Chemistry 2020, 92 (6) , 4573-4582. https://doi.org/10.1021/acs.analchem.9b05850
    86. Tyler M. Marcinko, Thomas Drews, Tianying Liu, Richard W. Vachet. Epigallocatechin-3-gallate Inhibits Cu(II)-Induced β-2-Microglobulin Amyloid Formation by Binding to the Edge of Its β-Sheets. Biochemistry 2020, 59 (10) , 1093-1103. https://doi.org/10.1021/acs.biochem.0c00043
    87. Mehdi Shirzadeh, Michael L. Poltash, Arthur Laganowsky, David H. Russell. Structural Analysis of the Effect of a Dual-FLAG Tag on Transthyretin. Biochemistry 2020, 59 (9) , 1013-1022. https://doi.org/10.1021/acs.biochem.0c00105
    88. Micah T. Donor, Samantha O. Shepherd, James S. Prell. Rapid Determination of Activation Energies for Gas-Phase Protein Unfolding and Dissociation in a Q-IM-ToF Mass Spectrometer. Journal of the American Society for Mass Spectrometry 2020, 31 (3) , 602-610. https://doi.org/10.1021/jasms.9b00055
    89. Kazumi Saikusa, Daiki Kato, Aritaka Nagadoi, Hitoshi Kurumizaka, Satoko Akashi. Native Mass Spectrometry of Protein and DNA Complexes Prepared in Nonvolatile Buffers. Journal of the American Society for Mass Spectrometry 2020, 31 (3) , 711-718. https://doi.org/10.1021/jasms.9b00145
    90. Daniel W. Woodall, Christopher J. Brown, Shannon A. Raab, Tarick J. El-Baba, Arthur Laganowsky, David H. Russell, David E. Clemmer. Melting of Hemoglobin in Native Solutions as measured by IMS-MS. Analytical Chemistry 2020, 92 (4) , 3440-3446. https://doi.org/10.1021/acs.analchem.9b05561
    91. Mehmet Atakay, Fatma Aksakal, Uğur Bozkaya, Bekir Salih, Chrys Wesdemiotis. Conformational Characterization of Polyelectrolyte Oligomers and Their Noncovalent Complexes Using Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2020, 31 (2) , 441-449. https://doi.org/10.1021/jasms.9b00135
    92. Erin M. Panczyk, Joshua D. Gilbert, Gargi S. Jagdale, Alyssa Q. Stiving, Lane A. Baker, Vicki H. Wysocki. Ion Mobility and Surface Collisions: Submicrometer Capillaries Can Produce Native-like Protein Complexes. Analytical Chemistry 2020, 92 (3) , 2460-2467. https://doi.org/10.1021/acs.analchem.9b03666
    93. Jingjin Fan, Penglong Lian, Ming Li, Xinwei Liu, Xiaoyu Zhou, Zheng Ouyang. Ion Mobility Separation Using a Dual-LIT Miniature Mass Spectrometer. Analytical Chemistry 2020, 92 (3) , 2573-2579. https://doi.org/10.1021/acs.analchem.9b04271
    94. Gaoyuan Lu, Xiaowei Xu, Gongyu Li, Huiyong Sun, Nian Wang, Yinxue Zhu, Ning Wan, Yatao Shi, Guangji Wang, Lingjun Li, Haiping Hao, Hui Ye. Subresidue-Resolution Footprinting of Ligand–Protein Interactions by Carbene Chemistry and Ion Mobility–Mass Spectrometry. Analytical Chemistry 2020, 92 (1) , 947-956. https://doi.org/10.1021/acs.analchem.9b03827
    95. Jens Fangmeyer, Simon G. Scheeren, Robin Schmid, Uwe Karst. Fast Online Separation and Identification of Electrochemically Generated Isomeric Oxidation Products by Trapped Ion Mobility–Mass Spectrometry. Analytical Chemistry 2020, 92 (1) , 1205-1210. https://doi.org/10.1021/acs.analchem.9b04337
    96. Oliver J. Hale, Rainer Cramer. Atmospheric Pressure Ultraviolet Laser Desorption and Ionization from Liquid Samples for Native Mass Spectrometry. Analytical Chemistry 2019, 91 (22) , 14192-14197. https://doi.org/10.1021/acs.analchem.9b03875
    97. Euan Pyle, Chengzhi Guo, Tommy Hofmann, Carla Schmidt, Orquidea Ribiero, Argyris Politis, Bernadette Byrne. Protein–Lipid Interactions Stabilize the Oligomeric State of BOR1p from Saccharomyces cerevisiae. Analytical Chemistry 2019, 91 (20) , 13071-13079. https://doi.org/10.1021/acs.analchem.9b03271
    98. Eva Illes-Toth, Helen J. Cooper. Probing the Fundamentals of Native Liquid Extraction Surface Analysis Mass Spectrometry of Proteins: Can Proteins Refold during Extraction?. Analytical Chemistry 2019, 91 (19) , 12246-12254. https://doi.org/10.1021/acs.analchem.9b02075
    99. Emeline Hanozin, Denis Morsa, Edwin De Pauw. Two-Parameter Power Formalism for Structural Screening of Ion Mobility Trends: Applied Study on Artificial Molecular Switches. The Journal of Physical Chemistry A 2019, 123 (37) , 8043-8052. https://doi.org/10.1021/acs.jpca.9b06121
    100. Lance E. Talbert, Ryan R. Julian. Methionine and Selenomethionine as Energy Transfer Acceptors for Biomolecular Structure Elucidation in the Gas Phase. Journal of the American Society for Mass Spectrometry 2019, 30 (9) , 1601-1608. https://doi.org/10.1007/s13361-019-02262-y
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect