ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Unraveling the Janus Role of Mie Resonances and Leaky/Guided Modes in Semiconductor Nanowire Absorption for Enhanced Light Harvesting

View Author Information
Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid, Spain
Cite this: ACS Photonics 2015, 2, 7, 921–929
Publication Date (Web):June 3, 2015
https://doi.org/10.1021/acsphotonics.5b00112
Copyright © 2015 American Chemical Society

    Article Views

    1737

    Altmetric

    -

    Citations

    88
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Light absorption from finite semiconductor nanowires is investigated through a unified theoretical picture and numerical simulations. We first show theoretically from the electromagnetic mode dispersion relation and the Mie extinction cross sections for infinite nanowires that formally equivalent (Janus) formulas yield both leaky/guided modes and Mie resonances as, respectively, complex wave vector or complex frequency solutions that, in turn, overlap only at grazing angles with respect to the nanowire axis. For finite semiconductor nanowires, the angle of incidence becomes critical: absorption is dominated by Mie resonances at incident angles perpendicular (and oblique) to the nanowire axis; by contrast, guided mode excitation (if spectrally available) governs and enhances absorption at grazing incidence. Such theoretical prediction can be exploited to optimize nanowire designs for broad band and broad angle light harvesting applications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 88 publications.

    1. Corban G. E. Murphey, Jin-Sung Park, Seokhyoung Kim, James F. Cahoon. Epitaxially Grown Silicon Nanowires with a Gold Molecular Adhesion Layer for Core/Shell Structures with Compact Mie and Plasmon Resonances. ACS Nano 2023, 17 (21) , 21739-21748. https://doi.org/10.1021/acsnano.3c07157
    2. Amin Farhadi, Theresa Bartschmid, Gilles R. Bourret. Dewetting-Assisted Patterning: A Lithography-Free Route to Synthesize Black and Colored Silicon. ACS Applied Materials & Interfaces 2023, 15 (37) , 44087-44096. https://doi.org/10.1021/acsami.3c08533
    3. Jin-Sung Park, Chentao Li, Kyoung-Ho Kim, Yuankai Tang, Corban G. E. Murphey, Taylor S. Teitsworth, Seokhyoung Kim, Hayk Harutyunyan, James F. Cahoon. Optical Nonlinearity in Silicon Nanowires Enabled by Bound States in the Continuum. ACS Nano 2023, 17 (12) , 11729-11738. https://doi.org/10.1021/acsnano.3c02558
    4. Haixia Xu, Haining Pan, Mingli Yang, Qian Du, Yanxin Lu, Yihang Chen. Strongly Directional Fano Resonance in an Individual Silicon Nanorod. The Journal of Physical Chemistry C 2020, 124 (48) , 26486-26492. https://doi.org/10.1021/acs.jpcc.0c09163
    5. Fedja J. Wendisch, Mehri Abazari, Valerie Werner, Horia Barb, Marcel Rey, Eric S. A. Goerlitzer, Nicolas Vogel, Hossein Mahdavi, Gilles R. Bourret. Spatioselective Deposition of Passivating and Electrocatalytic Layers on Silicon Nanowire Arrays. ACS Applied Materials & Interfaces 2020, 12 (47) , 52581-52587. https://doi.org/10.1021/acsami.0c14013
    6. Fedja J. Wendisch, Mehri Abazari, Hossein Mahdavi, Marcel Rey, Nicolas Vogel, Maurizio Musso, Oliver Diwald, Gilles R. Bourret. Morphology-Graded Silicon Nanowire Arrays via Chemical Etching: Engineering Optical Properties at the Nanoscale and Macroscale. ACS Applied Materials & Interfaces 2020, 12 (11) , 13140-13147. https://doi.org/10.1021/acsami.9b21466
    7. Diego R. Abujetas, José A. Sánchez-Gil. Spin Angular Momentum of Guided Light Induced by Transverse Confinement and Intrinsic Helicity. ACS Photonics 2020, 7 (2) , 534-545. https://doi.org/10.1021/acsphotonics.0c00064
    8. Seokhyoung Kim, James F. Cahoon. Geometric Nanophotonics: Light Management in Single Nanowires through Morphology. Accounts of Chemical Research 2019, 52 (12) , 3511-3520. https://doi.org/10.1021/acs.accounts.9b00515
    9. Florian Dirnberger, Diego Abujetas, Jan König, Moritz Forsch, Thomas Koller, Imke Gronwald, Christoph Lange, Rupert Huber, Christian Schüller, Tobias Korn, José Sánchez-Gil, Dominique Bougeard. Tuning Spontaneous Emission through Waveguide Cavity Effects in Semiconductor Nanowires. Nano Letters 2019, 19 (10) , 7287-7292. https://doi.org/10.1021/acs.nanolett.9b02883
    10. Hoo-Cheol Lee, Soon-Jae Lee, Jungkil Kim, Kyoung-Ho Kim, Jin-Sung Park, Min-Soo Hwang, Jung Min Lee, Kwang-Yong Jeong, Hong-Gyu Park. Unique Scattering Properties of Silicon Nanowires Embedded with Porous Segments. ACS Applied Materials & Interfaces 2019, 11 (23) , 21094-21099. https://doi.org/10.1021/acsami.9b04680
    11. Yeong Jae Kim, Young Jin Yoo, Gil Ju Lee, Dong Eun Yoo, Dong Wook Lee, Vantari Siva, Hansung Song, Il Suk Kang, Young Min Song. Enlarged Color Gamut Representation Enabled by Transferable Silicon Nanowire Arrays on Metal–Insulator–Metal Films. ACS Applied Materials & Interfaces 2019, 11 (12) , 11849-11856. https://doi.org/10.1021/acsami.8b21554
    12. Rune Frederiksen, Gozde Tutuncuoglu, Federico Matteini, Karen L. Martinez, Anna Fontcuberta i Morral, and Esther Alarcon-Llado . Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy. ACS Photonics 2017, 4 (9) , 2235-2241. https://doi.org/10.1021/acsphotonics.7b00434
    13. Xin Zhao, M. H. Alizadeh, and Björn M. Reinhard . Generating Optical Birefringence and Chirality in Silicon Nanowire Dimers. ACS Photonics 2017, 4 (9) , 2265-2273. https://doi.org/10.1021/acsphotonics.7b00501
    14. Peter R. Wiecha, Aurélien Cuche, Arnaud Arbouet, Christian Girard, Gérard Colas des Francs, Aurélie Lecestre, Guilhem Larrieu, Frank Fournel, Vincent Larrey, Thierry Baron, and Vincent Paillard . Strongly Directional Scattering from Dielectric Nanowires. ACS Photonics 2017, 4 (8) , 2036-2046. https://doi.org/10.1021/acsphotonics.7b00423
    15. Diego R. Abujetas, Miguel A. G. Mandujano, Eugenio R. Méndez, and José A. Sánchez-Gil . High-Contrast Fano Resonances in Single Semiconductor Nanorods. ACS Photonics 2017, 4 (7) , 1814-1821. https://doi.org/10.1021/acsphotonics.7b00395
    16. Yilun Wang, Baowei Gao, Kun Zhang, Kai Yuan, Yi Wan, Ziang Xie, Xiaolong Xu, Hui Zhang, Qingjun Song, Li Yao, Xin Fang, Yanping Li, Wanjing Xu, Jiasen Zhang, and Lun Dai . Refractive Index Sensor Based on Leaky Resonant Scattering of Single Semiconductor Nanowire. ACS Photonics 2017, 4 (3) , 688-694. https://doi.org/10.1021/acsphotonics.7b00064
    17. Fedja J. Wendisch, Richard Oberreiter, Miralem Salihovic, Michael S. Elsaesser, and Gilles R. Bourret . Confined Etching within 2D and 3D Colloidal Crystals for Tunable Nanostructured Templates: Local Environment Matters. ACS Applied Materials & Interfaces 2017, 9 (4) , 3931-3939. https://doi.org/10.1021/acsami.6b14226
    18. Yegang Lu, Matthias Stegmaier, Pavan Nukala, Marco A. Giambra, Simone Ferrari, Alessandro Busacca, Wolfram H. P. Pernice, and Ritesh Agarwal . Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits. Nano Letters 2017, 17 (1) , 150-155. https://doi.org/10.1021/acs.nanolett.6b03688
    19. Benjamin J. M. Brenny, Daryl M. Beggs, Ruben E. C. van der Wel, L. Kuipers, and Albert Polman . Near-Infrared Spectroscopic Cathodoluminescence Imaging Polarimetry on Silicon Photonic Crystal Waveguides. ACS Photonics 2016, 3 (11) , 2112-2121. https://doi.org/10.1021/acsphotonics.6b00557
    20. Katherine T. Fountaine, Wen-Hui Cheng, Colton R. Bukowsky, and Harry A. Atwater . Near-Unity Unselective Absorption in Sparse InP Nanowire Arrays. ACS Photonics 2016, 3 (10) , 1826-1832. https://doi.org/10.1021/acsphotonics.6b00341
    21. Sisir Yalamanchili, Hal S. Emmer, Katherine T. Fountaine, Christopher T. Chen, Nathan S. Lewis, and Harry A. Atwater . Enhanced Absorption and <1% Spectrum-and-Angle-Averaged Reflection in Tapered Microwire Arrays. ACS Photonics 2016, 3 (10) , 1854-1861. https://doi.org/10.1021/acsphotonics.6b00370
    22. Sander A. Mann, Richard R. Grote, Richard M. Osgood, Jr., Andrea Alù, and Erik C. Garnett . Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley–Queisser Limit. ACS Nano 2016, 10 (9) , 8620-8631. https://doi.org/10.1021/acsnano.6b03950
    23. Mita Dasog, Azhar I. Carim, Sisir Yalamanchili, Harry A. Atwater, and Nathan S. Lewis . Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition. Nano Letters 2016, 16 (8) , 5015-5021. https://doi.org/10.1021/acs.nanolett.6b01782
    24. Benjamin J. M. Brenny, Diego R. Abujetas, Dick van Dam, José A. Sánchez-Gil, Jaime Gómez Rivas, and Albert Polman . Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence. ACS Photonics 2016, 3 (4) , 677-684. https://doi.org/10.1021/acsphotonics.6b00065
    25. Xin Xiong, Naila Arshad, Junyang Tao, Najah Alwadie, Gang Liu, Liangyou Lin, M.A.K Yousaf Shah, Muhammad Sultan Irshad, Jingwen Qian, Xianbao Wang. Hierarchical Ti3C2/BiVO4 microcapsules for enhanced solar-driven water evaporation and photocatalytic H2 evolution. Journal of Colloid and Interface Science 2024, 668 , 385-398. https://doi.org/10.1016/j.jcis.2024.04.081
    26. Muhammad Sultan Irshad, Naila Arshad, M. Sohail Asghar, Yabin Hao, Muneerah Alomar, Shaohui Zhang, Jian Zhang, Jinming Guo, Iftikhar Ahmed, Naveed Mushtaq, M. A. K. Yousaf Shah, Laila Noureen, S. Wageh, Omar A. Al‐Hartomy, Abul Kalam, Van‐Duong Dao, Hao Wang, Xianbao Wang, Han Zhang. Advances of 2D‐Enabled Photothermal Materials in Hybrid Solar‐Driven Interfacial Evaporation Systems toward Water‐Fuel‐Energy Crisis. Advanced Functional Materials 2023, 33 (51) https://doi.org/10.1002/adfm.202304936
    27. V. V. Nikolaev, E. I. Girshova, M. A. Kaliteevski. Spontaneous Emission in Leaky Modes of Nanowires. Semiconductors 2023, 57 (12) , 570-578. https://doi.org/10.1134/S1063782623080122
    28. Nicklas Anttu. Absorption of Light in Vertical III-V Semiconductor Nanowires for Solar Cell and Photodetector Applications. Crystals 2023, 13 (9) , 1292. https://doi.org/10.3390/cryst13091292
    29. Andrea Konečná, Mikołaj K. Schmidt, Rainer Hillenbrand, Javier Aizpurua. Probing the electromagnetic response of dielectric antennas by vortex electron beams. Physical Review Research 2023, 5 (2) https://doi.org/10.1103/PhysRevResearch.5.023192
    30. Nathan Grain, Seokhyoung Kim. Insight into refractive index modulation as route to enhanced light coupling in semiconductor nanowires. Optics Letters 2023, 48 (2) , 227. https://doi.org/10.1364/OL.478419
    31. Kan Yao, Yuebing Zheng. Fundamentals of Nanophotonics. 2023, 1-33. https://doi.org/10.1007/978-3-031-20473-9_1
    32. Burak Tekcan, Brad van Kasteren, Sasan V. Grayli, Daozhi Shen, Man Chun Tam, Dayan Ban, Zbigniew Wasilewski, Adam W. Tsen, Michael E. Reimer. Semiconductor nanowire metamaterial for broadband near-unity absorption. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-13537-y
    33. Jingang Li, Kan Yao, Yun Huang, Jie Fang, Pavana Siddhartha Kollipara, Donglei Emma Fan, Yuebing Zheng. Tunable Strong Coupling in Transition Metal Dichalcogenide Nanowires. Advanced Materials 2022, 34 (34) https://doi.org/10.1002/adma.202200656
    34. Shuang Xia, Daria O. Ignatyeva, Qing Liu, Hanbin Wang, Weihao Yang, Jun Qin, Yiqin Chen, Huigao Duan, Yi Luo, Ondřej Novák, Martin Veis, Longjiang Deng, Vladimir I. Belotelov, Lei Bi. Circular Displacement Current Induced Anomalous Magneto‐Optical Effects in High Index Mie Resonators. Laser & Photonics Reviews 2022, 16 (8) https://doi.org/10.1002/lpor.202200067
    35. Debamita Roy, Dip Prakash Samajdar, Abhijit Biswas. Design of hybrid solar cell with GaAs1−xBix (x = 0.01) nanowire core and conformally coated P3HT/ITO shell. Solar Energy 2022, 238 , 1-8. https://doi.org/10.1016/j.solener.2022.04.019
    36. Alexey Kuznetsov, Prithu Roy, Valeriy M. Kondratev, Vladimir V. Fedorov, Konstantin P. Kotlyar, Rodion R. Reznik, Alexander A. Vorobyev, Ivan S. Mukhin, George E. Cirlin, Alexey D. Bolshakov. Anisotropic Radiation in Heterostructured “Emitter in a Cavity” Nanowire. Nanomaterials 2022, 12 (2) , 241. https://doi.org/10.3390/nano12020241
    37. M. Ossiander, Y.-W. Huang, W. T. Chen, Z. Wang, X. Yin, Y. A. Ibrahim, M. Schultze, F. Capasso. Slow light nanocoatings for ultrashort pulse compression. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26920-6
    38. Emilija Petronijevic, Alessandro Belardini, Grigore Leahu, Teemu Hakkarainen, Marcelo Rizzo Piton, Eero Koivusalo, Concita Sibilia. Broadband optical spin dependent reflection in self-assembled GaAs-based nanowires asymmetrically hybridized with Au. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-83899-2
    39. Sergey I Rybchenko, Sarfraz Ali, Yunyan Zhang, Huiyun Liu. Resonant enhancement of Raman scattering by surface phonon polaritons in GaAs nanowires. Journal of Physics D: Applied Physics 2021, 54 (47) , 475111. https://doi.org/10.1088/1361-6463/ac1a32
    40. Mohammad Muntasir Hassan, Fariba Islam, Md Zunaid Baten, Samia Subrina. Analysis and design of InAs nanowire array based ultra broadband perfect absorber. RSC Advances 2021, 11 (59) , 37595-37603. https://doi.org/10.1039/D1RA06812A
    41. Suneet Kumar Agnihotri, Dip Prakash Samajdar, D. V Prashant. Role of Hole-Selective Contact in Efficiency Improvement of ITO-Free InP/MoO 3 / PEDOT:PSS Nanowire Solar Cells. IEEE Transactions on Electron Devices 2021, 68 (11) , 5666-5673. https://doi.org/10.1109/TED.2021.3115079
    42. Simeon Trendafilov, Jeffery W. Allen, Monica S. Allen, Sukrith U. Dev, Ziyuan Li, Lan Fu, Chennupati Jagadish. Light Absorption in Nanowire Photonic Crystal Slabs and the Physics of Exceptional Points: The Shape Shifter Modes. Sensors 2021, 21 (16) , 5420. https://doi.org/10.3390/s21165420
    43. Min Zhou, Yukun Zhao, Lifeng Bian, Jianya Zhang, Wenxian Yang, Yuanyuan Wu, Zhiwei Xing, Min Jiang, Shulong Lu. Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene*. Chinese Physics B 2021, 30 (7) , 078506. https://doi.org/10.1088/1674-1056/abff23
    44. Debamita Roy, Dip Prakash Samajdar, Abhijit Biswas. Photovoltaic performance improvement of GaAs1-xBix nanowire solar cells in terms of light trapping capability and efficiency. Solar Energy 2021, 221 , 468-475. https://doi.org/10.1016/j.solener.2021.04.064
    45. Felix Vennberg, Ajith P Ravishankar, Srinivasan Anand. Polarization dependent structural colors from tilted metalo-dielectric nanopillars. Materials Research Express 2021, 8 (4) , 046202. https://doi.org/10.1088/2053-1591/abfa46
    46. D. V. Prashant, D. P. Samajdar, Zahra Arefinia. FDTD-Based Optimization of Geometrical Parameters and Material Properties for GaAs-Truncated Nanopyramid Solar Cells. IEEE Transactions on Electron Devices 2021, 68 (3) , 1135-1141. https://doi.org/10.1109/TED.2021.3055190
    47. Nasim Seyedpour Esmaeilzad, Ahmet Kemal Demir, Jamileh Hajivandi, Hande Ciftpinar, Rasit Turan, Hamza Kurt, Alpan Bek. Nanosphere Concentrated Photovoltaics with Shape Control. Advanced Optical Materials 2021, 9 (3) https://doi.org/10.1002/adom.202000943
    48. Qianpeng Zhang, Yuanjing Lin, Haoning Tang, Xiaofei Sun, Bryan Cao, Daquan Zhang, Swapnadeep Poddar, Zhiyong Fan. Design of a Horizontally Aligned Perovskite Nanowire LED With Improved Light Extraction. IEEE Journal of the Electron Devices Society 2021, 9 , 1215-1221. https://doi.org/10.1109/JEDS.2021.3117794
    49. Nasim Seyedpour Esmaeilzad, Hande Ciftpinar, Rasit Turan, Alpan Bek. Concentrated Photovoltaics Using Shape-modified Nanospheres. 2020, 1-5. https://doi.org/10.1109/PVCon51547.2020.9757730
    50. Majid Aalizadeh, Andriy E. Serebryannikov, Ekmel Ozbay, Guy A. E. Vandenbosch. A simple Mie-resonator based meta-array with diverse deflection scenarios enabling multifunctional operation at near-infrared. Nanophotonics 2020, 9 (15) , 4589-4600. https://doi.org/10.1515/nanoph-2020-0386
    51. Sehui Chang, Gil Lee, Young Song. Recent Advances in Vertically Aligned Nanowires for Photonics Applications. Micromachines 2020, 11 (8) , 726. https://doi.org/10.3390/mi11080726
    52. Soojung Kim, Hyerin Song, Heesang Ahn, Seung Won Jun, Seungchul Kim, Young Min Song, Seung Yun Yang, Chang-Seok Kim, Kyujung Kim. 3D super-resolved imaging in live cells using sub-diffractive plasmonic localization of hybrid nanopillar arrays. Nanophotonics 2020, 9 (9) , 2847-2859. https://doi.org/10.1515/nanoph-2020-0105
    53. Yang Chen, Nicklas Anttu, Sudhakar Sivakumar, Eleni Gompou, Martin H Magnusson. Optical far-field extinction of a single GaAs nanowire towards in situ size control of aerotaxy nanowire growth. Nanotechnology 2020, 31 (13) , 134001. https://doi.org/10.1088/1361-6528/ab5fe4
    54. Zhongjian Xie, Yanhong Duo, Zhitao Lin, Taojian Fan, Chenyang Xing, Li Yu, Renheng Wang, Meng Qiu, Yupeng Zhang, Yonghua Zhao, Xiaobing Yan, Han Zhang. The Rise of 2D Photothermal Materials beyond Graphene for Clean Water Production. Advanced Science 2020, 7 (5) https://doi.org/10.1002/advs.201902236
    55. D. V. Prashant, Dip Prakash Samajdar, Sachchidanand. Optical Simulation of III-V Semiconductor Nanowires/PEDOT: PSS-Based Hybrid Solar Cells: Influence of Polymer Coating Thickness and Geometrical Parameters on Light Harvesting and Overall Photocurrent. 2020, 361-368. https://doi.org/10.1007/978-981-15-5089-8_34
    56. Farzaneh Adibzadeh, Saeed Olyaee. Optical absorption enhancement in vertical InP nanowire random structures for photovoltaic applications. Optical and Quantum Electronics 2020, 52 (1) https://doi.org/10.1007/s11082-019-2120-5
    57. Ramon Paniagua-Dominguez, Boris Luk'yanchuk, Arseniy I. Kuznetsov. Control of scattering by isolated dielectric nanoantennas. 2020, 73-108. https://doi.org/10.1016/B978-0-08-102403-4.00008-6
    58. D.V. Prashant, D.P. Samajdar, Dheeraj Sharma. Optical simulation and geometrical optimization of P3HT/GaAs nanowire hybrid solar cells for maximal photocurrent generation via enhanced light absorption. Solar Energy 2019, 194 , 848-855. https://doi.org/10.1016/j.solener.2019.11.027
    59. Teemu Hakkarainen, Emilija Petronijevic, Marcelo Rizzo Piton, Concita Sibilia. Demonstration of extrinsic chirality of photoluminescence with semiconductor-metal hybrid nanowires. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-41615-1
    60. Weijin Chen, Yuntian Chen, Wei Liu. Multipolar Conversion Induced Subwavelength High-Q Kerker Supermodes. 2019, 1571-1574. https://doi.org/10.1109/PIERS-Fall48861.2019.9021724
    61. Gil Ju Lee, Yeong Jae Kim, Han Sung Song, Dong Eun Yoo, Dong-Wook Lee, Il-Suk Kang, Young Min Song. The Facile Implementation of Soft/Tunable Multiband Optical Filters by Stacking Vertical Silicon Nanowire Arrays for Smart Sensing. Advanced Intelligent Systems 2019, 1 (6) https://doi.org/10.1002/aisy.201900072
    62. Weijin Chen, Yuntian Chen, Wei Liu. Multipolar Conversion Induced Subwavelength High‐Q Kerker Supermodes with Unidirectional Radiations. Laser & Photonics Reviews 2019, 13 (9) https://doi.org/10.1002/lpor.201900067
    63. Amir Ghobadi, Turkan Gamze Ulusoy Ghobadi, Ferdi Karadas, Ekmel Ozbay. Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials 2019, 7 (14) https://doi.org/10.1002/adom.201900028
    64. Diego R. Abujetas, Johannes Feist, Francisco J. García-Vidal, Jaime Gómez Rivas, José A. Sánchez-Gil. Strong coupling between weakly guided semiconductor nanowire modes and an organic dye. Physical Review B 2019, 99 (20) https://doi.org/10.1103/PhysRevB.99.205409
    65. Seokhyoung Kim, Kyoung-Ho Kim, David J. Hill, Hong-Gyu Park, James F. Cahoon. Mie-coupled bound guided states in nanowire geometric superlattices. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-05224-2
    66. Tiago J. Arruda, Romain Bachelard, John Weiner, Philippe W. Courteille. Tunable Fano resonances in the decay rates of a pointlike emitter near a graphene-coated nanowire. Physical Review B 2018, 98 (24) https://doi.org/10.1103/PhysRevB.98.245419
    67. Tito E. Huber, Scott D. Johnson, John H. Belk, Jeff H. Hunt, Khosro Shirvani. Charge Transfer and Photocurrent in Interfacial Junctions between Bismuth and Graphene. Physical Review Applied 2018, 10 (4) https://doi.org/10.1103/PhysRevApplied.10.044020
    68. Churong Ma, Jiahao Yan, Yingcong Huang, Chengxin Wang, Guowei Yang. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Science Advances 2018, 4 (8) https://doi.org/10.1126/sciadv.aas9894
    69. Mahtab Aghaeipour, Håkan Pettersson. Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors. Nanophotonics 2018, 7 (5) , 819-825. https://doi.org/10.1515/nanoph-2017-0101
    70. Pengchao Yu, Volodymyr I. Fesenko, Vladimir R. Tuz. Dispersion features of complex waves in a graphene-coated semiconductor nanowire. Nanophotonics 2018, 7 (5) , 925-934. https://doi.org/10.1515/nanoph-2018-0026
    71. E. Petronijevic, G. Leahu, A. Belardini, M. Centini, R. Li Voti, T. Hakkarainen, E. Koivusalo, M. Guina, C. Sibilia. Resonant Absorption in GaAs-Based Nanowires by Means of Photo-Acoustic Spectroscopy. International Journal of Thermophysics 2018, 39 (3) https://doi.org/10.1007/s10765-018-2365-4
    72. Grigore Leahu, Emilija Petronijevic, Alessandro Belardini, Marco Centini, Roberto Li Voti, Teemu Hakkarainen, Eero Koivusalo, Mircea Guina, Concita Sibilia. Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02839-1
    73. Gauri M. Mangalgiri, Phillip Manley, Wiebke Riedel, Martina Schmid. Dielectric Nanorod Scattering and its Influence on Material Interfaces. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-03721-w
    74. Joona-Pekko Kakko, Antti Matikainen, Nicklas Anttu, Sami Kujala, Henrik Mäntynen, Vladislav Khayrudinov, Anton Autere, Zhipei Sun, Harri Lipsanen. Measurement of Nanowire Optical Modes Using Cross-Polarization Microscopy. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-18193-1
    75. Dan Wu, Xiaohong Tang, Kai Wang, Zhubing He, Xianqiang Li. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting. Nanoscale Research Letters 2017, 12 (1) https://doi.org/10.1186/s11671-017-2354-8
    76. M. H. Alizadeh, B. M. Reinhard. Highly efficient and broadband optical polarizers based on dielectric nanowires. Optics Express 2017, 25 (19) , 22897. https://doi.org/10.1364/OE.25.022897
    77. Zhong-Jian Yang, Ruibin Jiang, Xiaolu Zhuo, Ya-Ming Xie, Jianfang Wang, Hai-Qing Lin. Dielectric nanoresonators for light manipulation. Physics Reports 2017, 701 , 1-50. https://doi.org/10.1016/j.physrep.2017.07.006
    78. Emilija Petronijevic, Marco Centini, Alessandro Belardini, Grigore Leahu, Teemu Hakkarainen, Concita Sibilia. Chiral near-field manipulation in Au-GaAs hybrid hexagonal nanowires. Optics Express 2017, 25 (13) , 14148. https://doi.org/10.1364/OE.25.014148
    79. Dan Wu, Xiaohong Tang, Kai Wang, Xianqiang Li. An Analytic Approach for Optimal Geometrical Design of GaAs Nanowires for Maximal Light Harvesting in Photovoltaic Cells. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep46504
    80. Mahtab Aghaeipour, Mats-Erik Pistol, Hakan Pettersson. Considering Symmetry Properties of InP Nanowire/Light Incidence Systems to Gain Broadband Absorption. IEEE Photonics Journal 2017, 9 (3) , 1-10. https://doi.org/10.1109/JPHOT.2017.2690313
    81. , , , Mahtab Aghaeipour, Mats-Erik Pistol, Håkan Pettersson. Comparative study of absorption efficiency of inclined and vertical InP nanowires. 2017, 100990S. https://doi.org/10.1117/12.2249840
    82. Leta Jule, Francis Dejene, Kittessa Roro. Enhancing absorption in coated semiconductor nanowire/nanorod core–shell arrays using active host matrices. Optics Communications 2016, 380 , 186-194. https://doi.org/10.1016/j.optcom.2016.06.006
    83. M.H. Alizadeh, Björn M. Reinhard. Emergence of transverse spin in optical modes of semiconductor nanowires. Optics Express 2016, 24 (8) , 8471. https://doi.org/10.1364/OE.24.008471
    84. Minjee Ko, Seong‐Ho Baek, Bokyung Song, Jang‐Won Kang, Shin‐Ae Kim, Chang‐Hee Cho. Periodically Diameter‐Modulated Semiconductor Nanowires for Enhanced Optical Absorption. Advanced Materials 2016, 28 (13) , 2504-2510. https://doi.org/10.1002/adma.201505144
    85. Baomin Wang, Tongchuan Gao, Paul W Leu. Broadband light absorption enhancement in ultrathin film crystalline silicon solar cells with high index of refraction nanosphere arrays. Nano Energy 2016, 19 , 471-475. https://doi.org/10.1016/j.nanoen.2015.10.039
    86. Youqian Xu, Liang Wang, Xinyun Zhu, Cai-Qi Wang. Hierarchical self-assembly of protoporphyrin IX-bridged Janus particles into photoresponsive vesicles. RSC Advances 2016, 6 (37) , 31053-31058. https://doi.org/10.1039/C6RA00836D
    87. Daniel J. Traviss, Mikolaj K. Schmidt, Javier Aizpurua, Otto L. Muskens. Antenna resonances in low aspect ratio semiconductor nanowires. Optics Express 2015, 23 (17) , 22771. https://doi.org/10.1364/OE.23.022771
    88. Ali Mirzaei, Ilya V. Shadrivov, Andrey E. Miroshnichenko, Yuri S. Kivshar. Superabsorption of light by multilayer nanowires. Nanoscale 2015, 7 (42) , 17658-17663. https://doi.org/10.1039/C5NR06268C

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect