ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Interactions in Bimetallic Bonding: Electronic and Chemical Properties of PdZn Surfaces

Cite this: J. Phys. Chem. 1994, 98, 22, 5758–5764
Publication Date (Print):June 1, 1994
https://doi.org/10.1021/j100073a031
    ACS Legacy Archive

    Article Views

    676

    Altmetric

    -

    Citations

    117
    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 117 publications.

    1. Ezra L. Clark, Degenhart Hochfilzer, Brian Seger, Ib Chorkendorf. Preventing Alloy Electrocatalyst Segregation in Air Using Sacrificial Passivating Overlayers. The Journal of Physical Chemistry C 2024, 128 (1) , 428-435. https://doi.org/10.1021/acs.jpcc.3c05493
    2. Ezra L. Clark, Rasmus Nielsen, Jakob Ejler Sørensen, Julius Lucas Needham, Brian Seger, Ib Chorkendorff. Tuning Surface Reactivity and Electric Field Strength via Intermetallic Alloying. ACS Energy Letters 2023, 8 (10) , 4414-4420. https://doi.org/10.1021/acsenergylett.3c01639
    3. Saki Shigenobu, Hajime Hojo, Hisahiro Einaga. Catalytic Oxidation of CO to CO2 over CeO2-Supported Pd–Cu Catalysts under Dilute O2 Conditions. Industrial & Engineering Chemistry Research 2022, 61 (43) , 15856-15865. https://doi.org/10.1021/acs.iecr.2c02199
    4. Cory A. Milligan, Ranga Rohit Seemakurthi, Junxian Gao, Jeffrey P. Greeley, Jeffrey T. Miller, Fabio H. Ribeiro, Dmitry Y. Zemlyanov. Structure-Controlled Chemical Properties of PdZn Near-Surface Alloys. The Journal of Physical Chemistry C 2022, 126 (32) , 13660-13674. https://doi.org/10.1021/acs.jpcc.2c01637
    5. A. P. Tsai, S. Kameoka, K. Nozawa, M. Shimoda, and Y. Ishii . Intermetallic: A Pseudoelement for Catalysis. Accounts of Chemical Research 2017, 50 (12) , 2879-2885. https://doi.org/10.1021/acs.accounts.7b00476
    6. Eva Castillejos-López, Giovanni Agostini, Marco Di Michel, Ana Iglesias-Juez, and Belén Bachiller-Baeza . Synergy of Contact between ZnO Surface Planes and PdZn Nanostructures: Morphology and Chemical Property Effects in the Intermetallic Sites for Selective 1,3-Butadiene Hydrogenation. ACS Catalysis 2017, 7 (1) , 796-811. https://doi.org/10.1021/acscatal.6b03009
    7. David E. Starr and Hendrik Bluhm . CO Adsorption on PtRu/Ru(0001) Near Surface Alloys from Ultrahigh Vacuum to Millitorr Pressures. The Journal of Physical Chemistry C 2014, 118 (50) , 29209-29217. https://doi.org/10.1021/jp505349f
    8. Karin Föttinger and Günther Rupprechter . In Situ Spectroscopy of Complex Surface Reactions on Supported Pd–Zn, Pd–Ga, and Pd(Pt)–Cu Nanoparticles. Accounts of Chemical Research 2014, 47 (10) , 3071-3079. https://doi.org/10.1021/ar500220v
    9. Eddie Martono and John M. Vohs . Reaction of CO, CH2O, CH3OH on Zn-Modified Pt(111) Surfaces. The Journal of Physical Chemistry C 2013, 117 (13) , 6692-6701. https://doi.org/10.1021/jp400798q
    10. Christian Weilach, Sergey M. Kozlov, Harald H. Holzapfel, Karin Föttinger, Konstantin M. Neyman, and Günther Rupprechter . Geometric Arrangement of Components in Bimetallic PdZn/Pd(111) Surfaces Modified by CO Adsorption: A Combined Study by Density Functional Calculations, Polarization-Modulated Infrared Reflection Absorption Spectroscopy, and Temperature-Programmed Desorption. The Journal of Physical Chemistry C 2012, 116 (35) , 18768-18778. https://doi.org/10.1021/jp304556s
    11. Dirk Rosenthal, Roland Widmer, Ronald Wagner, Peter Gille, Marc Armbrüster, Yuri Grin, Robert Schlögl, and Oliver Gröning . Surface Investigation of Intermetallic PdGa(1̅ 1̅ 1̅). Langmuir 2012, 28 (17) , 6848-6856. https://doi.org/10.1021/la2050509
    12. Min Wei Tew, Herman Emerich, and Jeroen A. van Bokhoven . Formation and Characterization of PdZn Alloy: A Very Selective Catalyst for Alkyne Semihydrogenation. The Journal of Physical Chemistry C 2011, 115 (17) , 8457-8465. https://doi.org/10.1021/jp1103164
    13. Matthew P. Hyman, Vannesa M. Lebarbier, Yong Wang, Abhaya K. Datye and John M. Vohs . A Comparison of the Reactivity of Pd Supported on ZnO(101̅0) and ZnO(0001). The Journal of Physical Chemistry C 2009, 113 (17) , 7251-7259. https://doi.org/10.1021/jp809934f
    14. Eseoghene Jeroro and John M. Vohs. Exploring the Role of Zn in PdZn Reforming Catalysts: Adsorption and Reaction of Ethanol and Acetaldehyde on Two-dimensional PdZn Alloys. The Journal of Physical Chemistry C 2009, 113 (4) , 1486-1494. https://doi.org/10.1021/jp807872r
    15. Eseoghene Jeroro and John M. Vohs. Zn Modification of the Reactivity of Pd(111) Toward Methanol and Formaldehyde. Journal of the American Chemical Society 2008, 130 (31) , 10199-10207. https://doi.org/10.1021/ja8001265
    16. Parthasarathi Bera and, John M. Vohs. Reaction of CH3OH on Pd/ZnO(0001) and PdZn/ZnO(0001) Model Catalysts. The Journal of Physical Chemistry C 2007, 111 (19) , 7049-7057. https://doi.org/10.1021/jp068501f
    17. Harald Gabasch,, Axel Knop-Gericke,, Robert Schlögl,, Simon Penner,, Bernd Jenewein,, Konrad Hayek, and, Bernhard Klötzer. Zn Adsorption on Pd(111):  ZnO and PdZn Alloy Formation. The Journal of Physical Chemistry B 2006, 110 (23) , 11391-11398. https://doi.org/10.1021/jp0611370
    18. Zhao-Xu Chen,, Kok Hwa Lim,, Konstantin M. Neyman, and, Notker Rösch. Effect of Steps on the Decomposition of CH3O at PdZn Alloy Surfaces. The Journal of Physical Chemistry B 2005, 109 (10) , 4568-4574. https://doi.org/10.1021/jp044843e
    19. Zhao-Xu Chen,, Konstantin M. Neyman,, Kok Hwa Lim, and, Notker Rösch. CH3O Decomposition on PdZn(111), Pd(111), and Cu(111). A Theoretical Study. Langmuir 2004, 20 (19) , 8068-8077. https://doi.org/10.1021/la049377z
    20. Konstantin M. Neyman,, Riadh Sahnoun,, Chan Inntam,, Sunantha Hengrasmee, and, Notker Rösch. Computational Study of Model Pd−Zn Nanoclusters and Their Adsorption Complexes with CO Molecules. The Journal of Physical Chemistry B 2004, 108 (17) , 5424-5430. https://doi.org/10.1021/jp049830f
    21. José A. Rodriguez and, Mark Kuhn. Interaction of Zinc with Transition-Metal Surfaces:  Electronic and Chemical Perturbations Induced by Bimetallic Bonding. The Journal of Physical Chemistry 1996, 100 (1) , 381-389. https://doi.org/10.1021/jp952249m
    22. Jose A. Rodriguez and D. Wayne Goodman. Chemical and Electronic Properties of Bimetallic Surfaces. Accounts of Chemical Research 1995, 28 (12) , 477-478. https://doi.org/10.1021/ar00060a001
    23. D. A. Shlyapin, D. V. Yurpalova, T. N. Afonasenko, V. L. Temerev, A. V. Lavrenov. Efficient catalysts based on substitutional solid solutions and intermetallic compounds of palladium for acetylene selective hydrogenation to ethylene. Kataliz v promyshlennosti 2023, 23 (6) , 17-51. https://doi.org/10.18412/1816-0387-2023-6-17-51
    24. Sharif F. Zaman, Opeyemi A. Ojelade, Hesham Alhumade, Jahirul Mazumder, Hend Omar Mohamed, Pedro Castaño. Elucidating the promoting role of Ca on PdZn/CeO2 catalyst for CO2 valorization to methanol. Fuel 2023, 343 , 127927. https://doi.org/10.1016/j.fuel.2023.127927
    25. Pierfrancesco Ticali, Sara Morandi, Genrikh Shterk, Samy Ould-Chikh, Adrian Ramirez, Jorge Gascon, Sang-Ho Chung, Javier Ruiz-Martinez, Silvia Bordiga. PdZn/ZrO2+SAPO-34 bifunctional catalyst for CO2 conversion: Further insights by spectroscopic characterization. Applied Catalysis A: General 2023, 655 , 119100. https://doi.org/10.1016/j.apcata.2023.119100
    26. Md. Arifur Rahim, Jianbo Tang, Andrew J. Christofferson, Priyank V. Kumar, Nastaran Meftahi, Franco Centurion, Zhenbang Cao, Junma Tang, Mahroo Baharfar, Mohannad Mayyas, Francois-Marie Allioux, Pramod Koshy, Torben Daeneke, Christopher F. McConville, Richard B. Kaner, Salvy P. Russo, Kourosh Kalantar-Zadeh. Low-temperature liquid platinum catalyst. Nature Chemistry 2022, 14 (8) , 935-941. https://doi.org/10.1038/s41557-022-00965-6
    27. Anish Dasgupta, Haoran He, Rushi Gong, Shun-Li Shang, Eric K. Zimmerer, Randall J. Meyer, Zi-Kui Liu, Michael J. Janik, Robert M. Rioux. Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nature Chemistry 2022, 14 (5) , 523-529. https://doi.org/10.1038/s41557-021-00855-3
    28. Paolo Ruzzi, Davide Salusso, Matilde Baravaglio, Kai C. Szeto, Aimery De Mallmann, Laia Gil Jiménez, Cyril Godard, Anass Benayad, Sara Morandi, Silvia Bordiga, Mostafa Taoufik. Supported PdZn nanoparticles for selective CO2 conversion, through the grafting of a heterobimetallic complex on CeZrOx. Applied Catalysis A: General 2022, 635 , 118568. https://doi.org/10.1016/j.apcata.2022.118568
    29. Yue Chen, Qiguang Dai, Qiyao Zhang, Yongmin Huang. Precisely deposited Pd on ZnO (002) facets derived from complex reduction strategy for methanol steam reforming. International Journal of Hydrogen Energy 2022, 47 (33) , 14869-14883. https://doi.org/10.1016/j.ijhydene.2022.03.003
    30. Zaman Fakhruz Sharif, Opeyemi A. Ojelade, Hesham Alhumaide, Jahirul Majumder, Pedro Castano. Elucidating the Promoting Role of Ca on Pdzn/Ceo2catalyst for Co2 Valorization to Methanol. SSRN Electronic Journal 2022, 120 https://doi.org/10.2139/ssrn.4159434
    31. Pierfrancesco Ticali, Sara Morandi, Genrikh Shterk, Samy Ould-Chikh, Adrian Ramirez, Jorge Gascon, Sang-Ho Chung, Javier Ruiz-Martinez, Silvia Bordiga. Pdzn/Zro2 + Sapo-34 Bifunctional Catalyst for Co2 Conversion: Further Insights by Spectroscopic Characterization. SSRN Electronic Journal 2022, 9 https://doi.org/10.2139/ssrn.4172702
    32. Jiachen Lin, Chaoquan Hu, Xuebing Xu, Mingyuan Shao, Yufeng Hu, Chuanchuan Ma. Investigation of Various Metals on Hydrotalcite‐based Cu/Zn/Al Catalysts in Methanol Steam Reforming. Chemical Engineering & Technology 2021, 44 (6) , 1121-1130. https://doi.org/10.1002/ceat.202000486
    33. Jonathan Ruiz Esquius, Hasliza Bahruji, Stuart H. Taylor, Michael Bowker, Graham J. Hutchings. CO 2 Hydrogenation to CH 3 OH over PdZn Catalysts, with Reduced CH 4 Production. ChemCatChem 2020, 12 (23) , 6024-6032. https://doi.org/10.1002/cctc.202000974
    34. Konstantin M. Schüttler, Joachim Bansmann, Albert K. Engstfeld, R. Jürgen Behm. Adlayer growth vs spontaneous (near-) surface alloy formation: Zn growth on Au(111). The Journal of Chemical Physics 2020, 152 (12) , 124701. https://doi.org/10.1063/1.5145294
    35. Opeyemi A. Ojelade, Sharif F. Zaman. A Review on Pd Based Catalysts for CO2 Hydrogenation to Methanol: In-Depth Activity and DRIFTS Mechanistic Study. Catalysis Surveys from Asia 2020, 24 (1) , 11-37. https://doi.org/10.1007/s10563-019-09287-z
    36. Haoyuan Xu, Jianzhong Li, Yu Fu, Yanwen Tian, Zhongdong Yang. Sensitized mechanism of recovered S-SnO2 from tin sludge for CH4 detection by increasing oxygen vacancy density as an efficient strategy. Sensors and Actuators B: Chemical 2019, 298 , 126838. https://doi.org/10.1016/j.snb.2019.126838
    37. Opeyemi A. Ojelade, Sharif F. Zaman, Muhammad A. Daous, Abdulrahim A. Al-Zahrani, Ali S. Malik, Hafedh Driss, Genrikh Shterk, Jorge Gascon. Optimizing Pd:Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol. Applied Catalysis A: General 2019, 584 , 117185. https://doi.org/10.1016/j.apcata.2019.117185
    38. Anish Dasgupta, Eric K. Zimmerer, Randall J. Meyer, Robert M. Rioux. Generalized approach for the synthesis of silica supported Pd-Zn, Cu-Zn and Ni-Zn gamma brass phase nanoparticles. Catalysis Today 2019, 334 , 231-242. https://doi.org/10.1016/j.cattod.2018.10.050
    39. Xu Fan, Qian-Lin Tang, Xian Zhang, Tian-Tian Zhang, Qi Wang, Xiao-Xuan Duan, Mao-Lin Zhang, Meng-Yuan Yao. Comprehensive theoretical analysis of the influence of surface alloying by zinc on the catalytic performance of Cu(1 1 0) for the production of methanol from CO2 selective hydrogenation: Part 1 – Thermochemical aspects. Applied Surface Science 2019, 469 , 841-853. https://doi.org/10.1016/j.apsusc.2018.11.038
    40. A. A. Lytkina, N. V. Orekhova, A. B. Yaroslavtsev. Catalysts for the Steam Reforming and Electrochemical Oxidation of Methanol. Inorganic Materials 2018, 54 (13) , 1315-1329. https://doi.org/10.1134/S0020168518130034
    41. Neil M. Wilson, Johanna Schröder, Pranjali Priyadarshini, Daniel T. Bregante, Sebastian Kunz, David W. Flaherty. Direct synthesis of H2O2 on PdZn nanoparticles: The impact of electronic modifications and heterogeneity of active sites. Journal of Catalysis 2018, 368 , 261-274. https://doi.org/10.1016/j.jcat.2018.09.020
    42. Ewa Nowicka, Sultan M. Althahban, Yuan Luo, René Kriegel, Greg Shaw, David J. Morgan, Qian He, Masashi Watanabe, Marc Armbrüster, Christopher J. Kiely, Graham J. Hutchings. Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catalysis Science & Technology 2018, 8 (22) , 5848-5857. https://doi.org/10.1039/C8CY01100A
    43. Yazhi Yin, Bing Hu, Xinliang Li, Xiaohai Zhou, Xinlin Hong, Guoliang Liu. Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol. Applied Catalysis B: Environmental 2018, 234 , 143-152. https://doi.org/10.1016/j.apcatb.2018.04.024
    44. Lukas Schlicker, Maged F. Bekheet, Albert Gili, Andrew Doran, Aleksander Gurlo, Kevin Ploner, Thomas Schachinger, Simon Penner. Hydrogen reduction and metal-support interaction in a metastable metal-oxide system: Pd on rhombohedral In2O3. Journal of Solid State Chemistry 2018, 266 , 93-99. https://doi.org/10.1016/j.jssc.2018.07.010
    45. Zhengyi Pan, Rijie Wang, Jixiang Chen. Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: Geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental 2018, 224 , 88-100. https://doi.org/10.1016/j.apcatb.2017.10.040
    46. R.J. Morelock, W.D. Sides, Y. Hu, Q. Huang. Electrochemical deposition and anodic stripping of PdZn bimetallic compound. Journal of Electroanalytical Chemistry 2018, 815 , 8-15. https://doi.org/10.1016/j.jelechem.2018.03.003
    47. Igor S. Mashkovsky, Pavel V. Markov, Galina O. Bragina, Galina N. Baeva, Aleksandr V. Rassolov, Andrey V. Bukhtiyarov, Igor P. Prosvirin, Valery I. Bukhtiyarov, Aleksandr Yu. Stakheev. PdZn/α-Al 2 O 3 catalyst for liquid-phase alkyne hydrogenation: effect of the solid-state alloy transformation into intermetallics. Mendeleev Communications 2018, 28 (2) , 152-154. https://doi.org/10.1016/j.mencom.2018.03.014
    48. I. S. Mashkovsky, P. V. Markov, G. O. Bragina, A. V. Rassolov, G. N. Baeva, A. Yu. Stakheev. Intermetallic Pd1–Zn1 nanoparticles in the selective liquid-phase hydrogenation of substituted alkynes. Kinetics and Catalysis 2017, 58 (4) , 480-491. https://doi.org/10.1134/S0023158417040139
    49. H. Bahruji, M. Bowker, W. Jones, J. Hayward, J. Ruiz Esquius, D. J. Morgan, G. J. Hutchings. PdZn catalysts for CO 2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discussions 2017, 197 , 309-324. https://doi.org/10.1039/C6FD00189K
    50. Hasliza Bahruji, Michael Bowker, Graham Hutchings, Nikolaos Dimitratos, Peter Wells, Emma Gibson, Wilm Jones, Catherine Brookes, David Morgan, Georgi Lalev. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis 2016, 343 , 133-146. https://doi.org/10.1016/j.jcat.2016.03.017
    51. Zhanqi Wang, Lei Yang, Rui Zhang, Li Li, Zhenmin Cheng, Zhiming Zhou. Selective hydrogenation of phenylacetylene over bimetallic Pd–Cu/Al2O3 and Pd–Zn/Al2O3 catalysts. Catalysis Today 2016, 264 , 37-43. https://doi.org/10.1016/j.cattod.2015.08.018
    52. Ahmed Naitabdi, Robert Fagiewicz, Anthony Boucly, Giorgia Olivieri, Fabrice Bournel, Héloïse Tissot, Yawei Xu, Rabah Benbalagh, Mathieu G. Silly, Fausto Sirotti, Jean-Jacques Gallet, François Rochet. Oxidation of Small Supported Platinum-based Nanoparticles Under Near-Ambient Pressure Exposure to Oxygen. Topics in Catalysis 2016, 59 (5-7) , 550-563. https://doi.org/10.1007/s11244-015-0529-z
    53. Celina E. Barrios, Marta V. Bosco, Miguel A. Baltanás, Adrian L. Bonivardi. Hydrogen production by methanol steam reforming: Catalytic performance of supported-Pd on zinc–cerium oxides’ nanocomposites. Applied Catalysis B: Environmental 2015, 179 , 262-275. https://doi.org/10.1016/j.apcatb.2015.05.030
    54. David J. Childers, Neil M. Schweitzer, Seyed Mehdi Kamali Shahari, Robert M. Rioux, Jeffrey T. Miller, Randall J. Meyer. Modifying structure-sensitive reactions by addition of Zn to Pd. Journal of Catalysis 2014, 318 , 75-84. https://doi.org/10.1016/j.jcat.2014.07.016
    55. H. H. Holzapfel, A. Wolfbeisser, C. Rameshan, C. Weilach, G. Rupprechter. PdZn Surface Alloys as Models of Methanol Steam Reforming Catalysts: Molecular Studies by LEED, XPS, TPD and PM-IRAS. Topics in Catalysis 2014, 57 (14-16) , 1218-1228. https://doi.org/10.1007/s11244-014-0295-3
    56. Hiroshi Yoshida, Toshiaki Zama, Shin-ichiro Fujita, Joongjai Panpranot, Masahiko Arai. Liquid phase hydrogenation of phenylacetylene over Pd and PdZn catalysts in toluene: effects of alloying and CO2 pressurization. RSC Advances 2014, 4 (47) , 24922. https://doi.org/10.1039/c4ra02220c
    57. Yasuyuki Matsumura. Enhancement in activity of Pd–Zn catalyst for methanol steam reforming by coprecipitation on zirconia support. Applied Catalysis A: General 2013, 468 , 350-358. https://doi.org/10.1016/j.apcata.2013.09.022
    58. M. Armbrüster, M. Behrens, K. Föttinger, M. Friedrich, É. Gaudry, S. K. Matam, H. R. Sharma. The Intermetallic Compound ZnPd and Its Role in Methanol Steam Reforming. Catalysis Reviews 2013, 55 (3) , 289-367. https://doi.org/10.1080/01614940.2013.796192
    59. Karin Föttinger. The effect of CO on intermetallic PdZn/ZnO and Pd2Ga/Ga2O3 methanol steam reforming catalysts: A comparative study. Catalysis Today 2013, 208 , 106-112. https://doi.org/10.1016/j.cattod.2012.12.004
    60. An-Pang Tsai, Tomofumi Kimura, Yukinori Suzuki, Satoshi Kameoka, Masahiko Shimoda, Yasushi Ishii. Effect of electronic structures on catalytic properties of CuNi alloy and Pd in MeOH-related reactions. The Journal of Chemical Physics 2013, 138 (14) https://doi.org/10.1063/1.4798932
    61. Yulia Ryabenkova, Qian He, Peter J. Miedziak, Nicholas F. Dummer, Stuart H. Taylor, Albert F. Carley, David J. Morgan, Nikolaos Dimitratos, David J. Willock, Donald Bethell, David W. Knight, David Chadwick, Christopher J. Kiely, Graham J. Hutchings. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today 2013, 203 , 139-145. https://doi.org/10.1016/j.cattod.2012.05.037
    62. Ryan S. Johnson, Andrew DeLaRiva, Valerie Ashbacher, Barr Halevi, Charles J. Villanueva, Gregory K. Smith, Sen Lin, Abhaya K. Datye, Hua Guo. The CO oxidation mechanism and reactivity on PdZn alloys. Physical Chemistry Chemical Physics 2013, 15 (20) , 7768. https://doi.org/10.1039/c3cp00126a
    63. Barr Halevi, Eric J. Peterson, Aaron Roy, Andrew DeLariva, Ese Jeroro, Feng Gao, Yong Wang, John M. Vohs, Boris Kiefer, Edward Kunkes, Michael Hävecker, Malte Behrens, Robert Schlögl, Abhaya K. Datye. Catalytic reactivity of face centered cubic PdZnα for the steam reforming of methanol. Journal of Catalysis 2012, 291 , 44-54. https://doi.org/10.1016/j.jcat.2012.04.002
    64. Núria López, Crisa Vargas-Fuentes. Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory. Chem. Commun. 2012, 48 (10) , 1379-1391. https://doi.org/10.1039/C1CC14922A
    65. Malte Behrens, Marc Armbrüster. Methanol Steam Reforming. 2012, 175-235. https://doi.org/10.1007/978-1-4614-0344-9_5
    66. Kazuki Nozawa, Naruki Endo, Satoshi Kameoka, An Pang Tsai, Yasushi Ishii. Catalytic Properties Dominated by Electronic Structures in PdZn, NiZn, and PtZn Intermetallic Compounds. Journal of the Physical Society of Japan 2011, 80 (6) , 064801. https://doi.org/10.1143/JPSJ.80.064801
    67. Qinglin Zhang, Robert J. Farrauto. A PdZn catalyst supported on stabilized ceria for stoichiometric methanol steam reforming and hydrogen production. Applied Catalysis A: General 2011, 395 (1-2) , 64-70. https://doi.org/10.1016/j.apcata.2011.01.024
    68. Xiang He, Yucheng Huang, Zhao-Xu Chen. Zinc coverage dependent structure of PdZn surface alloy. Phys. Chem. Chem. Phys. 2011, 13 (1) , 107-109. https://doi.org/10.1039/C0CP01344G
    69. Sandra Sá, Hugo Silva, Lúcia Brandão, José M. Sousa, Adélio Mendes. Catalysts for methanol steam reforming—A review. Applied Catalysis B: Environmental 2010, 99 (1-2) , 43-57. https://doi.org/10.1016/j.apcatb.2010.06.015
    70. H.P. Koch, I. Bako, G. Weirum, M. Kratzer, R. Schennach. A theoretical study of Zn adsorption and desorption on a Pd(111) substrate. Surface Science 2010, 604 (11-12) , 926-931. https://doi.org/10.1016/j.susc.2010.02.022
    71. Satoshi Kameoka, Tomofumi Kimura, An Pang Tsai. A Novel Process for Preparation of Unsupported Mesoporous Intermetallic NiZn and PdZn Catalysts. Catalysis Letters 2009, 131 (1-2) , 219-224. https://doi.org/10.1007/s10562-009-0045-5
    72. Eseoghene Jeroro, John M. Vohs. Reaction of Formic Acid on Zn-Modified Pd(111). Catalysis Letters 2009, 130 (3-4) , 271-277. https://doi.org/10.1007/s10562-009-9955-5
    73. G. Weirum, M. Kratzer, H. P. Koch, A. Tamtögl, J. Killmann, I. Bako, A. Winkler, S. Surnev, F. P. Netzer, R. Schennach. Growth and Desorption Kinetics of Ultrathin Zn Layers on Pd(111). The Journal of Physical Chemistry C 2009, 113 (22) , 9788-9796. https://doi.org/10.1021/jp9017376
    74. M. Kratzer, A. Tamtögl, J. Killmann, R. Schennach, A. Winkler. Preparation and calibration of ultrathin Zn layers on Pd(111). Applied Surface Science 2009, 255 (11) , 5755-5759. https://doi.org/10.1016/j.apsusc.2008.12.083
    75. Marita Nilsson, Kjell Jansson, Peter Jozsa, Lars J. Pettersson. Catalytic properties of Pd supported on ZnO/ZnAl2O4/Al2O3 mixtures in dimethyl ether autothermal reforming. Applied Catalysis B: Environmental 2009, 86 (1-2) , 18-26. https://doi.org/10.1016/j.apcatb.2008.07.012
    76. Eseoghene Jeroro, Matthew P. Hyman, John M. Vohs. Ensemble vs. electronic effects on the reactivity of two-dimensional Pd alloys: a comparison of CO and CH3OH adsorption on Zn/Pd(111) and Cu/Pd(111). Physical Chemistry Chemical Physics 2009, 11 (44) , 10457. https://doi.org/10.1039/b913220a
    77. Anton Tamtögl, Markus Kratzer, Jörg Killman, Adolf Winkler. Adsorption/desorption of H2 and CO on Zn-modified Pd(111). The Journal of Chemical Physics 2008, 129 (22) https://doi.org/10.1063/1.3034126
    78. José A. Rodriguez. Bimetallic Model Catalysts. 2008, 1298-1309. https://doi.org/10.1002/9783527610044.hetcat0070
    79. E. Jeroro, V. Lebarbier, A. Datye, Y. Wang, J.M. Vohs. Interaction of CO with surface PdZn alloys. Surface Science 2007, 601 (23) , 5546-5554. https://doi.org/10.1016/j.susc.2007.09.031
    80. Shuhui Liang, Fei Teng, G. Bulgan, Yongfa Zhu. Effect of Jahn−Teller Distortion in La 0.5 Sr 0.5 MnO 3 Cubes and Nanoparticles on the Catalytic Oxidation of CO and CH 4. The Journal of Physical Chemistry C 2007, 111 (45) , 16742-16749. https://doi.org/10.1021/jp074934m
    81. Maurizio Lenarda, Manuela Casagrande, Elisa Moretti, Loretta Storaro, Romana Frattini, Stefano Polizzi. Selective catalytic low pressure hydrogenation of acetophenone on Pd/ZnO/ZnAl2O4. Catalysis Letters 2007, 114 (1-2) , 79-84. https://doi.org/10.1007/s10562-007-9046-4
    82. K. Kovnir, M. Armbrüster, D. Teschner, T.V. Venkov, F.C. Jentoft, A. Knop-Gericke, Yu. Grin, R. Schlögl. A new approach to well-defined, stable and site-isolated catalysts. Science and Technology of Advanced Materials 2007, 8 (5) , 420-427. https://doi.org/10.1016/j.stam.2007.05.004
    83. Konstantin M. Neyman, Kok Hwa Lim, Zhao-Xu Chen, Lyudmila V. Moskaleva, Andreas Bayer, Armin Reindl, Dieter Borgmann, Reinhard Denecke, Hans-Peter Steinrück, Notker Rösch. Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition. Phys. Chem. Chem. Phys. 2007, 9 (27) , 3470-3482. https://doi.org/10.1039/B700548B
    84. Parthasarathi Bera, John M. Vohs. Growth and structure of Pd films on ZnO(0001). The Journal of Chemical Physics 2006, 125 (16) https://doi.org/10.1063/1.2363186
    85. Shetian Liu, Katsumi Takahashi, Kenji Fuchigami, Kazuo Uematsu. Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation. Applied Catalysis A: General 2006, 299 , 58-65. https://doi.org/10.1016/j.apcata.2005.10.012
    86. Andreas Bayer, Ken Flechtner, Reinhard Denecke, Hans-Peter Steinrück, Konstantin M. Neyman, Notker Rösch. Electronic properties of thin Zn layers on Pd(111) during growth and alloying. Surface Science 2006, 600 (1) , 78-94. https://doi.org/10.1016/j.susc.2005.09.049
    87. Adriana Bonilla Sánchez, Narcís Homs, J.L.G. Fierro, Pilar Ramírez de la Piscina. New supported Pd catalysts for the direct transformation of ethanol to ethyl acetate under medium pressure conditions. Catalysis Today 2005, 107-108 , 431-435. https://doi.org/10.1016/j.cattod.2005.07.057
    88. V.A. de la Peña O'Shea, M.C. Álvarez-Galván, J.L.G. Fierro, P.L. Arias. Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Applied Catalysis B: Environmental 2005, 57 (3) , 191-199. https://doi.org/10.1016/j.apcatb.2004.11.001
    89. Shetian Liu, Katsumi Takahashi, Kazuo Uematsu, Muneo Ayabe. Hydrogen production by oxidative methanol reforming on Pd/ZnO. Applied Catalysis A: General 2005, 283 (1-2) , 125-135. https://doi.org/10.1016/j.apcata.2004.12.043
    90. An Pang Tsai, Satoshi Kameoka, Yasushi Ishii. PdZn=Cu: Can an Intermetallic Compound Replace an Element?. Journal of the Physical Society of Japan 2004, 73 (12) , 3270-3273. https://doi.org/10.1143/JPSJ.73.3270
    91. P. Pfeifer, K. Schubert, M.A. Liauw, G. Emig. PdZn catalysts prepared by washcoating microstructured reactors. Applied Catalysis A: General 2004, 270 (1-2) , 165-175. https://doi.org/10.1016/j.apcata.2004.04.037
    92. Jing-Fang Huang, I-Wen Sun. Electrodeposition of PtZn in a Lewis acidic ZnCl2–1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochimica Acta 2004, 49 (19) , 3251-3258. https://doi.org/10.1016/j.electacta.2004.02.039
    93. M.C. Álvarez-Galván, B. Pawelec, V.A. de la Peña O’Shea, J.L.G. Fierro, P.L. Arias. Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst. Applied Catalysis B: Environmental 2004, 51 (2) , 83-91. https://doi.org/10.1016/j.apcatb.2004.01.024
    94. Zhao-Xu Chen, Konstantin M Neyman, Notker Rösch. Theoretical study of segregation of Zn and Pd in Pd–Zn alloys. Surface Science 2004, 548 (1-3) , 291-300. https://doi.org/10.1016/j.susc.2003.11.018
    95. Zhao-Xu Chen, Konstantin M. Neyman, Aleksey B. Gordienko, Notker Rösch. Surface structure and stability of PdZn and PtZn alloys: Density-functional slab model studies. Physical Review B 2003, 68 (7) https://doi.org/10.1103/PhysRevB.68.075417
    96. G. Liu, K. A. Davis, D. C. Meier, P. S. Bagus, D. W. Goodman, G. W. Zajac. Interactions of ultrathin Pb films with Ru(0001) and Pd(111). Physical Review B 2003, 68 (3) https://doi.org/10.1103/PhysRevB.68.035406
    97. José A. Rodriguez. Electronic and chemical properties of palladium in bimetallic systems: How much do we know about heteronuclear metal-metal bonding?. 2002, 438-465. https://doi.org/10.1016/S1571-0785(02)80099-2
    98. Zongxian Yang, Ruqian Wu. First-principles studies on bonding mechanism at Ni/X bimetallic interfaces (X=Ta, W, Re and Ru). Surface Science 2000, 469 (1) , 36-44. https://doi.org/10.1016/S0039-6028(00)00809-8
    99. M.L. Cubeiro, J.L.G. Fierro. Selective Production of Hydrogen by Partial Oxidation of Methanol over ZnO-Supported Palladium Catalysts. Journal of Catalysis 1998, 179 (1) , 150-162. https://doi.org/10.1006/jcat.1998.2184
    100. M.L. Cubeiro, J.L.G. Fierro. Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A: General 1998, 168 (2) , 307-322. https://doi.org/10.1016/S0926-860X(97)00361-X
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect