ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries:  Reduction Mechanisms of Ethylene Carbonate

View Author Information
Contribution from the Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, Columbia, South Carolina 29208, and MCC-Group Science & Technology Research Center, Mitsubishi Chemical Corporation, Yokohama 227-8502, Japan
Cite this: J. Am. Chem. Soc. 2001, 123, 47, 11708–11718
Publication Date (Web):November 2, 2001
https://doi.org/10.1021/ja0164529
Copyright © 2001 American Chemical Society

    Article Views

    8634

    Altmetric

    -

    Citations

    387
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Reductive decomposition mechanisms for ethylene carbonate (EC) molecule in electrolyte solutions for lithium-ion batteries are comprehensively investigated using density functional theory. In gas phase the reduction of EC is thermodynamically forbidden, whereas in bulk solvent it is likely to undergo one- as well as two-electron reduction processes. The presence of Li cation considerably stabilizes the EC reduction intermediates. The adiabatic electron affinities of the supermolecule Li+(EC)n (n = 1−4) successively decrease with the number of EC molecules, independently of EC or Li+ being reduced. Regarding the reductive decomposition mechanism, Li+(EC)n is initially reduced to an ion-pair intermediate that will undergo homolytic C−O bond cleavage via an approximately 11.0 kcal/mol barrier, bringing up a radical anion coordinated with Li+. Among the possible termination pathways of the radical anion, thermodynamically the most favorable is the formation of lithium butylene dicarbonate, (CH2CH2OCO2Li)2, followed by the formation of one O−Li bond compound containing an ester group, LiO(CH2)2CO2(CH2)2OCO2Li, then two very competitive reactions of the further reduction of the radical anion and the formation of lithium ethylene dicarbonate, (CH2OCO2Li)2, and the least favorable is the formation of a C−Li bond compound (Li carbides), Li(CH2)2OCO2Li. The products show a weak EC concentration dependence as has also been revealed for the reactions of LiCO3- with Li+(EC)n; that is, the formation of Li2CO3 is slightly more favorable at low EC concentrations, whereas (CH2OCO2Li)2 is favored at high EC concentrations. On the basis of the results presented here, in line with some experimental findings, we find that a two-electron reduction process indeed takes place by a stepwise path. Regarding the composition of the surface films resulting from solvent reduction, for which experiments usually indicate that (CH2OCO2Li)2 is a dominant component, we conclude that they comprise two leading lithium alkyl bicarbonates, (CH2CH2OCO2Li)2 and (CH2OCO2Li)2, together with LiO(CH2)2CO2(CH2)2OCO2Li, Li(CH2)2OCO2Li and Li2CO3.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     University of South Carolina.

     Mitsubishi Chemical Corporation.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Table S1 tabulates the energy levels and main components for the two lower virtual orbitals for Li+(EC)n (n = 1−4) corresponding to Li+ and EC reduction, respectively. Table S2 lists the absolute energies of all the involved stationary points, their structures are collected in Table S3 in Gaussian archive format (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 387 publications.

    1. Zhenyu Zhang, Samia Said, Adam J. Lovett, Rhodri Jervis, Paul R. Shearing, Daniel J. L. Brett, Thomas S. Miller. The Influence of Cathode Degradation Products on the Anode Interface in Lithium-Ion Batteries. ACS Nano 2024, 18 (13) , 9389-9402. https://doi.org/10.1021/acsnano.3c10208
    2. Chao Li, Zhenye Liang, Lina Wang, Daofan Cao, Yun-Chao Yin, Daxian Zuo, Jian Chang, Jun Wang, Ke Liu, Xing Li, Guangfu Luo, Yonghong Deng, Jiayu Wan. Superwettable Electrolyte Engineering for Fast Charging Li-Ion Batteries. ACS Energy Letters 2024, 9 (3) , 1295-1304. https://doi.org/10.1021/acsenergylett.3c02572
    3. Mohammed Bin Jassar, Carine Michel, Sara Abada, Theodorus De Bruin, Sylvain Tant, Carlos Nieto-Draghi, Stephan N. Steinmann. Lessons Learned from Semiempirical Methods for the Li-Ion Battery Solid Electrolyte Interphase. The Journal of Physical Chemistry C 2024, 128 (8) , 3269-3280. https://doi.org/10.1021/acs.jpcc.3c08176
    4. Hyo Min You, Yeongjun Yoon, Jeonghyun Ko, Jisu Back, Hyunguk Kwon, Jeong Woo Han, Kyeounghak Kim. Atomistic Scale Modeling of Anode/Electrolyte Interfaces in Li-Ion Batteries. Langmuir 2024, 40 (4) , 1961-1970. https://doi.org/10.1021/acs.langmuir.3c03060
    5. Evan Walter Clark Spotte-Smith, Sudarshan Vijay, Thea Bee Petrocelli, Bernardine L. D. Rinkel, Bryan D. McCloskey, Kristin A. Persson. A Critical Analysis of Chemical and Electrochemical Oxidation Mechanisms in Li-Ion Batteries. The Journal of Physical Chemistry Letters 2024, 15 (2) , 391-400. https://doi.org/10.1021/acs.jpclett.3c03279
    6. Sibali Debnath, Verena A. Neufeld, Leif D. Jacobson, Benjamin Rudshteyn, John L. Weber, Timothy C. Berkelbach, Richard A. Friesner. Accurate Quantum Chemical Reaction Energies for Lithium-Mediated Electrolyte Decomposition and Evaluation of Density Functional Approximations. The Journal of Physical Chemistry A 2023, 127 (44) , 9178-9184. https://doi.org/10.1021/acs.jpca.3c04369
    7. Changhao Wang, Xiaohong Wu, Yilong Chen, Baodan Zhang, Haiyan Luo, Zhengang Li, Yawen Yan, Zixin Wu, Kai Fang, Yu Qiao, Shi-Gang Sun. Recognition and Application of Catalysis in Secondary Rechargeable Batteries. ACS Catalysis 2023, 13 (16) , 10641-10650. https://doi.org/10.1021/acscatal.3c02455
    8. Mohammed Bin Jassar, Carine Michel, Sara Abada, Theodorus De Bruin, Sylvain Tant, Carlos Nieto-Draghi, Stephan N. Steinmann. A Joint DFT-kMC Study To Model Ethylene Carbonate Decomposition Reactions: SEI Formation, Growth, and Capacity Loss during Calendar Aging of Li-Metal Batteries. ACS Applied Energy Materials 2023, 6 (13) , 6934-6945. https://doi.org/10.1021/acsaem.3c00372
    9. Baoxu Peng, Bingbing Li, Aimin Ge, Chengyang Xu, Ken-ichi Inoue, Shen Ye. Role of Oxygen in the Formation of the Solid-Electrolyte Interphase Evaluated by Online Electrochemical Mass Spectrometry and Electrochemical Atomic Force Microscopy. The Journal of Physical Chemistry C 2023, 127 (26) , 12528-12540. https://doi.org/10.1021/acs.jpcc.3c02726
    10. Michail Gerasimov, Fernando A. Soto, Janika Wagner, Florian Baakes, Ningxuan Guo, Francisco Ospina-Acevedo, Fridolin Röder, Perla B. Balbuena, Ulrike Krewer. Species Distribution During Solid Electrolyte Interphase Formation on Lithium Using MD/DFT-Parameterized Kinetic Monte Carlo Simulations. The Journal of Physical Chemistry C 2023, 127 (10) , 4872-4886. https://doi.org/10.1021/acs.jpcc.2c05898
    11. Dacheng Kuai, Perla B. Balbuena. Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms. The Journal of Physical Chemistry C 2023, 127 (4) , 1744-1751. https://doi.org/10.1021/acs.jpcc.2c07838
    12. Qisheng Wu, Matthew T. McDowell, Yue Qi. Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries. Journal of the American Chemical Society 2023, 145 (4) , 2473-2484. https://doi.org/10.1021/jacs.2c11807
    13. Steven Dajnowicz, Garvit Agarwal, James M. Stevenson, Leif D. Jacobson, Farhad Ramezanghorbani, Karl Leswing, Richard A. Friesner, Mathew D. Halls, Robert Abel. High-Dimensional Neural Network Potential for Liquid Electrolyte Simulations. The Journal of Physical Chemistry B 2022, 126 (33) , 6271-6280. https://doi.org/10.1021/acs.jpcb.2c03746
    14. Eric J. McShane, Helen K. Bergstrom, Peter J. Weddle, David E. Brown, Andrew M. Colclasure, Bryan D. McCloskey. Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging. ACS Energy Letters 2022, 7 (8) , 2734-2744. https://doi.org/10.1021/acsenergylett.2c01059
    15. M. S. S. Malik Mubashir Gulzar . Mathematical Modeling of Aging Mechanisms in Lithium-Ion Batteries. , 111-133. https://doi.org/10.1021/bk-2022-1413.ch005
    16. Evan Walter Clark Spotte-Smith, Ronald L. Kam, Daniel Barter, Xiaowei Xie, Tingzheng Hou, Shyam Dwaraknath, Samuel M. Blau, Kristin A. Persson. Toward a Mechanistic Model of Solid–Electrolyte Interphase Formation and Evolution in Lithium-Ion Batteries. ACS Energy Letters 2022, 7 (4) , 1446-1453. https://doi.org/10.1021/acsenergylett.2c00517
    17. Joseph W. Abbott, Felix Hanke. Kinetically Corrected Monte Carlo–Molecular Dynamics Simulations of Solid Electrolyte Interphase Growth. Journal of Chemical Theory and Computation 2022, 18 (2) , 925-934. https://doi.org/10.1021/acs.jctc.1c00921
    18. Yasuhito Aoki, Mami Oda, Sachiko Kojima, Taihei Ishihama, Tsuyoshi Nagashima, Takayuki Doi, Minoru Inaba. Predictive Characterization of SEI Formed on Graphite Negative Electrodes for Efficiently Designing Effective Electrolyte Solutions. ACS Applied Energy Materials 2022, 5 (1) , 1085-1094. https://doi.org/10.1021/acsaem.1c03450
    19. Dacheng Kuai, Perla B. Balbuena. Solvent Degradation and Polymerization in the Li-Metal Battery: Organic-Phase Formation in Solid-Electrolyte Interphases. ACS Applied Materials & Interfaces 2022, 14 (2) , 2817-2824. https://doi.org/10.1021/acsami.1c20487
    20. Haoran Cheng, Qujiang Sun, Leilei Li, Yeguo Zou, Yuqi Wang, Tao Cai, Fei Zhao, Gang Liu, Zheng Ma, Wandi Wahyudi, Qian Li, Jun Ming. Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries. ACS Energy Letters 2022, 7 (1) , 490-513. https://doi.org/10.1021/acsenergylett.1c02425
    21. Laure Caracciolo, Lénaïc Madec, Grégory Gachot, Hervé Martinez. Impact of the Salt Anion on K Metal Reactivity in EC/DEC Studied Using GC and XPS Analysis. ACS Applied Materials & Interfaces 2021, 13 (48) , 57505-57513. https://doi.org/10.1021/acsami.1c19537
    22. Kazuhiko Mukai, Takeshi Uyama, Takamasa Nonaka. Thermal Behavior of Li1+x[Li1/3Ti5/3]O4 and a Proof of Concept for Sustainable Batteries. ACS Applied Materials & Interfaces 2021, 13 (36) , 42791-42802. https://doi.org/10.1021/acsami.1c11195
    23. Lorena Alzate-Vargas, Samuel M. Blau, Evan Walter Clark Spotte-Smith, Srikanth Allu, Kristin A. Persson, Jean-Luc Fattebert. Insight into SEI Growth in Li-Ion Batteries using Molecular Dynamics and Accelerated Chemical Reactions. The Journal of Physical Chemistry C 2021, 125 (34) , 18588-18596. https://doi.org/10.1021/acs.jpcc.1c04149
    24. Xiaowei Xie, Evan Walter Clark Spotte-Smith, Mingjian Wen, Hetal D. Patel, Samuel M. Blau, Kristin A. Persson. Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network. Journal of the American Chemical Society 2021, 143 (33) , 13245-13258. https://doi.org/10.1021/jacs.1c05807
    25. Min Feng, Jie Pan, Yue Qi. Impact of Electronic Properties of Grain Boundaries on the Solid Electrolyte Interphases (SEIs) in Li-ion Batteries. The Journal of Physical Chemistry C 2021, 125 (29) , 15821-15829. https://doi.org/10.1021/acs.jpcc.1c03186
    26. Emilio Méndez, M. Dolores Elola, Javier Rodriguez, Daniel Laria. Equilibrium and Dynamical Characteristics of the Solvation Associated with the Li+/Li Redox Couple at the Ethylene Carbonate/Graphene Interface. The Journal of Physical Chemistry C 2021, 125 (12) , 6694-6707. https://doi.org/10.1021/acs.jpcc.1c00791
    27. Mathew J. Boyer, Gyeong S. Hwang. Kinetic Selectivity of Lithium Alkyl Carbonate Formation from Combination Reactions of Ethylene Carbonate Radical Anions. The Journal of Physical Chemistry C 2020, 124 (47) , 25754-25759. https://doi.org/10.1021/acs.jpcc.0c08858
    28. Yumin Zhang, Venkatasubramanian Viswanathan. Not All Fluorination Is the Same: Unique Effects of Fluorine Functionalization of Ethylene Carbonate for Tuning Solid-Electrolyte Interphase in Li Metal Batteries. Langmuir 2020, 36 (39) , 11450-11466. https://doi.org/10.1021/acs.langmuir.0c01652
    29. Jaebeom Han, Yu Zheng, Ningxuan Guo, Perla B. Balbuena. Calculated Reduction Potentials of Electrolyte Species in Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2020, 124 (38) , 20654-20670. https://doi.org/10.1021/acs.jpcc.0c04173
    30. Anton Van der Ven, Zhi Deng, Swastika Banerjee, Shyue Ping Ong. Rechargeable Alkali-Ion Battery Materials: Theory and Computation. Chemical Reviews 2020, 120 (14) , 6977-7019. https://doi.org/10.1021/acs.chemrev.9b00601
    31. Xiaowei Xie, Kristin A. Persson, David W. Small. Incorporating Electronic Information into Machine Learning Potential Energy Surfaces via Approaching the Ground-State Electronic Energy as a Function of Atom-Based Electronic Populations. Journal of Chemical Theory and Computation 2020, 16 (7) , 4256-4270. https://doi.org/10.1021/acs.jctc.0c00217
    32. Fan-Wei Lin, Ngoc Thanh Thuy Tran, Wen-Dung Hsu. Effect of 1,3-Propane Sultone on the Formation of Solid Electrolyte Interphase at Li-Ion Battery Anode Surface: A First-Principles Study. ACS Omega 2020, 5 (23) , 13541-13547. https://doi.org/10.1021/acsomega.9b04447
    33. Luning Wang, Yuxiao Lin, Samantha DeCarlo, Yi Wang, Kevin Leung, Yue Qi, Kang Xu, Chunsheng Wang, Bryan W. Eichhorn. Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes. Chemistry of Materials 2020, 32 (9) , 3765-3775. https://doi.org/10.1021/acs.chemmater.9b05027
    34. Kayahan Saritas, Eric R. Fadel, Boris Kozinsky, Jeffrey C. Grossman. Charge Density and Redox Potential of LiNiO2 Using Ab Initio Diffusion Quantum Monte Carlo. The Journal of Physical Chemistry C 2020, 124 (11) , 5893-5901. https://doi.org/10.1021/acs.jpcc.9b10372
    35. Dong-Joo Yoo, Jang Wook Choi. Elucidating the Extraordinary Rate and Cycling Performance of Phenanthrenequinone in Aluminum-Complex-Ion Batteries. The Journal of Physical Chemistry Letters 2020, 11 (6) , 2384-2392. https://doi.org/10.1021/acs.jpclett.0c00324
    36. Anja Kopač Lautar, Jan Bitenc, Tomaž Rejec, Robert Dominko, Jean-Sébastien Filhol, Marie-Liesse Doublet. Electrolyte Reactivity in the Double Layer in Mg Batteries: An Interface Potential-Dependent DFT Study. Journal of the American Chemical Society 2020, 142 (11) , 5146-5153. https://doi.org/10.1021/jacs.9b12474
    37. Lynza H. Sprowl, Líney Árnadóttir, Maria K. Y. Chan. Fluoroethylene Carbonate Breakdown Mechanisms and Energetics on Two Lithium Silicide Surfaces. The Journal of Physical Chemistry C 2019, 123 (44) , 26743-26751. https://doi.org/10.1021/acs.jpcc.9b04980
    38. Tsunduru Aashish, Bhabani S. Mallik. Rattling Transport of Lithium Ion in the Cavities of Model Solid Electrolyte Interphase. The Journal of Physical Chemistry C 2019, 123 (41) , 25015-25024. https://doi.org/10.1021/acs.jpcc.9b04160
    39. Yi-Fei Yang, Chun-Yu Chiou, Chuan-Wen Liu, Cheng-Lung Chen, Jyh-Tsung Lee. Crown Ethers as Electrolyte Additives To Modulate the Electrochemical Potential of Lithium Organic Batteries. The Journal of Physical Chemistry C 2019, 123 (36) , 21950-21958. https://doi.org/10.1021/acs.jpcc.9b05173
    40. Martha A. Gialampouki, Javad Hashemi, Andrew A. Peterson. The Electrochemical Mechanisms of Solid–Electrolyte Interphase Formation in Lithium-Based Batteries. The Journal of Physical Chemistry C 2019, 123 (33) , 20084-20092. https://doi.org/10.1021/acs.jpcc.9b03886
    41. Mathew J. Boyer, Gyeong S. Hwang. Theoretical Prediction of the Strong Solvent Effect on Reduced Ethylene Carbonate Ring-Opening and Its Impact on Solid Electrolyte Interphase Evolution. The Journal of Physical Chemistry C 2019, 123 (29) , 17695-17702. https://doi.org/10.1021/acs.jpcc.9b03146
    42. Joshua Young, Peter M. Kulick, Taylor R. Juran, Manuel Smeu. Comparative Study of Ethylene Carbonate-Based Electrolyte Decomposition at Li, Ca, and Al Anode Interfaces. ACS Applied Energy Materials 2019, 2 (3) , 1676-1684. https://doi.org/10.1021/acsaem.8b01707
    43. Shuai Heng, Qiang Shi, Yan Wang, Qunting Qu, Jingyu Zhang, Guobin Zhu, Honghe Zheng. In Situ Development of Elastic Solid Electrolyte Interphase via Nanoregulation and Self-Polymerization of Sodium Itaconate on Graphite Surface. ACS Applied Energy Materials 2019, 2 (2) , 1336-1347. https://doi.org/10.1021/acsaem.8b01912
    44. Marco-Tulio Fonseca Rodrigues, Victor A. Maroni, David J. Gosztola, Koffi P. C. Yao, Kaushik Kalaga, Ilya A. Shkrob, Daniel P. Abraham. Lithium Acetylide: A Spectroscopic Marker for Lithium Deposition During Fast Charging of Li-Ion Cells. ACS Applied Energy Materials 2019, 2 (1) , 873-881. https://doi.org/10.1021/acsaem.8b01975
    45. Veerapandian Ponnuchamy, Stefano Mossa, Ioannis Skarmoutsos. Solvent and Salt Effect on Lithium Ion Solvation and Contact Ion Pair Formation in Organic Carbonates: A Quantum Chemical Perspective. The Journal of Physical Chemistry C 2018, 122 (45) , 25930-25939. https://doi.org/10.1021/acs.jpcc.8b09892
    46. Maral Bozorgchenani, Florian Buchner, Katrin Forster-Tonigold, Jihyun Kim, Axel Groß, R. Jürgen Behm. Adsorption of Ultrathin Ethylene Carbonate Films on Pristine and Lithiated Graphite and Their Interaction with Li. Langmuir 2018, 34 (29) , 8451-8463. https://doi.org/10.1021/acs.langmuir.8b01054
    47. Dominique S. Moock, Sven O. Steinmüller, Isabelle D. Wessely, Audrey Llevot, Benjamin Bitterer, Michael A. R. Meier, Stefan Bräse, Helmut Ehrenberg, Frieder Scheiba. Surface Functionalization of Silicon, HOPG, and Graphite Electrodes: Toward an Artificial Solid Electrolyte Interface. ACS Applied Materials & Interfaces 2018, 10 (28) , 24172-24180. https://doi.org/10.1021/acsami.8b04877
    48. Thomas M. Østergaard, Livia Giordano, Ivano E. Castelli, Filippo Maglia, Byron K. Antonopoulos, Yang Shao-Horn, Jan Rossmeisl. Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces. The Journal of Physical Chemistry C 2018, 122 (19) , 10442-10449. https://doi.org/10.1021/acs.jpcc.8b01713
    49. Jarred Z. Olson, Patrik K. Johansson, David G. Castner, and Cody W. Schlenker . Operando Sum-Frequency Generation Detection of Electrolyte Redox Products at Active Si Nanoparticle Li-Ion Battery Interfaces. Chemistry of Materials 2018, 30 (4) , 1239-1248. https://doi.org/10.1021/acs.chemmater.7b04087
    50. Lauren Raguette and Ryan Jorn . Ion Solvation and Dynamics at Solid Electrolyte Interphases: A Long Way from Bulk?. The Journal of Physical Chemistry C 2018, 122 (6) , 3219-3232. https://doi.org/10.1021/acs.jpcc.7b11472
    51. Norio Takenaka, Takuya Fujie, Amine Bouibes, Yuki Yamada, Atsuo Yamada, and Masataka Nagaoka . Microscopic Formation Mechanism of Solid Electrolyte Interphase Film in Lithium-Ion Batteries with Highly Concentrated Electrolyte. The Journal of Physical Chemistry C 2018, 122 (5) , 2564-2571. https://doi.org/10.1021/acs.jpcc.7b11650
    52. Yi Yu, Artem Baskin, Carlos Valero-Vidal, Nathan T. Hahn, Qiang Liu, Kevin R. Zavadil, Bryan W. Eichhorn, David Prendergast, and Ethan J. Crumlin . Instability at the Electrode/Electrolyte Interface Induced by Hard Cation Chelation and Nucleophilic Attack. Chemistry of Materials 2017, 29 (19) , 8504-8512. https://doi.org/10.1021/acs.chemmater.7b03404
    53. Dmitry Bedrov, Oleg Borodin, and Justin B. Hooper . Li+ Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2017, 121 (30) , 16098-16109. https://doi.org/10.1021/acs.jpcc.7b04247
    54. Jose L. Gomez-Ballesteros and Perla B. Balbuena . Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries. The Journal of Physical Chemistry Letters 2017, 8 (14) , 3404-3408. https://doi.org/10.1021/acs.jpclett.7b01183
    55. Kang-Seop Yun, Sung Jin Pai, Byung Chul Yeo, Kwang-Ryeol Lee, Sun-Jae Kim, and Sang Soo Han . Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field. The Journal of Physical Chemistry Letters 2017, 8 (13) , 2812-2818. https://doi.org/10.1021/acs.jpclett.7b00898
    56. Shenzhen Xu, Guangfu Luo, Ryan Jacobs, Shuyu Fang, Mahesh K. Mahanthappa, Robert J. Hamers, and Dane Morgan . Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface. ACS Applied Materials & Interfaces 2017, 9 (24) , 20545-20553. https://doi.org/10.1021/acsami.7b03435
    57. Kento Kasahara, Hiroshi Nakano, and Hirofumi Sato . Theoretical Study of the Solvation Effect on the Reductive Reaction of Vinylene Carbonate in the Electrolyte Solution of Lithium Ion Batteries. The Journal of Physical Chemistry B 2017, 121 (20) , 5293-5299. https://doi.org/10.1021/acs.jpcb.7b02864
    58. Hemant Kumar, Eric Detsi, Daniel P. Abraham, and Vivek B. Shenoy . Fundamental Mechanisms of Solvent Decomposition Involved in Solid-Electrolyte Interphase Formation in Sodium Ion Batteries. Chemistry of Materials 2016, 28 (24) , 8930-8941. https://doi.org/10.1021/acs.chemmater.6b03403
    59. Md Mahbubul Islam and Adri C. T. van Duin . Reductive Decomposition Reactions of Ethylene Carbonate by Explicit Electron Transfer from Lithium: An eReaxFF Molecular Dynamics Study. The Journal of Physical Chemistry C 2016, 120 (48) , 27128-27134. https://doi.org/10.1021/acs.jpcc.6b08688
    60. Laura Benitez and Jorge M. Seminario . Electron Transport and Electrolyte Reduction in the Solid-Electrolyte Interphase of Rechargeable Lithium Ion Batteries with Silicon Anodes. The Journal of Physical Chemistry C 2016, 120 (32) , 17978-17988. https://doi.org/10.1021/acs.jpcc.6b06446
    61. Jung Tae Lee, KwangSup Eom, Feixiang Wu, Hyea Kim, Dong Chan Lee, Bogdan Zdyrko, and Gleb Yushin . Enhancing the Stability of Sulfur Cathodes in Li–S Cells via in Situ Formation of a Solid Electrolyte Layer. ACS Energy Letters 2016, 1 (2) , 373-379. https://doi.org/10.1021/acsenergylett.6b00163
    62. Sean M. Wood, Codey H. Pham, Rodrigo Rodriguez, Sindhu S. Nathan, Andrei D. Dolocan, Hugo Celio, J. Pedro de Souza, Kyle C. Klavetter, Adam Heller, and C. Buddie Mullins . K+ Reduces Lithium Dendrite Growth by Forming a Thin, Less-Resistive Solid Electrolyte Interphase. ACS Energy Letters 2016, 1 (2) , 414-419. https://doi.org/10.1021/acsenergylett.6b00259
    63. Gebrekidan Gebresilassie Eshetu, Thomas Diemant, Sylvie Grugeon, R. Jürgen Behm, Stephane Laruelle, Michel Armand, and Stefano Passerini . In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium–Imide- and Lithium–Imidazole-Based Electrolytes. ACS Applied Materials & Interfaces 2016, 8 (25) , 16087-16100. https://doi.org/10.1021/acsami.6b04406
    64. Alison L. Michan, Giorgio Divitini, Andrew J. Pell, Michal Leskes, Caterina Ducati, and Clare P. Grey . Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes. Journal of the American Chemical Society 2016, 138 (25) , 7918-7931. https://doi.org/10.1021/jacs.6b02882
    65. Thomas Dannenhoffer-Lafage, Andrew D. White, and Gregory A. Voth . A Direct Method for Incorporating Experimental Data into Multiscale Coarse-Grained Models. Journal of Chemical Theory and Computation 2016, 12 (5) , 2144-2153. https://doi.org/10.1021/acs.jctc.6b00043
    66. J. Padmanabhan Vivek, Neil Berry, Georgios Papageorgiou, Richard J. Nichols, and Laurence J. Hardwick . Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy. Journal of the American Chemical Society 2016, 138 (11) , 3745-3751. https://doi.org/10.1021/jacs.5b12494
    67. Yonatan Horowitz, Hui-Ling Han, Philip N. Ross, and Gabor A. Somorjai . In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions - A Sum Frequency Generation Vibrational Spectroscopy Study. Journal of the American Chemical Society 2016, 138 (3) , 726-729. https://doi.org/10.1021/jacs.5b10333
    68. Alison L. Michan, Michal Leskes, and Clare P. Grey . Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products. Chemistry of Materials 2016, 28 (1) , 385-398. https://doi.org/10.1021/acs.chemmater.5b04408
    69. Fernando A. Soto, Yuguang Ma, Julibeth M. Martinez de la Hoz, Jorge M. Seminario, and Perla B. Balbuena . Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries. Chemistry of Materials 2015, 27 (23) , 7990-8000. https://doi.org/10.1021/acs.chemmater.5b03358
    70. Magali Gauthier, Thomas J. Carney, Alexis Grimaud, Livia Giordano, Nir Pour, Hao-Hsun Chang, David P. Fenning, Simon F. Lux, Odysseas Paschos, Christoph Bauer, Filippo Maglia, Saskia Lupart, Peter Lamp, and Yang Shao-Horn . Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. The Journal of Physical Chemistry Letters 2015, 6 (22) , 4653-4672. https://doi.org/10.1021/acs.jpclett.5b01727
    71. Hongfa Xiang, Donghai Mei, Pengfei Yan, Priyanka Bhattacharya, Sarah D. Burton, Arthur von Wald Cresce, Ruiguo Cao, Mark H. Engelhard, Mark E. Bowden, Zihua Zhu, Bryant J. Polzin, Chong-Min Wang, Kang Xu, Ji-Guang Zhang, and Wu Xu . The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes. ACS Applied Materials & Interfaces 2015, 7 (37) , 20687-20695. https://doi.org/10.1021/acsami.5b05552
    72. One-Sun Lee and Marcelo A. Carignano . Exfoliation of Electrolyte-Intercalated Graphene: Molecular Dynamics Simulation Study. The Journal of Physical Chemistry C 2015, 119 (33) , 19415-19422. https://doi.org/10.1021/acs.jpcc.5b03217
    73. Norio Takenaka, Hirofumi Sakai, Yuichi Suzuki, Purushotham Uppula, and Masataka Nagaoka . A Computational Chemical Insight into Microscopic Additive Effect on Solid Electrolyte Interphase Film Formation in Sodium-Ion Batteries: Suppression of Unstable Film Growth by Intact Fluoroethylene Carbonate. The Journal of Physical Chemistry C 2015, 119 (32) , 18046-18055. https://doi.org/10.1021/acs.jpcc.5b04206
    74. Yuguang Ma, Julibeth M. Martinez de la Hoz, Ivette Angarita, Jose M. Berrio-Sanchez, Laura Benitez, Jorge M. Seminario, Seoung-Bum Son, Se-Hee Lee, Steven M. George, Chunmei Ban, and Perla B. Balbuena . Structure and Reactivity of Alucone-Coated Films on Si and LixSiy Surfaces. ACS Applied Materials & Interfaces 2015, 7 (22) , 11948-11955. https://doi.org/10.1021/acsami.5b01917
    75. Gennady Cherkashinin, Markus Motzko, Natalia Schulz, Thomas Späth, and Wolfram Jaegermann . Electron Spectroscopy Study of Li[Ni,Co,Mn]O2/Electrolyte Interface: Electronic Structure, Interface Composition, and Device Implications. Chemistry of Materials 2015, 27 (8) , 2875-2887. https://doi.org/10.1021/cm5047534
    76. Feifei Shi, Philip N. Ross, Hui Zhao, Gao Liu, Gabor A. Somorjai, and Kyriakos Komvopoulos . A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy. Journal of the American Chemical Society 2015, 137 (9) , 3181-3184. https://doi.org/10.1021/ja5128456
    77. Mitchell T. Ong, Osvalds Verners, Erik W. Draeger, Adri C. T. van Duin, Vincenzo Lordi, and John E. Pask . Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics. The Journal of Physical Chemistry B 2015, 119 (4) , 1535-1545. https://doi.org/10.1021/jp508184f
    78. Oleg Borodin and Dmitry Bedrov . Interfacial Structure and Dynamics of the Lithium Alkyl Dicarbonate SEI Components in Contact with the Lithium Battery Electrolyte. The Journal of Physical Chemistry C 2014, 118 (32) , 18362-18371. https://doi.org/10.1021/jp504598n
    79. Andrew D. White and Gregory A. Voth . Efficient and Minimal Method to Bias Molecular Simulations with Experimental Data. Journal of Chemical Theory and Computation 2014, 10 (8) , 3023-3030. https://doi.org/10.1021/ct500320c
    80. Gerald Gourdin, John Collins, Dong Zheng, Michelle Foster, and Deyang Qu . Spectroscopic Compositional Analysis of Electrolyte during Initial SEI Layer Formation. The Journal of Physical Chemistry C 2014, 118 (31) , 17383-17394. https://doi.org/10.1021/jp504181b
    81. Norio Takenaka, Yuichi Suzuki, Hirofumi Sakai, and Masataka Nagaoka . On Electrolyte-Dependent Formation of Solid Electrolyte Interphase Film in Lithium-Ion Batteries: Strong Sensitivity to Small Structural Difference of Electrolyte Molecules. The Journal of Physical Chemistry C 2014, 118 (20) , 10874-10882. https://doi.org/10.1021/jp5018696
    82. Julibeth M. Martinez de la Hoz, Kevin Leung, and Perla B. Balbuena . Reduction Mechanisms of Ethylene Carbonate on Si Anodes of Lithium-Ion Batteries: Effects of Degree of Lithiation and Nature of Exposed Surface. ACS Applied Materials & Interfaces 2013, 5 (24) , 13457-13465. https://doi.org/10.1021/am404365r
    83. Yating Wang, Lidan Xing, Weishan Li, and Dmitry Bedrov . Why Do Sulfone-Based Electrolytes Show Stability at High Voltages? Insight from Density Functional Theory. The Journal of Physical Chemistry Letters 2013, 4 (22) , 3992-3999. https://doi.org/10.1021/jz401726p
    84. K. Ciosek Högström, S. Malmgren, M. Hahlin, H. Rensmo, F. Thébault, P. Johansson, and K. Edström . The Influence of PMS-Additive on the Electrode/Electrolyte Interfaces in LiFePO4/Graphite Li-Ion Batteries. The Journal of Physical Chemistry C 2013, 117 (45) , 23476-23486. https://doi.org/10.1021/jp4045385
    85. Ilya A. Shkrob, Ye Zhu, Timothy W. Marin, and Daniel Abraham . Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate. The Journal of Physical Chemistry C 2013, 117 (38) , 19270-19279. https://doi.org/10.1021/jp406273p
    86. Ilya A. Shkrob, Ye Zhu, Timothy W. Marin, and Daniel Abraham . Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 1. Spectroscopic Observations of Radical Intermediates Generated in One-Electron Reduction of Carbonates. The Journal of Physical Chemistry C 2013, 117 (38) , 19255-19269. https://doi.org/10.1021/jp406274e
    87. Keisuke Ushirogata, Keitaro Sodeyama, Yukihiro Okuno, and Yoshitaka Tateyama . Additive Effect on Reductive Decomposition and Binding of Carbonate-Based Solvent toward Solid Electrolyte Interphase Formation in Lithium-Ion Battery. Journal of the American Chemical Society 2013, 135 (32) , 11967-11974. https://doi.org/10.1021/ja405079s
    88. Yasuharu Okamoto and Yoshimi Kubo . Ab Initio Calculations for Decomposition Mechanism of CH3O(CH2CH2O)NCH3 (N = 1–4) by the Attack of O2– Anion. The Journal of Physical Chemistry C 2013, 117 (31) , 15940-15946. https://doi.org/10.1021/jp404849u
    89. Ryan Jorn, Revati Kumar, Daniel P. Abraham, and Gregory A. Voth . Atomistic Modeling of the Electrode–Electrolyte Interface in Li-Ion Energy Storage Systems: Electrolyte Structuring. The Journal of Physical Chemistry C 2013, 117 (8) , 3747-3761. https://doi.org/10.1021/jp3102282
    90. Kevin Leung . Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries. The Journal of Physical Chemistry C 2013, 117 (4) , 1539-1547. https://doi.org/10.1021/jp308929a
    91. Mengyun Nie, Dinesh Chalasani, Daniel P. Abraham, Yanjing Chen, Arijit Bose, and Brett L. Lucht . Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy. The Journal of Physical Chemistry C 2013, 117 (3) , 1257-1267. https://doi.org/10.1021/jp3118055
    92. Glen Ferguson Larry A. Curtiss . Atomic-Level Modeling of Organic Electrolytes in Lithium-Ion Batteries. 2013, 217-233. https://doi.org/10.1021/bk-2013-1133.ch012
    93. P. Ganesh, P. R. C. Kent, and De-en Jiang . Solid–Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics. The Journal of Physical Chemistry C 2012, 116 (46) , 24476-24481. https://doi.org/10.1021/jp3086304
    94. Kjell W. Schroder, Hugo Celio, Lauren J. Webb, and Keith J. Stevenson . Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions. The Journal of Physical Chemistry C 2012, 116 (37) , 19737-19747. https://doi.org/10.1021/jp307372m
    95. Kevin Leung . First-Principles Modeling of the Initial Stages of Organic Solvent Decomposition on LixMn2O4(100) Surfaces. The Journal of Physical Chemistry C 2012, 116 (18) , 9852-9861. https://doi.org/10.1021/jp212415x
    96. Dmitry Bedrov , Grant D. Smith , Adri C. T. van Duin . Reactions of Singly-Reduced Ethylene Carbonate in Lithium Battery Electrolytes: A Molecular Dynamics Simulation Study Using the ReaxFF. The Journal of Physical Chemistry A 2012, 116 (11) , 2978-2985. https://doi.org/10.1021/jp210345b
    97. Kevin Leung, Yue Qi, Kevin R. Zavadil, Yoon Seok Jung, Anne C. Dillon, Andrew S. Cavanagh, Se-Hee Lee, and Steven M. George . Using Atomic Layer Deposition to Hinder Solvent Decomposition in Lithium Ion Batteries: First-Principles Modeling and Experimental Studies. Journal of the American Chemical Society 2011, 133 (37) , 14741-14754. https://doi.org/10.1021/ja205119g
    98. P. Ganesh , De-en Jiang , P. R. C. Kent . Accurate Static and Dynamic Properties of Liquid Electrolytes for Li-Ion Batteries from ab initio Molecular Dynamics. The Journal of Physical Chemistry B 2011, 115 (12) , 3085-3090. https://doi.org/10.1021/jp2003529
    99. H. Iddir and L. A. Curtiss . Li Ion Diffusion Mechanisms in Bulk Monoclinic Li2CO3 Crystals from Density Functional Studies. The Journal of Physical Chemistry C 2010, 114 (48) , 20903-20906. https://doi.org/10.1021/jp1086569
    100. Kang Xu, Arthur von Cresce and Unchul Lee . Differentiating Contributions to “Ion Transfer” Barrier from Interphasial Resistance and Li+ Desolvation at Electrolyte/Graphite Interface. Langmuir 2010, 26 (13) , 11538-11543. https://doi.org/10.1021/la1009994
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect