ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Quantum Chemical Calculations with the Inclusion of Nonspecific and Specific Solvation: Asymmetric Transfer Hydrogenation with Bifunctional Ruthenium Catalysts

View Author Information
Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Cite this: J. Am. Chem. Soc. 2013, 135, 7, 2604–2619
Publication Date (Web):January 21, 2013
https://doi.org/10.1021/ja3097674
Copyright © 2013 American Chemical Society

    Article Views

    3679

    Altmetric

    -

    Citations

    144
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Details of the mechanism of asymmetric transfer hydrogenation of ketones catalyzed by two chiral bifunctional ruthenium complexes, (S)-RuH[(R,R)-OCH(Ph)CH(Ph)NH2](η6-benzene) (Ru-1) or (S)-RuH[(R,R)-p-TsNCH(Ph)CH(Ph)NH2](η6-mesitylene) (Ru-2), were studied computationally by density functional theory, accounting for the solvation effects by using continuum, discrete, and mixed continuum/discrete solvation models via “solvated supermolecules” approach. In contrast to gas phase quantum chemical calculations, where the reactions were found to proceed via a concerted three-bond asynchronous process through a six-membered pericyclic transition state, incorporation of the implicit and/or explicit solvation into the calculations suggests that the same reactions proceed via two steps in solution: (i) enantio-determining hydride transfer and (ii) proton transfer through the contact ion-pair intermediate, stabilized primarily by ionic hydrogen bonding between the cation and the anion. The calculations suggest that the proton source for neutralizing the chiral RO anion may be either the amine group of the cationic Ru complex or, more likely, a protic solvent molecule. In the latter case, the reaction may not necessarily proceed via the 16e amido complex Ru[(R,R)-XCH(Ph)CH(Ph)NH](η6-arene). The origin of enantioselectivity is discussed in terms of the newly formulated mechanism.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Cartesian coordinates for all optimized compounds, tables of energy data, complete ref 37, and other details. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 144 publications.

    1. Harish S. Kunchur, Sachin C. Sonawane, Prateek Saini, Srinivasan Ramakrishnan, Maravanji S. Balakrishna. Copper(I) Complexes of Amide Functionalized Bisphosphine: Proximity Enhanced Metal–Ligand Cooperativity and Its Catalytic Advantage in C(sp3)–H Bond Activation of Unactivated Cycloalkanes in Dehydrogenative Carboxylation Reactions. Inorganic Chemistry 2023, 62 (49) , 19856-19870. https://doi.org/10.1021/acs.inorgchem.3c01022
    2. Maša Sterle, Matej Huš, Matic Lozinšek, Anamarija Zega, Andrej Emanuel Cotman. Hydrogen-Bonding Ability of Noyori–Ikariya Catalysts Enables Stereoselective Access to CF3-Substituted syn-1,2-Diols via Dynamic Kinetic Resolution. ACS Catalysis 2023, 13 (9) , 6242-6248. https://doi.org/10.1021/acscatal.3c00980
    3. Lei Tang, Wenhao Yi, Feng Qin, Qin Fan. Switchable Nanostructures Triggered by Noyori-Type Organometallics. Inorganic Chemistry 2022, 61 (49) , 19668-19672. https://doi.org/10.1021/acs.inorgchem.2c03567
    4. Fumin Chen, Ming Yu Jin, David Zhigang Wang, Chen Xu, Jianchun Wang, Xiangyou Xing. Simultaneous Access to Two Enantio-enriched Alcohols by a Single Ru-Catalyst: Asymmetric Hydrogen Transfer from Racemic Alcohols to Matching Ketones. ACS Catalysis 2022, 12 (22) , 14429-14435. https://doi.org/10.1021/acscatal.2c04657
    5. Nikolay V. Tkachenko, Pavel Rublev, Pavel A. Dub. The Source of Proton in the Noyori–Ikariya Catalytic Cycle. ACS Catalysis 2022, 12 (21) , 13149-13157. https://doi.org/10.1021/acscatal.2c03540
    6. Brian T. H. Tsui, Molly M. H. Sung, Jenny Kinas, F. Ekkehardt Hahn, Robert H. Morris. A Ruthenium Protic N-Heterocyclic Carbene Complex as a Precatalyst for the Efficient Transfer Hydrogenation of Aryl Ketones. Organometallics 2022, 41 (15) , 2095-2105. https://doi.org/10.1021/acs.organomet.2c00228
    7. Annika M. Krieger, Vivek Sinha, Guanna Li, Evgeny A. Pidko. Solvent-Assisted Ketone Reduction by a Homogeneous Mn Catalyst. Organometallics 2022, 41 (14) , 1829-1835. https://doi.org/10.1021/acs.organomet.2c00077
    8. Benjamin M. Gordon, Nicholas Lease, Thomas J. Emge, Faraj Hasanayn, Alan S. Goldman. Reactivity of Iridium Complexes of a Triphosphorus-Pincer Ligand Based on a Secondary Phosphine. Catalytic Alkane Dehydrogenation and the Origin of Extremely High Activity. Journal of the American Chemical Society 2022, 144 (9) , 4133-4146. https://doi.org/10.1021/jacs.1c13309
    9. Manajit Das, Achyut Ranjan Gogoi, Raghavan B. Sunoj. Molecular Insights on Solvent Effects in Organic Reactions as Obtained through Computational Chemistry Tools. The Journal of Organic Chemistry 2022, 87 (3) , 1630-1640. https://doi.org/10.1021/acs.joc.1c02222
    10. Shubhadeep Chandra, Ola Kelm, Uta Albold, Arijit Singha Hazari, Damijana Urankar, Janez Košmrlj, Biprajit Sarkar. Iridium Azocarboxamide Complexes: Variable Coordination Modes, C–H Activation, Transfer Hydrogenation Catalysis, and Mechanistic Insights. Organometallics 2021, 40 (23) , 3907-3916. https://doi.org/10.1021/acs.organomet.1c00468
    11. Huan Wang, Ying-Na Yue, Rui Xiong, Yu-Ting Liu, Li-Rong Yang, Ying Wang, Jia-Xing Lu. Electrochemically Promoted Asymmetric Transfer Hydrogenation of 2,2,2-Trifluoroacetophenone. The Journal of Organic Chemistry 2021, 86 (22) , 16158-16161. https://doi.org/10.1021/acs.joc.1c01030
    12. Kazushi Mashima. Diagonal Relationship among Organometallic Transition-Metal Complexes. Organometallics 2021, 40 (21) , 3497-3505. https://doi.org/10.1021/acs.organomet.1c00344
    13. Andrew M. R. Hall, Daniel B. G. Berry, Jaime N. Crossley, Anna Codina, Ian Clegg, John P. Lowe, Antoine Buchard, Ulrich Hintermair. Does the Configuration at the Metal Matter in Noyori–Ikariya Type Asymmetric Transfer Hydrogenation Catalysts?. ACS Catalysis 2021, 11 (21) , 13649-13659. https://doi.org/10.1021/acscatal.1c03636
    14. Anthony Z. Gao, Shuming Chen. Mechanism and Selectivities in Ru-Catalyzed Anti-Markovnikov Formal Hydroalkylation of 1,3-Dienes and Enynes: A Computational Study. The Journal of Organic Chemistry 2021, 86 (17) , 11895-11904. https://doi.org/10.1021/acs.joc.1c01319
    15. Pavel A. Dub, Nikolay V. Tkachenko, Vijyesh K. Vyas, Martin Wills, Justin S. Smith, Sergei Tretiak. Enantioselectivity in the Noyori–Ikariya Asymmetric Transfer Hydrogenation of Ketones. Organometallics 2021, 40 (9) , 1402-1410. https://doi.org/10.1021/acs.organomet.1c00201
    16. Vijyesh K. Vyas, Guy J. Clarkson, Martin Wills. Enantioselective Synthesis of Bicyclopentane-Containing Alcohols via Asymmetric Transfer Hydrogenation. Organic Letters 2021, 23 (8) , 3179-3183. https://doi.org/10.1021/acs.orglett.1c00889
    17. Liang Wei, Xin Chang, Chun-Jiang Wang. Catalytic Asymmetric Reactions with N-Metallated Azomethine Ylides. Accounts of Chemical Research 2020, 53 (5) , 1084-1100. https://doi.org/10.1021/acs.accounts.0c00113
    18. Josephina Mallah, Mohamad Ataya, Faraj Hasanayn. Dimerization of Aldehydes into Esters by an Octahedral d6-Rhodium cis-Dihydride Catalyst: Inner- versus Outer-Sphere Mechanisms. Organometallics 2020, 39 (2) , 286-294. https://doi.org/10.1021/acs.organomet.9b00622
    19. Taichiro Touge, Kazuhiko Sakaguchi, Nao Tamaki, Hideki Nara, Tohru Yokozawa, Kazuhiko Matsumura, Yoshihito Kayaki. Multiple Absolute Stereocontrol in Cascade Lactone Formation via Dynamic Kinetic Resolution Driven by the Asymmetric Transfer Hydrogenation of Keto Acids with Oxo-Tethered Ruthenium Catalysts. Journal of the American Chemical Society 2019, 141 (41) , 16354-16361. https://doi.org/10.1021/jacs.9b07297
    20. Jonathan Barrios-Rivera, Yingjian Xu, Martin Wills. Probing the Effects of Heterocyclic Functionality in [(Benzene)Ru(TsDPENR)Cl] Catalysts for Asymmetric Transfer Hydrogenation. Organic Letters 2019, 21 (18) , 7223-7227. https://doi.org/10.1021/acs.orglett.9b02339
    21. Andrew M. R. Hall, Peilong Dong, Anna Codina, John P. Lowe, Ulrich Hintermair. Kinetics of Asymmetric Transfer Hydrogenation, Catalyst Deactivation, and Inhibition with Noyori Complexes As Revealed by Real-Time High-Resolution FlowNMR Spectroscopy. ACS Catalysis 2019, 9 (3) , 2079-2090. https://doi.org/10.1021/acscatal.8b03530
    22. Konstantinos D. Vogiatzis, Mikhail V. Polynski, Justin K. Kirkland, Jacob Townsend, Ali Hashemi, Chong Liu, Evgeny A. Pidko. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews 2019, 119 (4) , 2453-2523. https://doi.org/10.1021/acs.chemrev.8b00361
    23. Lorena De Luca, Alessandro Passera, Antonio Mezzetti. Asymmetric Transfer Hydrogenation with a Bifunctional Iron(II) Hydride: Experiment Meets Computation. Journal of the American Chemical Society 2019, 141 (6) , 2545-2556. https://doi.org/10.1021/jacs.8b12506
    24. Pavel A. Dub, Asuka Matsunami, Shigeki Kuwata, Yoshihito Kayaki. Cleavage of N–H Bond of Ammonia via Metal–Ligand Cooperation Enables Rational Design of a Conceptually New Noyori–Ikariya Catalyst. Journal of the American Chemical Society 2019, 141 (6) , 2661-2677. https://doi.org/10.1021/jacs.8b12961
    25. Ádám Márk Pálvölgyi, Jacqueline Bitai, Veronika Zeindlhofer, Christian Schröder, Katharina Bica. Ion-Tagged Chiral Ligands for Asymmetric Transfer Hydrogenations in Aqueous Medium. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 3414-3423. https://doi.org/10.1021/acssuschemeng.8b05613
    26. Renta Jonathan Chew and Martin Wills . Ruthenium-Catalyzed Asymmetric Reduction of Isoxazolium Salts: Access to Optically Active Δ4-Isoxazolines. The Journal of Organic Chemistry 2018, 83 (5) , 2980-2985. https://doi.org/10.1021/acs.joc.7b03229
    27. Raffael Huber, Alessandro Passera, and Antonio Mezzetti . Iron(II)-Catalyzed Hydrogenation of Acetophenone with a Chiral, Pyridine-Based PNP Pincer Ligand: Support for an Outer-Sphere Mechanism. Organometallics 2018, 37 (3) , 396-405. https://doi.org/10.1021/acs.organomet.7b00816
    28. Rina Soni, Katherine E. Jolley, Silvia Gosiewska, Guy J. Clarkson, Zhijia Fang, Thomas H. Hall, Ben N. Treloar, Richard C. Knighton, and Martin Wills . Synthesis of Enantiomerically Pure and Racemic Benzyl-Tethered Ru(II)/TsDPEN Complexes by Direct Arene Substitution: Further Complexes and Applications. Organometallics 2018, 37 (1) , 48-64. https://doi.org/10.1021/acs.organomet.7b00731
    29. Pavel A. Dub and John C. Gordon . Metal–Ligand Bifunctional Catalysis: The “Accepted” Mechanism, the Issue of Concertedness, and the Function of the Ligand in Catalytic Cycles Involving Hydrogen Atoms. ACS Catalysis 2017, 7 (10) , 6635-6655. https://doi.org/10.1021/acscatal.7b01791
    30. Evgeny A. Pidko . Toward the Balance between the Reductionist and Systems Approaches in Computational Catalysis: Model versus Method Accuracy for the Description of Catalytic Systems. ACS Catalysis 2017, 7 (7) , 4230-4234. https://doi.org/10.1021/acscatal.7b00290
    31. Sam Forshaw, Alexander J. Matthews, Thomas J. Brown, Louis J. Diorazio, Luke Williams, and Martin Wills . Asymmetric Transfer Hydrogenation of 1,3-Alkoxy/Aryloxy Propanones Using Tethered Arene/Ru(II)/TsDPEN Complexes. Organic Letters 2017, 19 (11) , 2789-2792. https://doi.org/10.1021/acs.orglett.7b00756
    32. Eric R. Ashley, Edward C. Sherer, Barbara Pio, Robert K. Orr, and Rebecca T. Ruck . Ruthenium-Catalyzed Dynamic Kinetic Resolution Asymmetric Transfer Hydrogenation of β-Chromanones by an Elimination-Induced Racemization Mechanism. ACS Catalysis 2017, 7 (2) , 1446-1451. https://doi.org/10.1021/acscatal.6b03191
    33. Pavel A. Dub, Brian L. Scott, and John C. Gordon . Why Does Alkylation of the N–H Functionality within M/NH Bifunctional Noyori-Type Catalysts Lead to Turnover?. Journal of the American Chemical Society 2017, 139 (3) , 1245-1260. https://doi.org/10.1021/jacs.6b11666
    34. Ying Yin Lau, Huimin Zhai, and Laurel L. Schafer . Catalytic Asymmetric Synthesis of Morpholines. Using Mechanistic Insights To Realize the Enantioselective Synthesis of Piperazines. The Journal of Organic Chemistry 2016, 81 (19) , 8696-8709. https://doi.org/10.1021/acs.joc.6b01884
    35. Michael G. Sommer, Sofiya Marinova, Michael J. Krafft, Damijana Urankar, David Schweinfurth, Martina Bubrin, Janez Košmrlj, and Biprajit Sarkar . Ruthenium Azocarboxamide Half-Sandwich Complexes: Influence of the Coordination Mode on the Electronic Structure and Activity in Base-Free Transfer Hydrogenation Catalysis. Organometallics 2016, 35 (17) , 2840-2849. https://doi.org/10.1021/acs.organomet.6b00424
    36. Taichiro Touge and Takayoshi Arai . Asymmetric Hydrogenation of Unprotected Indoles Catalyzed by η6-Arene/N-Me-sulfonyldiamine–Ru(II) Complexes. Journal of the American Chemical Society 2016, 138 (35) , 11299-11305. https://doi.org/10.1021/jacs.6b06295
    37. Taichiro Touge, Hideki Nara, Mitsuhiko Fujiwhara, Yoshihito Kayaki, and Takao Ikariya . Efficient Access to Chiral Benzhydrols via Asymmetric Transfer Hydrogenation of Unsymmetrical Benzophenones with Bifunctional Oxo-Tethered Ruthenium Catalysts. Journal of the American Chemical Society 2016, 138 (32) , 10084-10087. https://doi.org/10.1021/jacs.6b05738
    38. Faraj Hasanayn, Lara M. Al-Assi, Rasha N. Moussawi, and Boushra Srour Omar . Mechanism of Alcohol–Water Dehydrogenative Coupling into Carboxylic Acid Using Milstein’s Catalyst: A Detailed Investigation of the Outer-Sphere PES in the Reaction of Aldehydes with an Octahedral Ruthenium Hydroxide. Inorganic Chemistry 2016, 55 (16) , 7886-7902. https://doi.org/10.1021/acs.inorgchem.6b00766
    39. Natalia V. Belkova, Lina M. Epstein, Oleg A. Filippov, and Elena S. Shubina . Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chemical Reviews 2016, 116 (15) , 8545-8587. https://doi.org/10.1021/acs.chemrev.6b00091
    40. Srinivasan Ramakrishnan, Kate M. Waldie, Ingolf Warnke, Antonio G. De Crisci, Victor S. Batista, Robert M. Waymouth, and Christopher E. D. Chidsey . Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes. Inorganic Chemistry 2016, 55 (4) , 1623-1632. https://doi.org/10.1021/acs.inorgchem.5b02556
    41. Weiwei Zuo, Demyan E. Prokopchuk, Alan J. Lough, and Robert H. Morris . Details of the Mechanism of the Asymmetric Transfer Hydrogenation of Acetophenone Using the Amine(imine)diphosphine Iron Precatalyst: The Base Effect and The Enantiodetermining Step. ACS Catalysis 2016, 6 (1) , 301-314. https://doi.org/10.1021/acscatal.5b01979
    42. Joseph M. Hayes, Eric Deydier, Gregori Ujaque, Agustí Lledós, Raluca Malacea-Kabbara, Eric Manoury, Sandrine Vincendeau, and Rinaldo Poli . Ketone Hydrogenation with Iridium Complexes with “non N–H” Ligands: The Key Role of the Strong Base. ACS Catalysis 2015, 5 (7) , 4368-4376. https://doi.org/10.1021/acscatal.5b00613
    43. Gui-Juan Cheng, Xinhao Zhang, Lung Wa Chung, Liping Xu, and Yun-Dong Wu . Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society 2015, 137 (5) , 1706-1725. https://doi.org/10.1021/ja5112749
    44. Sara Sabater, Miguel Baya, and Jose A. Mata . Highly Active Cp*Ir Catalyst at Low Temperatures Bearing an N-Heterocyclic Carbene Ligand and a Chelated Primary Benzylamine in Transfer Hydrogenation. Organometallics 2014, 33 (23) , 6830-6839. https://doi.org/10.1021/om500888d
    45. Ainara Nova, David J. Taylor, A. John Blacker, Simon B. Duckett, Robin N. Perutz, and Odile Eisenstein . Computational Studies Explain the Importance of Two Different Substituents on the Chelating Bis(amido) Ligand for Transfer Hydrogenation by Bifunctional Cp*Rh(III) Catalysts. Organometallics 2014, 33 (13) , 3433-3442. https://doi.org/10.1021/om500356e
    46. M. Carmen Carrión, Margarita Ruiz-Castañeda, Gustavo Espino, Cristina Aliende, Lucía Santos, Ana M. Rodríguez, Blanca R. Manzano, Félix A. Jalón, and Agustí Lledós . Selective Catalytic Deuterium Labeling of Alcohols during a Transfer Hydrogenation Process of Ketones Using D2O as the Only Deuterium Source. Theoretical and Experimental Demonstration of a Ru–H/D+ Exchange as the Key Step. ACS Catalysis 2014, 4 (4) , 1040-1053. https://doi.org/10.1021/cs401224g
    47. Pavel A. Dub, Neil J. Henson, Richard L. Martin, and John C. Gordon . Unravelling the Mechanism of the Asymmetric Hydrogenation of Acetophenone by [RuX2(diphosphine)(1,2-diamine)] Catalysts. Journal of the American Chemical Society 2014, 136 (9) , 3505-3521. https://doi.org/10.1021/ja411374j
    48. Faraj Hasanayn, Abdulkader Baroudi, Ashfaq A. Bengali, and Alan S. Goldman . Hydrogenation of Dimethyl Carbonate to Methanol by trans-[Ru(H)2(PNN)(CO)] Catalysts: DFT Evidence for Ion-Pair-Mediated Metathesis Paths for C–OMe Bond Cleavage. Organometallics 2013, 32 (23) , 6969-6985. https://doi.org/10.1021/om4005127
    49. Takashi Otsuka, Akihiro Ishii, Pavel A. Dub, and Takao Ikariya . Practical Selective Hydrogenation of α-Fluorinated Esters with Bifunctional Pincer-Type Ruthenium(II) Catalysts Leading to Fluorinated Alcohols or Fluoral Hemiacetals. Journal of the American Chemical Society 2013, 135 (26) , 9600-9603. https://doi.org/10.1021/ja403852e
    50. Jeremy M. John, Satoshi Takebayashi, Nupur Dabral, Mark Miskolzie, and Steven H. Bergens . Base-Catalyzed Bifunctional Addition to Amides and Imides at Low Temperature. A New Pathway for Carbonyl Hydrogenation. Journal of the American Chemical Society 2013, 135 (23) , 8578-8584. https://doi.org/10.1021/ja401294q
    51. Olalla Nieto Faza, Carlos Silva López, and Israel Fernández . Noyori Hydrogenation: Aromaticity, Synchronicity, and Activation Strain Analysis. The Journal of Organic Chemistry 2013, 78 (11) , 5669-5676. https://doi.org/10.1021/jo400837n
    52. Stephen K. Murphy and Vy M. Dong . Enantioselective Ketone Hydroacylation Using Noyori’s Transfer Hydrogenation Catalyst. Journal of the American Chemical Society 2013, 135 (15) , 5553-5556. https://doi.org/10.1021/ja4021974
    53. Andrea Kišić, Michel Stephan, and Barbara Mohar . Asymmetric Transfer Hydrogenation of 1-Naphthyl Ketones by an ansa-Ru(II) Complex of a DPEN-SO2N(Me)-(CH2)2(η6-p-Tol) Combined Ligand. Organic Letters 2013, 15 (7) , 1614-1617. https://doi.org/10.1021/ol400393j
    54. Tizian-Frank Ramspoth, Johanan Kootstra, Syuzanna R. Harutyunyan. Unlocking the potential of metal ligand cooperation for enantioselective transformations. Chemical Society Reviews 2024, 53 (7) , 3216-3223. https://doi.org/10.1039/D3CS00998J
    55. Jessica Groß, Christoph van Wüllen. Computational Study on a Transfer Hydrogenation Catalysed by a Ru(II) Bis‐Pyrazolyl Pyridine Complex. Israel Journal of Chemistry 2023, 63 (7-8) https://doi.org/10.1002/ijch.202300019
    56. Ilya D. Gridnev. Co-Catalyzed Asymmetric Hydrogenation. The Same Enantioselection Pattern for Different Mechanisms. International Journal of Molecular Sciences 2023, 24 (6) , 5568. https://doi.org/10.3390/ijms24065568
    57. Alexander Düfert. Oxidation und Reduktion. 2023, 333-479. https://doi.org/10.1007/978-3-662-65244-2_4
    58. Rinaldo Poli. A new classification for the ever-expanding mechanistic landscape of catalyzed hydrogenations, dehydrogenations and transfer hydrogenations. 2023, 87-133. https://doi.org/10.1016/bs.adomc.2022.10.002
    59. Christian Bruneau. Dehydrogenation of Alcohols Using Transition Metal Catalysts: History and Applications. 2023, 1-31. https://doi.org/10.1007/3418_2023_107
    60. Yujie Wang, Shihan Liu, Haobo Yang, Hengxu Li, Yu Lan, Qiang Liu. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes. Nature Chemistry 2022, 14 (11) , 1233-1241. https://doi.org/10.1038/s41557-022-01036-6
    61. Vanessza Judit Kolcsár, György Szőllősi. Mechanochemical, Water‐Assisted Asymmetric Transfer Hydrogenation of Ketones Using Ruthenium Catalyst. ChemCatChem 2022, 14 (3) https://doi.org/10.1002/cctc.202101501
    62. Graham E. Dobereiner, Xumu Zhang, Heng Wang. Phosphine Ligand Development for Homogeneous Asymmetric Hydrogenation. 2022, 1-31. https://doi.org/10.1016/B978-0-12-820206-7.00110-4
    63. Alexander D. Böth, Michael J. Sauer, Robert M. Reich, Fritz E. Kühn. Ruthenium and Osmium Complexes Containing NHC and π-Acid Ligands. 2022, 444-527. https://doi.org/10.1016/B978-0-12-820206-7.00142-6
    64. Taiga Yurino, Takeshi Ohkuma. Reduction: Asymmetric Hydrogenation and Transfer Hydrogenation of C=O Bonds. 2022https://doi.org/10.1016/B978-0-32-390644-9.00066-4
    65. Vanessza Judit Kolcsár, György Szőllősi. Chitosan as a chiral ligand and organocatalyst: preparation conditions–property–catalytic performance relationships. Catalysis Science & Technology 2021, 11 (23) , 7652-7666. https://doi.org/10.1039/D1CY01674A
    66. Ye Zheng, Jaime A. Martinez-Acosta, Mohammed Khimji, Luiz C. A. Barbosa, Guy J. Clarkson, Martin Wills. Asymmetric Transfer Hydrogenation of Aryl Heteroaryl Ketones and o-Hydroxyphenyl Ketones Using Noyori-Ikariya Catalysts. 2021, 35. https://doi.org/10.3390/ecsoc-25-11774
    67. Ye Zheng, Jaime A. Martinez‐Acosta, Mohammed Khimji, Luiz C. A. Barbosa, Guy J. Clarkson, Martin Wills. Asymmetric Transfer Hydrogenation of Aryl Heteroaryl Ketones using Noyori‐Ikariya Catalysts. ChemCatChem 2021, 13 (20) , 4384-4391. https://doi.org/10.1002/cctc.202101027
    68. Mean Sadık, Muharrem Karabork, Irfan Sahin, Muhammet Kose. Half-sandwich ruthenium(II) complexes containing 4-substituted aniline derivatives: structural characterizations and catalytic properties in transfer hydrogenation of ketones. Transition Metal Chemistry 2021, 46 (6) , 457-464. https://doi.org/10.1007/s11243-021-00461-9
    69. Natalia V. Belkova, Oleg A. Filippov, Elena S. Osipova, Sergey V. Safronov, Lina M. Epstein, Elena S. Shubina. Influence of phosphine (pincer) ligands on the transition metal hydrides reactivity. Coordination Chemistry Reviews 2021, 438 , 213799. https://doi.org/10.1016/j.ccr.2021.213799
    70. Songsoon Park, Hyeon-Kyu Lee. Efficient kinetic resolution in the asymmetric transfer hydrogenation of 3-aryl-indanones: applications to a short synthesis of (+)-indatraline and a formal synthesis of ( R )-tolterodine. RSC Advances 2021, 11 (37) , 23161-23183. https://doi.org/10.1039/D1RA04538E
    71. Zhangxia Wang, Haibo Ma. Mechanisms of a Cyclobutane-Fused Lactone Hydrolysis in Alkaline and Acidic Conditions. Molecules 2021, 26 (12) , 3519. https://doi.org/10.3390/molecules26123519
    72. Andrej Emanuel Cotman. Escaping from Flatland: Stereoconvergent Synthesis of Three‐Dimensional Scaffolds via Ruthenium(II)‐Catalyzed Noyori–Ikariya Transfer Hydrogenation. Chemistry – A European Journal 2021, 27 (1) , 39-53. https://doi.org/10.1002/chem.202002779
    73. Brian T.H. Tsui, Eric C. Keske, Karl Z. Demmans, Chris S.G. Seo, Benjamin E. Rennie, Ali Nemati, Robert H. Morris. Group VII and VIII Hydrogenation Catalysts. 2021, 657-714. https://doi.org/10.1016/B978-0-12-409547-2.14674-8
    74. Saber Naserifar, Yalu Chen, Soonho Kwon, Hai Xiao, William A. Goddard. Artificial Intelligence and QM/MM with a Polarizable Reactive Force Field for Next-Generation Electrocatalysts. Matter 2021, 4 (1) , 195-216. https://doi.org/10.1016/j.matt.2020.11.010
    75. Thomas H. Hall, Hannah Adams, Vijyesh K. Vyas, K.L. Michael Chu, Martin Wills. Asymmetric transfer hydrogenation of unsaturated ketones; factors influencing 1,4- vs 1,2- regio- and enantioselectivity, and alkene vs alkyne directing effects. Tetrahedron 2021, 77 , 131771. https://doi.org/10.1016/j.tet.2020.131771
    76. Masahiro Kuwana, Taichiro Touge, Yasuhiro Komatsuki, Takao Saito. Establishment of the Continuous Synthesis of Ceramide (D-erythro-CER [NDS]) via Oxo-Tethered Ruthenium Complex-Catalyzed Asymmetric Transfer Hydrogenation Using Pipe-Flow Reactor. Journal of Synthetic Organic Chemistry, Japan 2020, 78 (12) , 1184-1194. https://doi.org/10.5059/yukigoseikyokaishi.78.1184
    77. Hiroaki Murayama, Yoshito Heike, Kosuke Higashida, Yohei Shimizu, Nuttapon Yodsin, Yutthana Wongnongwa, Siriporn Jungsuttiwong, Seiji Mori, Masaya Sawamura. Iridium‐Catalyzed Enantioselective Transfer Hydrogenation of Ketones Controlled by Alcohol Hydrogen‐Bonding and sp 3 ‐C−H Noncovalent Interactions. Advanced Synthesis & Catalysis 2020, 362 (21) , 4655-4661. https://doi.org/10.1002/adsc.202000615
    78. Luca Piccirilli, Danielle Lobo Justo Pinheiro, Martin Nielsen. Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts 2020, 10 (7) , 773. https://doi.org/10.3390/catal10070773
    79. Nitish Govindarajan, Vivek Sinha, Monica Trincado, Hansjörg Grützmacher, Evert Jan Meijer, Bas de Bruin. An In‐Depth Mechanistic Study of Ru‐Catalysed Aqueous Methanol Dehydrogenation and Prospects for Future Catalyst Design. ChemCatChem 2020, 12 (9) , 2610-2621. https://doi.org/10.1002/cctc.202000057
    80. Ivan Demianets, Valeriy Cherepakhin, Alexander Maertens, Paul J. Lauridsen, Shaama Mallikarjun Sharada, Travis J. Williams. A new mechanism of metal-ligand cooperative catalysis in transfer hydrogenation of ketones. Polyhedron 2020, 182 , 114508. https://doi.org/10.1016/j.poly.2020.114508
    81. Wan Wang, Xinzheng Yang. Computational Prediction of Chiral Iron Complexes for Asymmetric Transfer Hydrogenation of Pyruvic Acid to Lactic Acid. Molecules 2020, 25 (8) , 1892. https://doi.org/10.3390/molecules25081892
    82. Chenguang Luo, Longfei Li, Xin Yue, Pengjie Li, Lin Zhang, Zuoyin Yang, Min Pu, Zexing Cao, Ming Lei. pH-Dependent transfer hydrogenation or dihydrogen release catalyzed by a [(η 6 -arene)RuCl(κ 2 - N , N -dmobpy)] + complex: a DFT mechanistic understanding. RSC Advances 2020, 10 (18) , 10411-10419. https://doi.org/10.1039/C9RA10651K
    83. Alexander M. Kalsin, Tatyana A. Peganova, Iana S. Sinopalnikova, Ivan V. Fedyanin, Natalia V. Belkova, Eric Deydier, Rinaldo Poli. Mechanistic diversity in acetophenone transfer hydrogenation catalyzed by ruthenium iminophosphonamide complexes. Dalton Transactions 2020, 49 (5) , 1473-1484. https://doi.org/10.1039/C9DT04532E
    84. Thomas Zell, Robert Langer. Iron‐Catalyzed Homogeneous Hydrogenation Reactions. 2019, 15-38. https://doi.org/10.1002/9783527814237.ch1
    85. Daniel B. G. Berry, Anna Codina, Ian Clegg, Catherine L. Lyall, John P. Lowe, Ulrich Hintermair. Insight into catalyst speciation and hydrogen co-evolution during enantioselective formic acid-driven transfer hydrogenation with bifunctional ruthenium complexes from multi-technique operando reaction monitoring. Faraday Discussions 2019, 220 , 45-57. https://doi.org/10.1039/C9FD00060G
    86. Alessandro Passera, Antonio Mezzetti. Mn(I) and Fe(II)/PN(H)P Catalysts for the Hydrogenation of Ketones: A Comparison by Experiment and Calculation. Advanced Synthesis & Catalysis 2019, 361 (20) , 4691-4706. https://doi.org/10.1002/adsc.201900671
    87. Joan González-Fabra, Fernando Castro-Gómez, W. M. C. Sameera, Gunnar Nyman, Arjan W. Kleij, Carles Bo. Entropic corrections for the evaluation of the catalytic activity in the Al( iii ) catalysed formation of cyclic carbonates from CO 2 and epoxides. Catalysis Science & Technology 2019, 9 (19) , 5433-5440. https://doi.org/10.1039/C9CY01285K
    88. Mohammad A. Amin, Michelle A. Camerino, Simon J. Mountford, Xiao Ma, David T. Manallack, David K. Chalmers, Martin Wills, Philip E. Thompson. (S)-(−)-Fluorenylethylchloroformate (FLEC); preparation using asymmetric transfer hydrogenation and application to the analysis and resolution of amines. Tetrahedron 2019, 75 (43) , 130591. https://doi.org/10.1016/j.tet.2019.130591
    89. Wan Wang, Xinzheng Yang. Mechanistic insights into asymmetric transfer hydrogenation of pyruvic acid catalysed by chiral osmium complexes with formic acid assisted proton transfer. Chemical Communications 2019, 55 (65) , 9633-9636. https://doi.org/10.1039/C9CC04760C
    90. Julen Munárriz, Ruben Laplaza, Víctor Polo. A bonding evolution theory study on the catalytic Noyori hydrogenation reaction. Molecular Physics 2019, 117 (9-12) , 1315-1324. https://doi.org/10.1080/00268976.2018.1542168
    91. Chandan Kr Barik, Rakesh Ganguly, Yongxin Li, Weng Kee Leong. Very strong trans effect in ruthenacyclic carbamoyl complexes leads to ligand redistribution in phosphine derivatives. Journal of Organometallic Chemistry 2019, 887 , 5-11. https://doi.org/10.1016/j.jorganchem.2019.02.022
    92. Pavel A. Dub, John C. Gordon. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts. Nature Reviews Chemistry 2018, 2 (12) , 396-408. https://doi.org/10.1038/s41570-018-0049-z
    93. Richard C. Knighton, Vijyesh K. Vyas, Luke H. Mailey, Bhalchandra M. Bhanage, Martin Wills. Asymmetric transfer hydrogenation of acetophenone derivatives using 2-benzyl-tethered ruthenium (II)/TsDPEN complexes bearing η6-(p-OR) (R = H, iPr, Bn, Ph) ligands. Journal of Organometallic Chemistry 2018, 875 , 72-79. https://doi.org/10.1016/j.jorganchem.2018.08.020
    94. Thomas Zell, Robert Langer. From Ruthenium to Iron and Manganese—A Mechanistic View on Challenges and Design Principles of Base‐Metal Hydrogenation Catalysts. ChemCatChem 2018, 10 (9) , 1930-1940. https://doi.org/10.1002/cctc.201701722
    95. Leon Maser, Lisa Vondung, Robert Langer. The ABC in pincer chemistry – From amine- to borylene- and carbon-based pincer-ligands. Polyhedron 2018, 143 , 28-42. https://doi.org/10.1016/j.poly.2017.09.009
    96. James P. C. Coverdale, Isolda Romero-Canelón, Carlos Sanchez-Cano, Guy J. Clarkson, Abraha Habtemariam, Martin Wills, Peter J. Sadler. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nature Chemistry 2018, 10 (3) , 347-354. https://doi.org/10.1038/nchem.2918
    97. Asuka Matsunami, Yoshihito Kayaki. Upgrading and expanding the scope of homogeneous transfer hydrogenation. Tetrahedron Letters 2018, 59 (6) , 504-513. https://doi.org/10.1016/j.tetlet.2017.12.078
    98. Ronald A. Farrar-Tobar, Sergey Tin, Johannes G. de Vries. Selective Transfer Hydrogenation of α,β-Unsaturated Carbonyl Compounds. 2018, 193-224. https://doi.org/10.1007/3418_2018_23
    99. R. Morris Bullock, Geoffrey M. Chambers. Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2017, 375 (2101) , 20170002. https://doi.org/10.1098/rsta.2017.0002
    100. Pim Puylaert, Richard van Heck, Yuting Fan, Anke Spannenberg, Wolfgang Baumann, Matthias Beller, Jonathan Medlock, Werner Bonrath, Laurent Lefort, Sandra Hinze, Johannes G. de Vries. Selective Hydrogenation of α,β‐Unsaturated Aldehydes and Ketones by Air‐Stable Ruthenium NNS Complexes. Chemistry – A European Journal 2017, 23 (35) , 8473-8481. https://doi.org/10.1002/chem.201700806
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect