ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Kinetic Mechanism of Blebbistatin Inhibition of Nonmuscle Myosin IIB

View Author Information
Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, Pennsylvania 19104, and Department of Cell Biology and Institute of Chemistry and Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115
Cite this: Biochemistry 2004, 43, 46, 14832–14839
Publication Date (Web):October 28, 2004
https://doi.org/10.1021/bi0490284
Copyright © 2004 American Chemical Society

    Article Views

    1034

    Altmetric

    -

    Citations

    72
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    We examined the effect of blebbistatin on the kinetic properties of nonmuscle myosin IIB subfragment 1 (NMIIB S1). Blebbistatin is a small molecule that affects cell blebbing during the process of cell division, which has been shown to decrease the myosin ATPase activity of a number of myosins [Straight et al. (2003) Science 299, 1743−1747]. The steady-state actin-activated ATPase activity of NMIIB S1 was decreased ∼90% at 40 μM actin in the presence of blebbistatin. Stopped-flow techniques were employed to elucidate the effect of blebbistatin on the various steps of the NMIIB S1 cross-bridge cycle. Blebbistatin did not affect ATP binding and hydrolysis. Binding to actin in the presence of ADP (0.57 ± 0.08 μM-1 s-1) was reduced slightly in the presence of blebbistatin (0.38 ± 0.03 μM-1 s-1), while mantADP dissociation from acto-NMIIB S1 was reduced (∼30%). Pi release was blocked in the presence of blebbistatin. Accordingly, the apparent affinity of NMIIB S1 for actin in the presence of ATP was greatly reduced. Based on the above data, we surmise that blebbistatin inhibits the ATPase activity of NMIIB S1 primarily by blocking entry into the strong binding state; secondarily, it reduces the rate of ADP release. These effects are likely mediated by binding of blebbistatin within the myosin cleft that progressively closes in forming the acto-myosin rigor state.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This study was supported by a grant from NIH, No. RO1 AR35661 to H.L.S.

     University of Pennsylvania School of Medicine.

    §

     Current address:  Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223.

     Harvard Medical School.

     Current Address:  Department of Biochemistry, Stanford University School of Medicine, B409A, 279 Campus Drive, Stanford, CA 94305-5307

    *

     Corresponding author. Mailing address:  Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, B400 Richards Building, Philadelphia, PA 19104-6085. Phone:  215-898-8726. Fax:  215-573-2273. E-mail:  [email protected].

    Cited By

    This article is cited by 72 publications.

    1. Laszlo Radnai, Matthew Surman, Madalyn Hafenbreidel, Erica J. Young, Rebecca F. Stremel, Li Lin, Bilel Bdiri, Paolo Pasetto, Xiaomin Jin, Mackenzie Geedy, Joni-Rae Partridge, Aagam Patel, Michael Conlon, James R. Sellers, Michael D. Cameron, Gavin Rumbaugh, Patrick R. Griffin, Theodore M. Kamenecka, Courtney A. Miller. Discovery of Selective Inhibitors for In Vitro and In Vivo Interrogation of Skeletal Myosin II. ACS Chemical Biology 2021, 16 (11) , 2164-2173. https://doi.org/10.1021/acschembio.1c00067
    2. Jhonnathan Brawley, Emily Etter, Dante Heredia, Amarawan Intasiri, Kyle Nennecker, Joshua Smith, Brandon M. Welcome, Richard K. Brizendine, Thomas W. Gould, Thomas W. Bell, Christine Cremo. Synthesis and Evaluation of 4-Hydroxycoumarin Imines as Inhibitors of Class II Myosins. Journal of Medicinal Chemistry 2020, 63 (19) , 11131-11148. https://doi.org/10.1021/acs.jmedchem.0c01062
    3. Bart I. Roman, Sigrid Verhasselt, Christian V. Stevens. Medicinal Chemistry and Use of Myosin II Inhibitor (S)-Blebbistatin and Its Derivatives. Journal of Medicinal Chemistry 2018, 61 (21) , 9410-9428. https://doi.org/10.1021/acs.jmedchem.8b00503
    4. M. Moazzem Hossain, Guangyi Zhao, Moon-Sook Woo, James H-C. Wang, and Jian-Ping Jin . Deletion of Calponin 2 in Mouse Fibroblasts Increases Myosin II-Dependent Cell Traction Force. Biochemistry 2016, 55 (43) , 6046-6055. https://doi.org/10.1021/acs.biochem.6b00856
    5. Annafrancesca Rigato, Felix Rico, Frédéric Eghiaian, Mathieu Piel, and Simon Scheuring . Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion Geometry-Dependent Mechanical Response on Local and Global Scales. ACS Nano 2015, 9 (6) , 5846-5856. https://doi.org/10.1021/acsnano.5b00430
    6. Daniel P. Walsh and, Young-Tae Chang. Chemical Genetics. Chemical Reviews 2006, 106 (6) , 2476-2530. https://doi.org/10.1021/cr0404141
    7. Martin Kenny, Alice Y. Pollitt, Smita Patil, Dishon W. Hiebner, Albert Smolenski, Natalija Lakic, Robert Fisher, Reema Alsufyani, Sebastian Lickert, Viola Vogel, Ingmar Schoen. Contractility defects hinder glycoprotein VI-mediated platelet activation and affect platelet functions beyond clot contraction. Research and Practice in Thrombosis and Haemostasis 2024, 8 (1) , 102322. https://doi.org/10.1016/j.rpth.2024.102322
    8. Thomas Legier, Diane Rattier, Jack Llewellyn, Thomas Vannier, Benoit Sorre, Flavio Maina, Rosanna Dono. Epithelial disruption drives mesendoderm differentiation in human pluripotent stem cells by enabling TGF-β protein sensing. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-35965-8
    9. Artur Meller, Jeffrey M. Lotthammer, Louis G Smith, Borna Novak, Lindsey A Lee, Catherine C Kuhn, Lina Greenberg, Leslie A Leinwand, Michael J Greenberg, Gregory R Bowman. Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains. eLife 2023, 12 https://doi.org/10.7554/eLife.83602
    10. Yukako NISHIMURA. The Formin Inhibitor SMIFH2 Inhibits the Members of the Myosin Super Family. Seibutsu Butsuri 2023, 63 (1) , 24-26. https://doi.org/10.2142/biophys.63.24
    11. Takumi Saito, Daiki Matsunaga, Shinji Deguchi, . Long-term molecular turnover of actin stress fibers revealed by advection-reaction analysis in fluorescence recovery after photobleaching. PLOS ONE 2022, 17 (11) , e0276909. https://doi.org/10.1371/journal.pone.0276909
    12. Alf Månsson, Dilson E. Rassier. Insights into Muscle Contraction Derived from the Effects of Small-Molecular Actomyosin-Modulating Compounds. International Journal of Molecular Sciences 2022, 23 (20) , 12084. https://doi.org/10.3390/ijms232012084
    13. Timothy Morris, Eva Sue, Caleb Geniesse, William M. Brieher, Vivian W. Tang. Synaptopodin stress fiber and contractomere at the epithelial junction. Journal of Cell Biology 2022, 221 (5) https://doi.org/10.1083/jcb.202011162
    14. Luther M. Swift, Matthew W. Kay, Crystal M. Ripplinger, Nikki Gillum Posnack. Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research. American Journal of Physiology-Heart and Circulatory Physiology 2021, 321 (6) , H1005-H1013. https://doi.org/10.1152/ajpheart.00477.2021
    15. Sampath K. Gollapudi, Weikang Ma, Srinivas Chakravarthy, Ariana C. Combs, Na Sa, Stephen Langer, Thomas C. Irving, Suman Nag. Two Classes of Myosin Inhibitors, Para-nitroblebbistatin and Mavacamten, Stabilize β-Cardiac Myosin in Different Structural and Functional States. Journal of Molecular Biology 2021, 433 (23) , 167295. https://doi.org/10.1016/j.jmb.2021.167295
    16. Cristian Stătescu, Ștefana Enachi, Carina Ureche, Laura Țăpoi, Larisa Anghel, Delia Șalaru, Carmen Pleșoianu, Mădălina Bostan, Dragoș Marcu, Mircea Ovanez Balasanian, Radu Andy Sascău. Pushing the Limits of Medical Management in HCM: A Review of Current Pharmacological Therapy Options. International Journal of Molecular Sciences 2021, 22 (13) , 7218. https://doi.org/10.3390/ijms22137218
    17. Yukako Nishimura, Shidong Shi, Fang Zhang, Rong Liu, Yasuharu Takagi, Alexander D. Bershadsky, Virgile Viasnoff, James R. Sellers. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. Journal of Cell Science 2021, 134 (8) https://doi.org/10.1242/jcs.253708
    18. Carmen Ruggiero, Enzo Lalli. Targeting the cytoskeleton against metastatic dissemination. Cancer and Metastasis Reviews 2021, 40 (1) , 89-140. https://doi.org/10.1007/s10555-020-09936-0
    19. Richard K. Brizendine, Murali Anuganti, Christine R. Cremo. Evidence for S2 flexibility by direct visualization of quantum dot–labeled myosin heads and rods within smooth muscle myosin filaments moving on actin in vitro. Journal of General Physiology 2021, 153 (3) https://doi.org/10.1085/jgp.202012751
    20. Ádám I. Horváth, Máté Gyimesi, Boglárka H. Várkuti, Miklós Képiró, Gábor Szegvári, István Lőrincz, György Hegyi, Mihály Kovács, András Málnási-Csizmadia. Effect of allosteric inhibition of non-muscle myosin 2 on its intracellular diffusion. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-69853-8
    21. Wiebke Ewert, Peter Franz, Georgios Tsiavaliaris, Matthias Preller. Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke. International Journal of Molecular Sciences 2020, 21 (19) , 7417. https://doi.org/10.3390/ijms21197417
    22. Dietmar J. Manstein, Matthias Preller. Small Molecule Effectors of Myosin Function. 2020, 61-84. https://doi.org/10.1007/978-3-030-38062-5_5
    23. Anna Á. Rauscher, Máté Gyimesi, Mihály Kovács, András Málnási-Csizmadia. Targeting Myosin by Blebbistatin Derivatives: Optimization and Pharmacological Potential. Trends in Biochemical Sciences 2018, 43 (9) , 700-713. https://doi.org/10.1016/j.tibs.2018.06.006
    24. Weikang Ma, Henry Gong, Thomas Irving. Myosin Head Configurations in Resting and Contracting Murine Skeletal Muscle. International Journal of Molecular Sciences 2018, 19 (9) , 2643. https://doi.org/10.3390/ijms19092643
    25. Mohammad A. Rahman, Marko Ušaj, Dilson E. Rassier, Alf Månsson. Blebbistatin Effects Expose Hidden Secrets in the Force-Generating Cycle of Actin and Myosin. Biophysical Journal 2018, 115 (2) , 386-397. https://doi.org/10.1016/j.bpj.2018.05.037
    26. Natalie C. Heer, Adam C. Martin. Tension, contraction and tissue morphogenesis. Development 2017, 144 (23) , 4249-4260. https://doi.org/10.1242/dev.151282
    27. Hiroyuki Iwamoto. The earliest molecular response to stretch of insect flight muscle as revealed by fast X-ray diffraction recording. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep42272
    28. Sigrid Verhasselt, Bart I. Roman, Marc E. Bracke, Christian V. Stevens. Improved synthesis and comparative analysis of the tool properties of new and existing D-ring modified ( S )-blebbistatin analogs. European Journal of Medicinal Chemistry 2017, 136 , 85-103. https://doi.org/10.1016/j.ejmech.2017.04.072
    29. Wanjian Tang, Cheavar A. Blair, Shane D. Walton, András Málnási-Csizmadia, Kenneth S. Campbell, Christopher M. Yengo. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels. Frontiers in Physiology 2017, 7 https://doi.org/10.3389/fphys.2016.00659
    30. M. Preller, D.J. Manstein. Myosin Motors: Structural Aspects and Functionality☆. 2017https://doi.org/10.1016/B978-0-12-809633-8.08058-4
    31. Sigrid Verhasselt, Bart I. Roman, Olivier De Wever, Kristof Van Hecke, Rik Van Deun, Marc E. Bracke, Christian V. Stevens. Discovery of (S)-3′-hydroxyblebbistatin and (S)-3′-aminoblebbistatin: polar myosin II inhibitors with superior research tool properties. Organic & Biomolecular Chemistry 2017, 15 (9) , 2104-2118. https://doi.org/10.1039/C7OB00006E
    32. Claudia G Vasquez, Sarah M Heissler, Neil Billington, James R Sellers, Adam C Martin. Drosophila non-muscle myosin II motor activity determines the rate of tissue folding. eLife 2016, 5 https://doi.org/10.7554/eLife.20828
    33. Sarah M. Heissler, James R. Sellers. Various Themes of Myosin Regulation. Journal of Molecular Biology 2016, 428 (9) , 1927-1946. https://doi.org/10.1016/j.jmb.2016.01.022
    34. Yoshie Iizuka, Frank Cichocki, Andrew Sieben, Fabio Sforza, Razaul Karim, Kathleen Coughlin, Rachel Isaksson Vogel, Riccardo Gavioli, Valarie McCullar, Todd Lenvik, Michael Lee, Jeffrey Miller, Martina Bazzaro. UNC-45A Is a Nonmuscle Myosin IIA Chaperone Required for NK Cell Cytotoxicity via Control of Lytic Granule Secretion. The Journal of Immunology 2015, 195 (10) , 4760-4770. https://doi.org/10.4049/jimmunol.1500979
    35. Sarah M. Heissler, Krishna Chinthalapudi, James R. Sellers. Kinetic characterization of the sole nonmuscle myosin‐2 from the model organism Drosophila melanogaster. The FASEB Journal 2015, 29 (4) , 1456-1466. https://doi.org/10.1096/fj.14-266742
    36. Dekel Dado-Rosenfeld, Itai Tzchori, Amir Fine, Limor Chen-Konak, Shulamit Levenberg. Tensile Forces Applied on a Cell-Embedded Three-Dimensional Scaffold Can Direct Early Differentiation of Embryonic Stem Cells Toward the Mesoderm Germ Layer. Tissue Engineering Part A 2015, 21 (1-2) , 124-133. https://doi.org/10.1089/ten.tea.2014.0008
    37. Stefanie Janßen, Viktoria Gudi, Chittappen K. Prajeeth, Vikramjeet Singh, Katharina Stahl, Sandra Heckers, Thomas Skripuletz, Refik Pul, Corinna Trebst, Georgios Tsiavaliaris, Martin Stangel. A pivotal role of nonmuscle myosin II during microglial activation. Experimental Neurology 2014, 261 , 666-676. https://doi.org/10.1016/j.expneurol.2014.08.010
    38. Mabel Lum, Renato Morona. Myosin IIA is essential for Shigella flexneri cell-to-cell spread. Pathogens and Disease 2014, 127 , n/a-n/a. https://doi.org/10.1111/2049-632X.12202
    39. Nikta Fakhri, Alok D. Wessel, Charlotte Willms, Matteo Pasquali, Dieter R. Klopfenstein, Frederick C. MacKintosh, Christoph F. Schmidt. High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science 2014, 344 (6187) , 1031-1035. https://doi.org/10.1126/science.1250170
    40. Travis J. Stewart, Del Ray Jackson, Ryan D. Smith, Steven F. Shannon, Christine R. Cremo, Josh E. Baker. Actin Sliding Velocities are Influenced by the Driving Forces of Actin-Myosin Binding. Cellular and Molecular Bioengineering 2013, 6 (1) , 26-37. https://doi.org/10.1007/s12195-013-0274-y
    41. Sarah M. Heissler, Dietmar J. Manstein. Nonmuscle myosin-2: mix and match. Cellular and Molecular Life Sciences 2013, 70 (1) , 1-21. https://doi.org/10.1007/s00018-012-1002-9
    42. Lisa M Bond, David A Tumbarello, John Kendrick-Jones, Folma Buss. Small-Molecule Inhibitors of Myosin Proteins. Future Medicinal Chemistry 2013, 5 (1) , 41-52. https://doi.org/10.4155/fmc.12.185
    43. Aliaksandr Mikulich, Simona Kavaliauskiene, Petras Juzenas. Blebbistatin, a myosin inhibitor, is phototoxic to human cancer cells under exposure to blue light. Biochimica et Biophysica Acta (BBA) - General Subjects 2012, 1820 (7) , 870-877. https://doi.org/10.1016/j.bbagen.2012.04.003
    44. Miklós Képiró, Boglárka H. Várkuti, Andrea Bodor, György Hegyi, László Drahos, Mihály Kovács, András Málnási-Csizmadia. Azidoblebbistatin, a photoreactive myosin inhibitor. Proceedings of the National Academy of Sciences 2012, 109 (24) , 9402-9407. https://doi.org/10.1073/pnas.1202786109
    45. David Van Goor, Callen Hyland, Andrew W. Schaefer, Paul Forscher, . The Role of Actin Turnover in Retrograde Actin Network Flow in Neuronal Growth Cones. PLoS ONE 2012, 7 (2) , e30959. https://doi.org/10.1371/journal.pone.0030959
    46. Fabio C. Minozzo, Lennart Hilbert, Dilson E. Rassier, . Pre-Power-Stroke Cross-Bridges Contribute to Force Transients during Imposed Shortening in Isolated Muscle Fibers. PLoS ONE 2012, 7 (1) , e29356. https://doi.org/10.1371/journal.pone.0029356
    47. M. Preller, D.J. Manstein. 4.8 Myosin Motors: Structural Aspects and Functionality. 2012, 118-150. https://doi.org/10.1016/B978-0-12-374920-8.00410-0
    48. Cathy C Moore. Nonmuscle myosin II regulates migration but not contraction in rat hepatic stellate cells. World Journal of Hepatology 2011, 3 (7) , 184. https://doi.org/10.4254/wjh.v3.i7.184
    49. Stephanie I. Fraley, Christopher M. Hale, Ryan J. Bloom, Alfredo Celedon, Jerry S. H. Lee, Denis Wirtz. Intra- and Extracellular Microrheology of Endothelial Cells in a 3D Matrix. 2011, 69-87. https://doi.org/10.1007/978-1-4419-7835-6_4
    50. Balázs Takács, Neil Billington, Máté Gyimesi, Bálint Kintses, András Málnási-Csizmadia, Peter J. Knight, Mihály Kovács. Myosin complexed with ADP and blebbistatin reversibly adopts a conformation resembling the start point of the working stroke. Proceedings of the National Academy of Sciences 2010, 107 (15) , 6799-6804. https://doi.org/10.1073/pnas.0907585107
    51. Christopher M. Hale, Sean X. Sun, Denis Wirtz, . Resolving the Role of Actoymyosin Contractility in Cell Microrheology. PLoS ONE 2009, 4 (9) , e7054. https://doi.org/10.1371/journal.pone.0007054
    52. Hiroyuki Iwamoto. Evidence for Unique Structural Change of Thin Filaments upon Calcium Activation of Insect Flight Muscle. Journal of Molecular Biology 2009, 390 (1) , 99-111. https://doi.org/10.1016/j.jmb.2009.05.002
    53. Sengen Xu, Howard D. White, Gerald W. Offer, Leepo C. Yu. Stabilization of Helical Order in the Thick Filaments by Blebbistatin: Further Evidence of Coexisting Multiple Conformations of Myosin. Biophysical Journal 2009, 96 (9) , 3673-3681. https://doi.org/10.1016/j.bpj.2009.01.049
    54. Chambers C. Hughes, John B. MacMillan, Susana P. Gaudêncio, William Fenical, James J. La Clair. Ammosamides A and B Target Myosin. Angewandte Chemie International Edition 2009, 48 (4) , 728-732. https://doi.org/10.1002/anie.200804107
    55. Chambers C. Hughes, John B. MacMillan, Susana P. Gaudêncio, William Fenical, James J. La Clair. Ammosamides A and B Target Myosin. Angewandte Chemie 2009, 121 (4) , 742-746. https://doi.org/10.1002/ange.200804107
    56. Zoe M. Goeckeler, Paul C. Bridgman, Robert B. Wysolmerski. Nonmuscle myosin II is responsible for maintaining endothelial cell basal tone and stress fiber integrity. American Journal of Physiology-Cell Physiology 2008, 295 (4) , C994-C1006. https://doi.org/10.1152/ajpcell.00318.2008
    57. Ryan J. Bloom, Jerry P. George, Alfredo Celedon, Sean X. Sun, Denis Wirtz. Mapping Local Matrix Remodeling Induced by a Migrating Tumor Cell Using Three-Dimensional Multiple-Particle Tracking. Biophysical Journal 2008, 95 (8) , 4077-4088. https://doi.org/10.1529/biophysj.108.132738
    58. Fa-Qing Zhao, Raúl Padrón, Roger Craig. Blebbistatin Stabilizes the Helical Order of Myosin Filaments by Promoting the Switch 2 Closed State. Biophysical Journal 2008, 95 (7) , 3322-3329. https://doi.org/10.1529/biophysj.108.137067
    59. Hong Hui Wang, Hideyuki Tanaka, Xiaoran Qin, Tiejun Zhao, Li-Hong Ye, Tuyoshi Okagaki, Takeshi Katayama, Akio Nakamura, Ryoki Ishikawa, Sean E. Thatcher, Gary L. Wright, Kazuhiro Kohama. Blebbistatin inhibits the chemotaxis of vascular smooth muscle cells by disrupting the myosin II-actin interaction. American Journal of Physiology-Heart and Circulatory Physiology 2008, 294 (5) , H2060-H2068. https://doi.org/10.1152/ajpheart.00970.2007
    60. Guillaume T. Charras, Margaret Coughlin, Timothy J. Mitchison, L. Mahadevan. Life and Times of a Cellular Bleb. Biophysical Journal 2008, 94 (5) , 1836-1853. https://doi.org/10.1529/biophysj.107.113605
    61. Cristina Lucas-Lopez, John S. Allingham, Tomas Lebl, Christopher P. A. T. Lawson, Ruth Brenk, James R. Sellers, Ivan Rayment, Nicholas J. Westwood. The small molecule tool (S)-(−)-blebbistatin: novel insights of relevance to myosin inhibitor design. Organic & Biomolecular Chemistry 2008, 6 (12) , 2076. https://doi.org/10.1039/b801223g
    62. Ying Dou, Per Arlock, Anders Arner. Blebbistatin specifically inhibits actin-myosin interaction in mouse cardiac muscle. American Journal of Physiology-Cell Physiology 2007, 293 (3) , C1148-C1153. https://doi.org/10.1152/ajpcell.00551.2006
    63. Colin P. Johnson, Hsin-Yao Tang, Christine Carag, David W. Speicher, Dennis E. Discher. Forced Unfolding of Proteins Within Cells. Science 2007, 317 (5838) , 663-666. https://doi.org/10.1126/science.1139857
    64. G.J. JOHNSON, L.A. LEIS, M.D. KRUMWIEDE, J.G. WHITE. The critical role of myosin IIA in platelet internal contraction. Journal of Thrombosis and Haemostasis 2007, 5 (7) , 1516-1529. https://doi.org/10.1111/j.1538-7836.2007.02611.x
    65. H Lee Sweeney, Hyokeun Park, Alan B Zong, Zhaohui Yang, Paul R Selvin, Steven S Rosenfeld. How myosin VI coordinates its heads during processive movement. The EMBO Journal 2007, 26 (11) , 2682-2692. https://doi.org/10.1038/sj.emboj.7601720
    66. Manli Chuai, Wei Zeng, Xuesong Yang, Veronika Boychenko, James A. Glazier, Cornelis J. Weijer. Cell movement during chick primitive streak formation. Developmental Biology 2006, 296 (1) , 137-149. https://doi.org/10.1016/j.ydbio.2006.04.451
    67. Nelson A. Medeiros, Dylan T. Burnette, Paul Forscher. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nature Cell Biology 2006, 8 (3) , 216-226. https://doi.org/10.1038/ncb1367
    68. Sara Matson, Styliani Markoulaki, Tom Ducibella. Antagonists of Myosin Light Chain Kinase and of Myosin II Inhibit Specific Events of Egg Activation in Fertilized Mouse Eggs1. Biology of Reproduction 2006, 74 (1) , 169-176. https://doi.org/10.1095/biolreprod.105.046409
    69. Wayne Chan, German Calderon, Amy L. Swift, Jamie Moseley, Shaohua Li, Hiroshi Hosoya, Irwin M. Arias, Daniel F. Ortiz. Myosin II Regulatory Light Chain Is Required for Trafficking of Bile Salt Export Protein to the Apical Membrane in Madin-Darby Canine Kidney Cells. Journal of Biological Chemistry 2005, 280 (25) , 23741-23747. https://doi.org/10.1074/jbc.M502767200
    70. John S Allingham, Robert Smith, Ivan Rayment. The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Structural & Molecular Biology 2005, 12 (4) , 378-379. https://doi.org/10.1038/nsmb908
    71. Shi Shu, Xiong Liu, Edward D. Korn. Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium. Proceedings of the National Academy of Sciences 2005, 102 (5) , 1472-1477. https://doi.org/10.1073/pnas.0409528102
    72. Mary Anne Conti, Sachiyo Kawamoto, Robert S. Adelstein. Non-Muscle Myosin II. , 223-264. https://doi.org/10.1007/978-1-4020-6519-4_7

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect