ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Reaction Kinetics of Water Molecules with Oxygen Vacancies on Rutile TiO2(110)

View Author Information
Physical Sciences Division, Pacific Northwest National Laboratory, MSIN K8-88, P.O. Box 999, Richland, Washington 99352, United States
*Phone: (509) 371-6151. E-mail: [email protected]
*Phone: (509) 371-6134. E-mail: [email protected]
Cite this: J. Phys. Chem. C 2015, 119, 40, 23059–23067
Publication Date (Web):September 16, 2015
https://doi.org/10.1021/acs.jpcc.5b07526
Copyright © 2015 American Chemical Society

    Article Views

    2015

    Altmetric

    -

    Citations

    63
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The formation of bridging hydroxyls (OHb) via reactions of water molecules with oxygen vacancies (VO) on reduced TiO2(110) surfaces is studied using polarized infrared reflection–absorption spectroscopy (IRAS), electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD). Narrow IR peaks at 2737 and 3711 cm−1 are observed for the stretching vibrations of ODb and OHb, respectively. The IRAS spectra indicate that the bridging hydroxyls are oriented normal to the TiO2(110) surface. Using IRAS, we have studied the kinetics of water reacting with the vacancies by monitoring the formation of bridging hydroxyls as a function of the annealing temperature on the TiO2(110). Separate experiments have also monitored the loss of water molecules (using water ESD) and vacancies (using the CO photooxidation reaction) due to the reactions of water molecules with the vacancies. All three techniques show that the reaction rate becomes appreciable for T > 150 K and that the reactions are largely complete for T > 250 K. The temperature-dependent water–VO reaction kinetics are consistent with a Gaussian distribution of activation energies with Ea = 0.545 eV, ΔEa(fwhm) = 0.125 eV, and a “normal” prefactor, ν = 1012 s–1. In contrast, a single activation energy with a physically reasonable prefactor does not fit the data well. Our experimental activation energy is close to theoretical estimates for the diffusion of water molecules along the Ti5c rows on the reduced TiO2(110) surface, which suggests that the diffusion of water controls the water–VO reaction rate.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b07526.

    • Figure S1, a schematic for the IRAS geometry on TiO2(110); Figure S2, decomposition of bridging hydroxyls via recombination desorption around 500 K from IRAS and TPD spectra; Figure S3, reaction of bridging hydroxyls with O2 molecules from IRAS data; Figure S4, the correlated disappearance of molecular water and the appearance of bridging hydroxyls in the 150–250 K range from ESD and IRAS data; Figure S5, D2O, H2O, and H218O ESD yields versus annealing temperature; Figure S6, ESD yields from 0.05 and 0.1 ML H218O versus annealing temperature; Figure S7, ESD and PSD yields from H218O dosed on the annealed and hydroxylated TiO2(110) surfaces versus annealing temperature; Figure S8, CO2 PSD yield from TiO2(110) predosed with H2O versus annealing time at various temperatures; Figure S9, the effect of annealing time on the temperature range of the water–vacancy reaction form the IRAS data and from the model calculations; Figure S10, coverage-dependent desorption energy obtained from inversion analysis of the 1.0 ML H2O TPD spectrum; Figure S11, the H2O desorption energy probability distribution obtained from the 1.0 ML H2O TPD spectrum; Figure S12, coverage-dependent desorption energy obtained from inversion analysis of the 0.12 ML H2O TPD spectrum; kinetic analysis of the bimolecular reaction between the water molecule and the oxygen vacancy (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 63 publications.

    1. Anum Shahid Malik, Lisa A. Fredin. Unraveling the Water Oxidation Mechanism on a Stoichiometric and Reduced Rutile TiO2 (100) Surface Using First-Principles Calculations. The Journal of Physical Chemistry C 2023, 127 (7) , 3444-3451. https://doi.org/10.1021/acs.jpcc.2c07411
    2. Nikolay G. Petrik, Marcel D. Baer, Christopher J. Mundy, Greg A. Kimmel. Mixed Molecular and Dissociative Water Adsorption on Hydroxylated TiO2(110): An Infrared Spectroscopy and Ab Initio Molecular Dynamics Study. The Journal of Physical Chemistry C 2022, 126 (51) , 21616-21627. https://doi.org/10.1021/acs.jpcc.2c07063
    3. Qiang Zhu, Yuuki Adachi, Yasuhiro Sugawara, Yanjun Li. Tip-Induced Dynamic Behaviors of a Water Molecule and Hydroxyl on the Rutile TiO2(110) Surface. The Journal of Physical Chemistry C 2022, 126 (31) , 13062-13068. https://doi.org/10.1021/acs.jpcc.1c08935
    4. Guangming Zhao, Yunduo Yao, Wei Lu, Guanyu Liu, Xuyun Guo, Antonio Tricoli, Ye Zhu. Direct Observation of Oxygen Evolution and Surface Restructuring on Mn2O3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy. Nano Letters 2021, 21 (16) , 7012-7020. https://doi.org/10.1021/acs.nanolett.1c02378
    5. Nikolay G. Petrik, Yang Wang, Bo Wen, Yiqing Wu, Runze Ma, Arjun Dahal, Feng Gao, Roger Rousseau, Yong Wang, Greg A. Kimmel, Annabella Selloni, Zdenek Dohnálek. Conversion of Formic Acid on Single- and Nano-Crystalline Anatase TiO2(101). The Journal of Physical Chemistry C 2021, 125 (14) , 7686-7700. https://doi.org/10.1021/acs.jpcc.1c00571
    6. Jessica Kräuter, Lars Mohrhusen, Fabian Waidhas, Olaf Brummel, Jörg Libuda, Katharina Al-Shamery. Photoconversion of 2-Propanol on Rutile Titania: A Combined Liquid-Phase and Surface Science Study. The Journal of Physical Chemistry C 2021, 125 (6) , 3355-3367. https://doi.org/10.1021/acs.jpcc.0c10734
    7. Ersen Mete, Şinasi Ellialtıoğlu, Oguz Gulseren, Deniz Uner. Elucidating the Barriers on Direct Water Splitting: Key Role of Oxygen Vacancy Density and Coordination over PbTiO3 and TiO2. The Journal of Physical Chemistry C 2021, 125 (3) , 1874-1880. https://doi.org/10.1021/acs.jpcc.0c09685
    8. N. Aaron Deskins, Greg A. Kimmel, Nikolay G. Petrik. Observation of Molecular Hydrogen Produced from Bridging Hydroxyls on Anatase TiO2(101). The Journal of Physical Chemistry Letters 2020, 11 (21) , 9289-9297. https://doi.org/10.1021/acs.jpclett.0c02735
    9. Daniel J. Aschaffenburg, Seiji Kawasaki, Chaitanya Das Pemmaraju, Tanja Cuk. Accuracy in Resolving the First Hydration Layer on a Transition-Metal Oxide Surface: Experiment (AP-XPS) and Theory. The Journal of Physical Chemistry C 2020, 124 (39) , 21407-21417. https://doi.org/10.1021/acs.jpcc.0c05195
    10. Akbar Mahdavi-Shakib, Juan M. Arce-Ramos, Rachel N. Austin, Thomas J. Schwartz, Lars C. Grabow, Brian G. Frederick. Frequencies and Thermal Stability of Isolated Surface Hydroxyls on Pyrogenic TiO2 Nanoparticles. The Journal of Physical Chemistry C 2019, 123 (40) , 24533-24548. https://doi.org/10.1021/acs.jpcc.9b05699
    11. Nassar Doudin, Simuck F. Yuk, Matthew D. Marcinkowski, Manh-Thuong Nguyen, Jin-Cheng Liu, Yang Wang, Zbynek Novotny, Bruce D. Kay, Jun Li, Vassiliki-Alexandra Glezakou, Gareth Parkinson, Roger Rousseau, Zdenek Dohnálek. Understanding Heterolytic H2 Cleavage and Water-Assisted Hydrogen Spillover on Fe3O4(001)-Supported Single Palladium Atoms. ACS Catalysis 2019, 9 (9) , 7876-7887. https://doi.org/10.1021/acscatal.9b01425
    12. Chunlei Wang, Heloise Tissot, Carlos Escudero, Virginia Pérez-Dieste, Dario Stacchiola, Jonas Weissenrieder. Redox Properties of Cu2O(100) and (111) Surfaces. The Journal of Physical Chemistry C 2018, 122 (50) , 28684-28691. https://doi.org/10.1021/acs.jpcc.8b08494
    13. Chi M. Yim, Ji Chen, Yu Zhang, Bobbie-Jean Shaw, Chi L. Pang, David C. Grinter, Hendrik Bluhm, Miquel Salmeron, Christopher A. Muryn, Angelos Michaelides, Geoff Thornton. Visualization of Water-Induced Surface Segregation of Polarons on Rutile TiO2(110). The Journal of Physical Chemistry Letters 2018, 9 (17) , 4865-4871. https://doi.org/10.1021/acs.jpclett.8b01904
    14. Ryan T. Frederick, Jenn M. Amador, Sara Goberna-Ferrón, May Nyman, Douglas A. Keszler, Gregory S. Herman. Mechanistic Study of HafSOx Extreme Ultraviolet Inorganic Resists. The Journal of Physical Chemistry C 2018, 122 (28) , 16100-16112. https://doi.org/10.1021/acs.jpcc.8b03771
    15. Nikolay G. Petrik, Rentao Mu, Arjun Dahal, Zhitao Wang, Igor Lyubinetsky, Greg A. Kimmel. Diffusion and Photon-Stimulated Desorption of CO on TiO2(110). The Journal of Physical Chemistry C 2018, 122 (27) , 15382-15389. https://doi.org/10.1021/acs.jpcc.8b03418
    16. Nikolay G. Petrik, Patricia L. Huestis, Jay A. LaVerne, Alexandr B. Aleksandrov, Thomas M. Orlando, Greg A. Kimmel. Molecular Water Adsorption and Reactions on α-Al2O3(0001) and α-Alumina Particles. The Journal of Physical Chemistry C 2018, 122 (17) , 9540-9551. https://doi.org/10.1021/acs.jpcc.8b01969
    17. Dongfang Zhao, Ran Jia, Naikun Gao, Weishan Yan, Ling Zhang, Xi Li, and Duo Liu . Near-Infrared Promoted Wettability Recovery of Superhydrophilic ZnO. The Journal of Physical Chemistry C 2017, 121 (23) , 12745-12749. https://doi.org/10.1021/acs.jpcc.7b01672
    18. Adam Argondizzo, Shijing Tan, and Hrvoje Petek . Resonant Two-Photon Photoemission from Ti 3d Defect States of TiO2(110) Revisited. The Journal of Physical Chemistry C 2016, 120 (24) , 12959-12966. https://doi.org/10.1021/acs.jpcc.6b04517
    19. Qijing Zheng, Shijing Tan, Hao Feng, Xuefeng Cui, Jin Zhao, and Bing Wang . Dynamic Equilibrium of Reversible Reactions and Migration of Hydrogen Atoms Mediated by Diffusive Methanol on Rutile TiO2 (110)-(1 × 1) Surface. The Journal of Physical Chemistry C 2016, 120 (14) , 7728-7735. https://doi.org/10.1021/acs.jpcc.6b02367
    20. Riley E. Rex, Yi Yang, Fritz J. Knorr, Jin Z. Zhang, Yat Li, and Jeanne L. McHale . Spectroelectrochemical Photoluminescence of Trap States in H-Treated Rutile TiO2 Nanowires: Implications for Photooxidation of Water. The Journal of Physical Chemistry C 2016, 120 (6) , 3530-3541. https://doi.org/10.1021/acs.jpcc.5b11231
    21. Jade Barreto, Niklas Nilius, Heloise Tissot, Shamil Shaikhutdinov, Hans Joachim Freund, Fernando Stavale. Interaction of water and carbon monoxide with MnO(001) thin films on Au(111). Physical Chemistry Chemical Physics 2023, 25 (43) , 29808-29815. https://doi.org/10.1039/D3CP04038K
    22. Lars Mohrhusen, Katharina Al-Shamery. Conversion of Alcohols on Stoichiometric and Reduced Rutile TiO2 (110): Point Defects Meet Bifunctionality in Oxide (Photo-)Chemistry. Catalysis Letters 2023, 153 (2) , 321-337. https://doi.org/10.1007/s10562-022-04077-1
    23. Anum Shahid Malik, Lisa A. Fredin. Untangling product selectivity on clean low index rutile TiO 2 surfaces using first-principles calculations. Physical Chemistry Chemical Physics 2023, 25 (3) , 2203-2211. https://doi.org/10.1039/D2CP04939B
    24. Olena Berger. Understanding the fundamentals of TiO 2 surfacesPart II. Reactivity and surface chemistry of TiO 2 single crystals. Surface Engineering 2022, 38 (10-12) , 846-906. https://doi.org/10.1080/02670844.2023.2175505
    25. Celine Tesvara, Constantin Walenta, Philippe Sautet. Oxidative decomposition of dimethyl methylphosphonate on rutile TiO 2 (110): the role of oxygen vacancies. Physical Chemistry Chemical Physics 2022, 24 (38) , 23402-23419. https://doi.org/10.1039/D2CP02246J
    26. Juan Wang, Rui-tang Guo, Zhe-xu Bi, Xin Chen, Xing Hu, Wei-guo Pan. A review on TiO 2− x -based materials for photocatalytic CO 2 reduction. Nanoscale 2022, 14 (32) , 11512-11528. https://doi.org/10.1039/D2NR02527B
    27. Chaitanya B. Hiragond, Niket S. Powar, Junho Lee, Su‐Il In. Single‐Atom Catalysts (SACs) for Photocatalytic CO 2 Reduction with H 2 O: Activity, Product Selectivity, Stability, and Surface Chemistry. Small 2022, 18 (29) https://doi.org/10.1002/smll.202201428
    28. Yongkang Zhang, Yuhang Wang, Kaibin Su, Fengping Wang. The influence of the oxygen vacancies on the Pt/TiO2 single-atom catalyst—a DFT study. Journal of Molecular Modeling 2022, 28 (6) https://doi.org/10.1007/s00894-022-05123-w
    29. Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review. Journal of Materials Science & Technology 2022, 112 , 239-262. https://doi.org/10.1016/j.jmst.2021.09.057
    30. Lili Zhang, Weibin Chu, Qijing Zheng, Jin Zhao. Effects of oxygen vacancies on the photoexcited carrier lifetime in rutile TiO 2. Physical Chemistry Chemical Physics 2022, 24 (8) , 4743-4750. https://doi.org/10.1039/D1CP04248C
    31. Olena Berger. Understanding the fundamentals of TiO 2 surfaces. Part I. The influence of defect states on the correlation between crystallographic structure, electronic structure and physical properties of single-crystal surfaces. Surface Engineering 2022, 38 (2) , 91-149. https://doi.org/10.1080/02670844.2022.2063482
    32. Ali M. Abdel-Mageed, Matthias Büsselmann, Klara Wiese, Corinna Fauth, R. Jürgen Behm. Influence of water vapor on the performance of Au/ZnO catalysts in methanol synthesis from CO2 and H2: A high-pressure kinetic and TAP reactor study. Applied Catalysis B: Environmental 2021, 297 , 120416. https://doi.org/10.1016/j.apcatb.2021.120416
    33. Huan Fei Wen, Yasuhiro Sugawara, Yan Jun Li. Exploring the nature of hydrogen of Rutile TiO2(110) at 78 K. Surfaces and Interfaces 2021, 26 , 101339. https://doi.org/10.1016/j.surfin.2021.101339
    34. Sebastien Groh, Holger Saßnick, Victor G. Ruiz, Joachim Dzubiella. How the hydroxylation state of the (110)-rutile TiO 2 surface governs its electric double layer properties. Physical Chemistry Chemical Physics 2021, 23 (27) , 14770-14782. https://doi.org/10.1039/D1CP02043A
    35. Shuyang Wu, Kana Ishisone, Yuan Sheng, Manoel Y. Manuputty, Markus Kraft, Rong Xu. TiO 2 with controllable oxygen vacancies for efficient isopropanol degradation: photoactivity and reaction mechanism. Catalysis Science & Technology 2021, 11 (12) , 4060-4071. https://doi.org/10.1039/D1CY00417D
    36. Sungsoon Kim, Seulgi Ji, Kwang Hee Kim, Seung Hun Roh, Yoonjun Cho, Chang-Lyoul Lee, Kug-Seung Lee, Dae-Geun Choi, Heechae Choi, Jung Kyu Kim, Jong Hyeok Park. Revisiting surface chemistry in TiO2: A critical role of ionic passivation for pH-independent and anti-corrosive photoelectrochemical water oxidation. Chemical Engineering Journal 2021, 407 , 126929. https://doi.org/10.1016/j.cej.2020.126929
    37. Longxia Wu, Cong Fu, Weixin Huang. Surface chemistry of TiO 2 connecting thermal catalysis and photocatalysis. Physical Chemistry Chemical Physics 2020, 22 (18) , 9875-9909. https://doi.org/10.1039/C9CP07001J
    38. Bing Wang, Xue Li, Shanshan Liang, Runxuan Chu, Dan Zhang, Hanqing Chen, Meng Wang, Shuang Zhou, Wei Chen, Xingzhong Cao, Weiyue Feng. Adsorption and oxidation of SO 2 on the surface of TiO 2 nanoparticles: the role of terminal hydroxyl and oxygen vacancy–Ti 3+ states. Physical Chemistry Chemical Physics 2020, 22 (18) , 9943-9953. https://doi.org/10.1039/D0CP00785D
    39. Sungsoon Kim, Yoonjun Cho, Ryan Rhee, Jong Hyeok Park. Black TiO 2 : What are exact functions of disorder layer. Carbon Energy 2020, 2 (1) , 44-53. https://doi.org/10.1002/cey2.32
    40. Wenjin Yin, Bo Wen, Qingxia Ge, Xiaolin Wei, Gilberto Teobaldi, Limin Liu. Effect of crystal field on the formation and diffusion of oxygen vacancy at anatase (101) surface and sub-surface. Progress in Natural Science: Materials International 2020, 30 (1) , 128-133. https://doi.org/10.1016/j.pnsc.2020.01.001
    41. Karishma Piler, Cristian Bahrim, Sylvestre Twagirayezu, Tracy J. Benson. Lattice disorders of TiO2 and their significance in the photocatalytic conversion of CO2. 2020, 109-233. https://doi.org/10.1016/bs.acat.2020.09.001
    42. Constantin A Walenta, Martin Tschurl, Ueli Heiz. Introducing catalysis in photocatalysis: What can be understood from surface science studies of alcohol photoreforming on TiO 2. Journal of Physics: Condensed Matter 2019, 31 (47) , 473002. https://doi.org/10.1088/1361-648X/ab351a
    43. Baohuan Wei, Frederik Tielens, Monica Calatayud. Understanding the Role of Rutile TiO2 Surface Orientation on Molecular Hydrogen Activation. Nanomaterials 2019, 9 (9) , 1199. https://doi.org/10.3390/nano9091199
    44. Martin Sterrer, Niklas Nilius, Shamil Shaikhutdinov, Markus Heyde, Thomas Schmidt, Hans-Joachim Freund. Interaction of water with oxide thin film model systems. Journal of Materials Research 2019, 34 (3) , 360-378. https://doi.org/10.1557/jmr.2018.454
    45. Dongdong Zhang, Weishan Yan, Wenyao Luo, Wangyang Zhang, Chaopeng Zhao, Duo Liu. Promoted reversible wettability transition by plasmonic effects at Ag/TiO2 heterointerface. Applied Physics Letters 2019, 114 (4) https://doi.org/10.1063/1.5063632
    46. Swaminathan Jayashree, Meiyazhagan Ashokkumar. Switchable Intrinsic Defect Chemistry of Titania for Catalytic Applications. Catalysts 2018, 8 (12) , 601. https://doi.org/10.3390/catal8120601
    47. Song Bai, Ning Zhang, Chao Gao, Yujie Xiong. Defect engineering in photocatalytic materials. Nano Energy 2018, 53 , 296-336. https://doi.org/10.1016/j.nanoen.2018.08.058
    48. Yong Yang, Fu-Chi Liu, Yoshiyuki Kawazoe. Adsorption and diffusion of F 2 molecules on pristine graphene*. Chinese Physics B 2018, 27 (10) , 106801. https://doi.org/10.1088/1674-1056/27/10/106801
    49. Chenyang Han, Shule Zhang, Lina Guo, Yiqing Zeng, Xiaohai Li, Zhencang Shi, Yi Zhang, Baoqiang Zhang, Qin Zhong. Ehanced catalytic ozonation of NO over black-TiO2 catalyst under inadequate ozone (O3/NO molar ratio = 0.6). Chemical Engineering Research and Design 2018, 136 , 219-229. https://doi.org/10.1016/j.cherd.2018.05.012
    50. Hui-Li Wang, Zhen-Peng Hu, Hui Li. Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations. Frontiers of Physics 2018, 13 (3) https://doi.org/10.1007/s11467-018-0763-5
    51. Wen-Jin Yin, Bo Wen, Chuanyao Zhou, Annabella Selloni, Li-Min Liu. Excess electrons in reduced rutile and anatase TiO2. Surface Science Reports 2018, 73 (2) , 58-82. https://doi.org/10.1016/j.surfrep.2018.02.003
    52. Yang Liu, Yahui Yang, Qiong Liu, Yaomin Li, Jie Lin, Wenzhang Li, Jie Li. The role of water in reducing WO3 film by hydrogen: Controlling the concentration of oxygen vacancies and improving the photoelectrochemical performance. Journal of Colloid and Interface Science 2018, 512 , 86-95. https://doi.org/10.1016/j.jcis.2017.10.039
    53. Andreas Mattsson, Lars Österlund. Co-adsorption of oxygen and formic acid on rutile TiO 2 (110) studied by infrared reflection-absorption spectroscopy. Surface Science 2017, 663 , 47-55. https://doi.org/10.1016/j.susc.2017.04.012
    54. S.J. Sitler, K.S. Raja, Z. Karmiol, D. Chidambaram. Self-ordering dual-layered honeycomb nanotubular titania: Enhanced structural stability and energy storage capacity. Applied Surface Science 2017, 401 , 127-141. https://doi.org/10.1016/j.apsusc.2016.12.222
    55. Huilei Zhao, Fuping Pan, Ying Li. A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics 2017, 3 (1) , 17-32. https://doi.org/10.1016/j.jmat.2016.12.001
    56. S J Sitler, K S Raja, Z Karmiol, D Chidambaram. Photoelectrochemical characterization of dual-layered anodic TiO 2 nanotubes with honeycomb morphology. Journal of Physics D: Applied Physics 2017, 50 (3) , 035502. https://doi.org/10.1088/1361-6463/50/3/035502
    57. Yuemin Wang, Christof Wöll. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chemical Society Reviews 2017, 46 (7) , 1875-1932. https://doi.org/10.1039/C6CS00914J
    58. Xiaodong Yan, Yong Li, Ting Xia. Black Titanium Dioxide Nanomaterials in Photocatalysis. International Journal of Photoenergy 2017, 2017 , 1-16. https://doi.org/10.1155/2017/8529851
    59. Zdenek Futera, Niall J. English. Oscillating electric-field effects on adsorbed-water at rutile- and anatase-TiO2 surfaces. The Journal of Chemical Physics 2016, 145 (20) https://doi.org/10.1063/1.4967520
    60. David Silber, Piotr M. Kowalski, Franziska Traeger, Maria Buchholz, Fabian Bebensee, Bernd Meyer, Christof Wöll. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms12888
    61. Ting Zheng, Chunya Wu, Mingjun Chen, Yu Zhang, Peter T. Cummings. A DFT study of water adsorption on rutile TiO2 (110) surface: The effects of surface steps. The Journal of Chemical Physics 2016, 145 (4) https://doi.org/10.1063/1.4958969
    62. Denis V. Barsukov, Aleksey N. Pershin, Irina R. Subbotina. Increase of CO photocatalytic oxidation rate over anatase TiO2 particles by adsorbed water at moderate coverages: The role of peroxide species. Journal of Photochemistry and Photobiology A: Chemistry 2016, 324 , 175-183. https://doi.org/10.1016/j.jphotochem.2016.03.021
    63. , , Ryan T. Frederick, Gregory S. Herman. Characterization of HafSOx inorganic photoresists using electron stimulated desorption. 2016, 97790I. https://doi.org/10.1117/12.2220604

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect