ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Intersubband Quantum Disc-in-Nanowire Photodetectors with Normal-Incidence Response in the Long-Wavelength Infrared

View Author Information
Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
Department of Mathematics, Physics and Electrical Engineering, Halmstad University, Box 823, SE-301 18 Halmstad, Sweden
§ Sol Voltaics AB, Scheelevägen 22, SE-223 63 Lund, Sweden
Department of Applied Physics, Royal Institute of Technology (KTH), Science for Life Laboratory, SE-171 21 Solna, Sweden
Cite this: Nano Lett. 2018, 18, 1, 365–372
Publication Date (Web):December 19, 2017
https://doi.org/10.1021/acs.nanolett.7b04217
Copyright © 2017 American Chemical Society

    Article Views

    1330

    Altmetric

    -

    Citations

    35
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Semiconductor nanowires have great potential for realizing broadband photodetectors monolithically integrated with silicon. However, the spectral range of such detectors has so far been limited to selected regions in the ultraviolet, visible, and near-infrared regions. Here, we report on the first intersubband nanowire heterostructure array photodetectors exhibiting a spectrally resolved photoresponse from the visible to long-wavelength infrared. In particular, the infrared response from 3 to 20 μm is enabled by intersubband transitions in low-bandgap InAsP quantum discs synthesized axially within InP nanowires. The intriguing optical characteristics, including unexpected sensitivity to normal incident radiation, are explained by excitation of the longitudinal component of optical modes in the photonic crystal formed by the nanostructured portion of the detectors. Our results provide a generalizable insight into how broadband nanowire photodetectors may be designed and how engineered nanowire heterostructures open up new, fascinating opportunities for optoelectronics.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b04217.

    • μ-PL characteristics of single InP/InAsP QDisc-in-NW, spectrally resolved PC of a 20 QDiscs-in-NW photodetector compared with a single QDisc-in-NW photodetector, 2D FDE model results for a periodic InP NW array and for a periodic InP NW array with SiO2 shells and photoresist infill, Ez component of the electric field on a slice in the xz plane of the 3D FDTD model, and a STEM image of a NW showing a mixed ZB/WZ crystal structure. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 35 publications.

    1. Chunyi Huang, Didem Dede, Nicholas Morgan, Valerio Piazza, Xiaobing Hu, Anna Fontcuberta i Morral, Lincoln J. Lauhon. Trapping Layers Prevent Dopant Segregation and Enable Remote Doping of Templated Self-Assembled InGaAs Nanowires. Nano Letters 2023, 23 (14) , 6284-6291. https://doi.org/10.1021/acs.nanolett.3c00281
    2. Hossein Jeddi, Bernd Witzigmann, Kristi Adham, Lukas Hrachowina, Magnus T. Borgström, Håkan Pettersson. Spectrally Tunable Broadband Gate-All-Around InAsP/InP Quantum Discs-in-Nanowire Array Phototransistors with a High Gain-Bandwidth Product. ACS Photonics 2023, 10 (6) , 1748-1755. https://doi.org/10.1021/acsphotonics.2c02024
    3. Mohammad Karimi, Xulu Zeng, Bernd Witzigmann, Lars Samuelson, Magnus T. Borgström, Håkan Pettersson. High Responsivity of InP/InAsP Nanowire Array Broadband Photodetectors Enhanced by Optical Gating. Nano Letters 2019, 19 (12) , 8424-8430. https://doi.org/10.1021/acs.nanolett.9b02494
    4. Enrique Barrigón, Magnus Heurlin, Zhaoxia Bi, Bo Monemar, Lars Samuelson. Synthesis and Applications of III–V Nanowires. Chemical Reviews 2019, 119 (15) , 9170-9220. https://doi.org/10.1021/acs.chemrev.9b00075
    5. Inseok Yang, Ziyuan Li, Jennifer Wong-Leung, Yi Zhu, Zhe Li, Nikita Gagrani, Li Li, Mark N. Lockrey, Hieu Nguyen, Yuerui Lu, Hark Hoe Tan, Chennupati Jagadish, Lan Fu. Multiwavelength Single Nanowire InGaAs/InP Quantum Well Light-Emitting Diodes. Nano Letters 2019, 19 (6) , 3821-3829. https://doi.org/10.1021/acs.nanolett.9b00959
    6. Alan C. Farrell, Xiao Meng, Dingkun Ren, Hyunseok Kim, Pradeep Senanayake, Nick Y. Hsieh, Zixuan Rong, Ting-Yuan Chang, Khalifa M. Azizur-Rahman, Diana L. Huffaker. InGaAs–GaAs Nanowire Avalanche Photodiodes Toward Single-Photon Detection in Free-Running Mode. Nano Letters 2019, 19 (1) , 582-590. https://doi.org/10.1021/acs.nanolett.8b04643
    7. Inseok Yang, Xu Zhang, Changlin Zheng, Qian Gao, Ziyuan Li, Li Li, Mark N. Lockrey, Hieu Nguyen, Philippe Caroff, Joanne Etheridge, Hark Hoe Tan, Chennupati Jagadish, Jennifer Wong-Leung, Lan Fu. Radial Growth Evolution of InGaAs/InP Multi-Quantum-Well Nanowires Grown by Selective-Area Metal Organic Vapor-Phase Epitaxy. ACS Nano 2018, 12 (10) , 10374-10382. https://doi.org/10.1021/acsnano.8b05771
    8. Hossein Jeddi, Kristi Adham, Yue Zhao, Bernd Witzigmann, Friedhard Römer, Marie Bermeo, Magnus T Borgström, Håkan Pettersson. Enhanced LWIR response of InP/InAsP quantum discs-in-nanowire array photodetectors by photogating and ultra-thin ITO contacts. Nanotechnology 2024, 35 (21) , 215206. https://doi.org/10.1088/1361-6528/ad2bd0
    9. Lin‐Qing Yue, Yan‐Lei Shi, Nie‐Feng Sun, Sheng Qiang, Jing‐Kai Qin, Liang Zhen, Cheng‐Yan Xu. InP Low‐Dimensional Nanomaterials for Electronic and Optoelectronic Device Applications: A Review. Advanced Sensor Research 2023, 2 (10) https://doi.org/10.1002/adsr.202200101
    10. Kristi Adham, Yue Zhao, Lukas Hrachowina, David Alcer, Reine Wallenberg, Magnus T Borgström. Growth of branched nanowires via solution-based Au seed particle deposition. Materials Research Express 2023, 10 (8) , 085003. https://doi.org/10.1088/2053-1591/acece2
    11. Ziyuan Li, Zeyu He, Chenyang Xi, Fanlu Zhang, Longsibo Huang, Yang Yu, Hark Hoe Tan, Chennupati Jagadish, Lan Fu. Review on III–V Semiconductor Nanowire Array Infrared Photodetectors. Advanced Materials Technologies 2023, 8 (13) https://doi.org/10.1002/admt.202202126
    12. Hui Xia, Yaqian Liu, Hailu Wang, Tianxin Li, Zhongying Tong, Xiren Chen, Pingping Chen, Weida Hu, Wei Lu. Electrically tunable spectral response in vertical nanowire arrays. Applied Physics Letters 2022, 121 (13) https://doi.org/10.1063/5.0109401
    13. Hanxiao Shao, Yun Xu, Longfeng Lv, Bo Cheng, Guofeng Song. Resonance-Enhanced Quantum Well Micropillar Array with Ultra-Narrow Bandwidth and Ultra-High Peak Quantum Efficiency. Electronics 2022, 11 (9) , 1396. https://doi.org/10.3390/electronics11091396
    14. Nasir Ilyas, Jinyong Wang, Chunmei Li, Dongyang Li, Hao Fu, Deen Gu, Xiangdong Jiang, Fucai Liu, Yadong Jiang, Wei Li. Nanostructured Materials and Architectures for Advanced Optoelectronic Synaptic Devices. Advanced Functional Materials 2022, 32 (15) https://doi.org/10.1002/adfm.202110976
    15. Noelle Gogneau, Pascal Chrétien, Tanbir Sodhi, Laurent Couraud, Laetitia Leroy, Laurent Travers, Jean-Chistophe Harmand, François H. Julien, Maria Tchernycheva, Frédéric Houzé. Electromechanical conversion efficiency of GaN NWs: critical influence of the NW stiffness, the Schottky nano-contact and the surface charge effects. Nanoscale 2022, 14 (13) , 4965-4976. https://doi.org/10.1039/D1NR07863A
    16. Fanlu Zhang, Xutao Zhang, Ziyuan Li, Ruixuan Yi, Zhe Li, Naiyin Wang, Xiaoxue Xu, Zahra Azimi, Li Li, Mykhaylo Lysevych, Xuetao Gan, Yuerui Lu, Hark Hoe Tan, Chennupati Jagadish, Lan Fu. A New Strategy for Selective Area Growth of Highly Uniform InGaAs/InP Multiple Quantum Well Nanowire Arrays for Optoelectronic Device Applications. Advanced Functional Materials 2022, 32 (3) https://doi.org/10.1002/adfm.202103057
    17. Chandni Devi, Jnaneswari Gellanki, Håkan Pettersson, Sandeep Kumar. High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-99663-5
    18. Junting Liu, He Yang, Vladislav Khayrudinov, Harri Lipsanen, Hongkun Nie, Kejian Yang, Baitao Zhang, Jingliang He. Ultrafast carrier dynamics and nonlinear optical response of InAsP nanowires. Photonics Research 2021, 9 (9) , 1811. https://doi.org/10.1364/PRJ.430172
    19. Hamed Dehdashti Jahromi, Abbas Zarifkar. A physical model for quantum wire infrared photodetectors under illumination condition. Optics Communications 2021, 493 , 127043. https://doi.org/10.1016/j.optcom.2021.127043
    20. Pavel Zhikharev, Alla Nastovjak, Nataliya Shwartz. Conditions for the Formation of Vertical Nanowires and Crystalline Clusters of GaAs during the Self-Catalyzed Growth. 2021, 62-66. https://doi.org/10.1109/EDM52169.2021.9507696
    21. Xiaoming Yuan, Dong Pan, Yijin Zhou, Xutao Zhang, Kun Peng, Bijun Zhao, Mingtang Deng, Jun He, Hark Hoe Tan, Chennupati Jagadish. Selective area epitaxy of III–V nanostructure arrays and networks: Growth, applications, and future directions. Applied Physics Reviews 2021, 8 (2) https://doi.org/10.1063/5.0044706
    22. Hossein Jeddi, Mohammad Karimi, Bernd Witzigmann, Xulu Zeng, Lukas Hrachowina, Magnus T. Borgström, Håkan Pettersson. Gain and bandwidth of InP nanowire array photodetectors with embedded photogated InAsP quantum discs. Nanoscale 2021, 13 (12) , 6227-6233. https://doi.org/10.1039/D1NR00846C
    23. A. G. Nastovjak, N. L. Shwartz, E. A. Emelyanov, M. O. Petrushkov, A. V. Vasev, M. A. Putyato, V. V. Preobrazhenskii. Reasons of Crystallite Formation during the Self-Catalyzed GaAs Nanowire Growth. Semiconductors 2020, 54 (14) , 1850-1853. https://doi.org/10.1134/S1063782620140213
    24. A G Nastovjak, N L Shwartz. Examination of the crystallization process at the liquid-crystal interface during nanowire growth. Nanotechnology 2020, 31 (35) , 354005. https://doi.org/10.1088/1361-6528/ab93ed
    25. Zeshi Chu, Jing Zhou, Xu Dai, Fangzhe Li, Mengke Lan, Zhaoyu Ji, Wei Lu, Xiaoshuang Chen. Circular Polarization Discrimination Enhanced by Anisotropic Media. Advanced Optical Materials 2020, 8 (9) https://doi.org/10.1002/adom.201901800
    26. Ziyuan Li, Jeffery Allen, Monica Allen, Hark Hoe Tan, Chennupati Jagadish, Lan Fu. Review on III-V Semiconductor Single Nanowire-Based Room Temperature Infrared Photodetectors. Materials 2020, 13 (6) , 1400. https://doi.org/10.3390/ma13061400
    27. Reza Jafari Jam, Axel R. Persson, Enrique Barrigón, Magnus Heurlin, Irene Geijselaers, Víctor J. Gómez, Olof Hultin, Lars Samuelson, Magnus T. Borgström, Håkan Pettersson. Template-assisted vapour–liquid–solid growth of InP nanowires on (001) InP and Si substrates. Nanoscale 2020, 12 (2) , 888-894. https://doi.org/10.1039/C9NR08025B
    28. Maria Spies, Eva Monroy. Nanowire photodetectors based on wurtzite semiconductor heterostructures. Semiconductor Science and Technology 2019, 34 (5) , 053002. https://doi.org/10.1088/1361-6641/ab0cb8
    29. Bahareh Goldozian, Gediminas Kiršanskas, Fikeraddis A. Damtie, Andreas Wacker. Quantifying the impact of phonon scattering on electrical and thermal transport in quantum dots. The European Physical Journal Special Topics 2019, 227 (15-16) , 1959-1967. https://doi.org/10.1140/epjst/e2018-800051-9
    30. Jonas Lähnemann, David A Browne, Akhil Ajay, Mathieu Jeannin, Angela Vasanelli, Jean-Luc Thomassin, Edith Bellet-Amalric, Eva Monroy. Near- and mid-infrared intersubband absorption in top-down GaN/AlN nano- and micro-pillars. Nanotechnology 2019, 30 (5) , 054002. https://doi.org/10.1088/1361-6528/aaef72
    31. Dingkun Ren, Zixuan Rong, Khalifa M Azizur-Rahman, Siddharth Somasundaram, Mohammad Shahili, Diana L Huffaker. Feasibility of achieving high detectivity at short- and mid-wavelength infrared using nanowire-plasmonic photodetectors with p–n heterojunctions. Nanotechnology 2019, 30 (4) , 044002. https://doi.org/10.1088/1361-6528/aaed5c
    32. Vilgailė Dagytė, Nicklas Anttu. Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays. Nanotechnology 2019, 30 (2) , 025710. https://doi.org/10.1088/1361-6528/aaea26
    33. Mohammad Karimi, Magnus Heurlin, Steven Limpert, Vishal Jain, Ebrahim Mansouri, Xulu Zeng, Lars Samuelson, Heiner Linke, Magnus T. Borgström, Håkan Pettersson. Nanowire photodetectors with embedded quantum heterostructures for infrared detection. Infrared Physics & Technology 2019, 96 , 209-212. https://doi.org/10.1016/j.infrared.2018.11.009
    34. A Ajay, R Blasco, J Polaczyński, M Spies, M I Den Hertog, E Monroy. Intersubband absorption in GaN nanowire heterostructures at mid-infrared wavelengths. Nanotechnology 2018, 29 (38) , 385201. https://doi.org/10.1088/1361-6528/aacf55
    35. Yong Zhou, Jiawei Lai, Lingjian Kong, Junchao Ma, Zhu Lin, Fang Lin, Rui Zhu, Jun Xu, Shiu-Ming Huang, Dongsheng Tang, Song Liu, Zhensheng Zhang, Zhi-Min Liao, Dong Sun, Dapeng Yu. Single crystalline SmB6 nanowires for self-powered, broadband photodetectors covering mid-infrared. Applied Physics Letters 2018, 112 (16) https://doi.org/10.1063/1.5023328

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect