ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Structural Rearrangement of Au–Pd Nanoparticles under Reaction Conditions: An ab Initio Molecular Dynamics Study

View Author Information
Department of Chemistry, Tsinghua University, Beijing 100084, China
Institute for Interfacial Catalysis and §William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
Cite this: ACS Nano 2017, 11, 2, 1649–1658
Publication Date (Web):January 25, 2017
https://doi.org/10.1021/acsnano.6b07409
Copyright © 2017 American Chemical Society

    Article Views

    2416

    Altmetric

    -

    Citations

    45
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The structure, composition, and atomic distribution of nanoalloys under operating conditions are of significant importance for their catalytic activity. In the present work, we use ab initio molecular dynamics simulations to understand the structural behavior of Au–Pd nanoalloys supported on rutile TiO2 under different conditions. We find that the Au–Pd structure is strongly dependent on the redox properties of the support, originating from strong metal–support interactions. Under reducing conditions, Pd atoms are inclined to move toward the metal/oxide interface, as indicated by a significant increase of Pd–Ti bonds. This could be attributed to the charge localization at the interface that leads to Coulomb attractions to positively charged Pd atoms. In contrast, under oxidizing conditions, Pd atoms would rather stay inside or on the exterior of the nanoparticle. Moreover, Pd atoms on the alloy surface can be stabilized by hydrogen adsorption, forming Pd–H bonds, which are stronger than Au–H bonds. Our work offers critical insights into the structure and redox properties of Au–Pd nanoalloy catalysts under working conditions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.6b07409.

    • Detailed information on gas-phase Au–Pd isomers, atomic distributions, pair distribution functions, RDFs, moment of inertia, root-mean-square bond length fluctuations, charge transfer based on plate capacity model, work functions, electron density differences, the projected electron density of states, and vibrational density of states (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 45 publications.

    1. Giuseppe Abbondanza, Andrea Grespi, Alfred Larsson, Crispin Hetherington, Matthew Snelgrove, Francesco Carlá, Nikolay Vinogradov, Roberto Felici, Edvin Lundgren. Au–Pd Barcode Nanowires with Tailored Lattice Parameters and Segment Lengths for Catalytic Applications. ACS Applied Nano Materials 2024, 7 (4) , 3861-3872. https://doi.org/10.1021/acsanm.3c05487
    2. Takehiro Matsuyama, Takafumi Yatabe, Tomohiro Yabe, Kazuya Yamaguchi. Decarbonylation of 1,2-Diketones to Diaryl Ketones via Oxidative Addition Enabled by an Electron-Deficient Au–Pd Nanoparticle Catalyst. ACS Catalysis 2022, 12 (21) , 13600-13608. https://doi.org/10.1021/acscatal.2c03729
    3. Chen Zhou, Hio Tong Ngan, Jin Soo Lim, Zubin Darbari, Adrian Lewandowski, Dario J. Stacchiola, Boris Kozinsky, Philippe Sautet, Jorge Anibal Boscoboinik. Dynamical Study of Adsorbate-Induced Restructuring Kinetics in Bimetallic Catalysts Using the PdAu(111) Model System. Journal of the American Chemical Society 2022, 144 (33) , 15132-15142. https://doi.org/10.1021/jacs.2c04871
    4. Ajay Kumar Sharma, Pushkar Mehara, Pralay Das. Recent Advances in Supported Bimetallic Pd–Au Catalysts: Development and Applications in Organic Synthesis with Focused Catalytic Action Study. ACS Catalysis 2022, 12 (11) , 6672-6701. https://doi.org/10.1021/acscatal.2c00725
    5. Jennifer D. Lee, Jeffrey B. Miller, Anna V. Shneidman, Lixin Sun, Jason F. Weaver, Joanna Aizenberg, Juergen Biener, J. Anibal Boscoboinik, Alexandre C. Foucher, Anatoly I. Frenkel, Jessi E. S. van der Hoeven, Boris Kozinsky, Nicholas Marcella, Matthew M. Montemore, Hio Tong Ngan, Christopher R. O’Connor, Cameron J. Owen, Dario J. Stacchiola, Eric A. Stach, Robert J. Madix, Philippe Sautet, Cynthia M. Friend. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chemical Reviews 2022, 122 (9) , 8758-8808. https://doi.org/10.1021/acs.chemrev.1c00967
    6. Joshua L. Lansford, Dionisios G. Vlachos. Spectroscopic Probe Molecule Selection Using Quantum Theory, First-Principles Calculations, and Machine Learning. ACS Nano 2020, 14 (12) , 17295-17307. https://doi.org/10.1021/acsnano.0c07408
    7. Jin Soo Lim, Jonathan Vandermause, Matthijs A. van Spronsen, Albert Musaelian, Yu Xie, Lixin Sun, Christopher R. O’Connor, Tobias Egle, Nicola Molinari, Jacob Florian, Kaining Duanmu, Robert J. Madix, Philippe Sautet, Cynthia M. Friend, Boris Kozinsky. Evolution of Metastable Structures at Bimetallic Surfaces from Microscopy and Machine-Learning Molecular Dynamics. Journal of the American Chemical Society 2020, 142 (37) , 15907-15916. https://doi.org/10.1021/jacs.0c06401
    8. Greg Collinge, Simuck F. Yuk, Manh-Thuong Nguyen, Mal-Soon Lee, Vassiliki-Alexandra Glezakou, Roger Rousseau. Effect of Collective Dynamics and Anharmonicity on Entropy in Heterogenous Catalysis: Building the Case for Advanced Molecular Simulations. ACS Catalysis 2020, 10 (16) , 9236-9260. https://doi.org/10.1021/acscatal.0c01501
    9. Madelyn R. Ball, Keishla R. Rivera-Dones, Elise B. Gilcher, Samantha F. Ausman, Cole W. Hullfish, Edgard A. Lebrón, James A. Dumesic. AgPd and CuPd Catalysts for Selective Hydrogenation of Acetylene. ACS Catalysis 2020, 10 (15) , 8567-8581. https://doi.org/10.1021/acscatal.0c01536
    10. P. K. Sajith, Aleksandar Staykov, Masataka Yoshida, Yoshihito Shiota, Kazunari Yoshizawa. Theoretical Study of the Direct Conversion of Methane to Methanol Using H2O2 as an Oxidant on Pd and Au/Pd Surfaces. The Journal of Physical Chemistry C 2020, 124 (24) , 13231-13239. https://doi.org/10.1021/acs.jpcc.0c03237
    11. Rudradatt Randy Persaud, Mingyang Chen, David A. Dixon. Prediction of Structures and Atomization Energies of Coinage Metals, (M)n, n < 20: Extrapolation of Normalized Clustering Energies to Predict the Cohesive Energy. The Journal of Physical Chemistry A 2020, 124 (9) , 1775-1786. https://doi.org/10.1021/acs.jpca.9b11801
    12. Jingjie Luo, Yuefeng Liu, Liyun Zhang, Yujing Ren, Shu Miao, Bingsen Zhang, Dang Sheng Su, Changhai Liang. Atomic-Scale Observation of Bimetallic Au-CuOx Nanoparticles and Their Interfaces for Activation of CO Molecules. ACS Applied Materials & Interfaces 2019, 11 (38) , 35468-35478. https://doi.org/10.1021/acsami.9b12017
    13. Jin Soo Lim, Nicola Molinari, Kaining Duanmu, Philippe Sautet, Boris Kozinsky. Automated Detection and Characterization of Surface Restructuring Events in Bimetallic Catalysts. The Journal of Physical Chemistry C 2019, 123 (26) , 16332-16344. https://doi.org/10.1021/acs.jpcc.9b04863
    14. Jin-Soo Kim, Hong-Kyu Kim, Sung-Hoon Kim, Inho Kim, Taekyung Yu, Geun-Ho Han, Kwan-Young Lee, Jae-Chul Lee, Jae-Pyoung Ahn. Catalytically Active Au Layers Grown on Pd Nanoparticles for Direct Synthesis of H2O2: Lattice Strain and Charge-Transfer Perspective Analyses. ACS Nano 2019, 13 (4) , 4761-4770. https://doi.org/10.1021/acsnano.9b01394
    15. Zhibo Ren, Ning Liu, Biaohua Chen, Jianwei Li, Donghai Mei. Nucleation of Cun (n = 1–5) Clusters and Equilibrium Morphology of Cu Particles Supported on CeO2 Surface: A Density Functional Theory Study. The Journal of Physical Chemistry C 2018, 122 (48) , 27402-27411. https://doi.org/10.1021/acs.jpcc.8b07993
    16. Yaqiong Gong, Hong Zhong, Wenhui Liu, Bingbing Zhang, Shuangqi Hu, and Ruihu Wang . General Synthetic Route toward Highly Dispersed Ultrafine Pd–Au Alloy Nanoparticles Enabled by Imidazolium-Based Organic Polymers. ACS Applied Materials & Interfaces 2018, 10 (1) , 776-786. https://doi.org/10.1021/acsami.7b16794
    17. Hyunwoo Ha, Hyesung An, Mi Yoo, Junhee Lee, and Hyun You Kim . Catalytic CO Oxidation by CO-Saturated Au Nanoparticles Supported on CeO2: Effect of CO Coverage. The Journal of Physical Chemistry C 2017, 121 (48) , 26895-26902. https://doi.org/10.1021/acs.jpcc.7b09780
    18. Carlos Fernández-Navarro and Sergio Mejía-Rosales . Stability of Au–Pd Core–Shell Nanoparticles. The Journal of Physical Chemistry C 2017, 121 (39) , 21658-21664. https://doi.org/10.1021/acs.jpcc.7b04564
    19. Talin Avanesian, Sheng Dai, Matthew J. Kale, George W. Graham, Xiaoqing Pan, and Phillip Christopher . Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR. Journal of the American Chemical Society 2017, 139 (12) , 4551-4558. https://doi.org/10.1021/jacs.7b01081
    20. Yechuan Zhang, Zhengxiang Gu, Huiyue Yang, Jie Gao, Fang Peng, Huajun Yang. Tailoring the catalytic activity and selectivity on CO2 to C1 products by the synergistic effect of reactive molecules: A DFT study. Journal of Colloid and Interface Science 2023, 652 , 250-257. https://doi.org/10.1016/j.jcis.2023.08.078
    21. Xinyi Duan, Yu Han, Beien Zhu, Yi Gao. Modelling of metal nanoparticles’ structures and dynamics under reaction conditions. Materials Today Catalysis 2023, 3 , 100032. https://doi.org/10.1016/j.mtcata.2023.100032
    22. GiovanniMaria Piccini, Mal-Soon Lee, Simuck F. Yuk, Difan Zhang, Greg Collinge, Loukas Kollias, Manh-Thuong Nguyen, Vassiliki-Alexandra Glezakou, Roger Rousseau. Ab initio molecular dynamics with enhanced sampling in heterogeneous catalysis. Catalysis Science & Technology 2022, 12 (1) , 12-37. https://doi.org/10.1039/D1CY01329G
    23. Loukas Kollias, Gregory Collinge, Difan Zhang, Sarah I. Allec, Pradeep Kumar Gurunathan, GiovanniMaria Piccini, Simuck F. Yuk, Manh-Thuong Nguyen, Mal-Soon Lee, Vassiliki-Alexandra Glezakou, Roger Rousseau. Assessing entropy for catalytic processes at complex reactive interfaces. 2022, 3-51. https://doi.org/10.1016/bs.arcc.2022.09.004
    24. Kevin Rossi, Tzonka Mineva, Jean-Sebastien Filhol, Frederik Tielens, Hazar Guesmi. Realistic Modelling of Dynamics at Nanostructured Interfaces Relevant to Heterogeneous Catalysis. Catalysts 2022, 12 (1) , 52. https://doi.org/10.3390/catal12010052
    25. Tomas Ricciardulli, Jason S. Adams, Marco DeRidder, Alexander P. van Bavel, Ayman M. Karim, David W. Flaherty. H2O-assisted O2 reduction by H2 on Pt and PtAu bimetallic nanoparticles: Influences of composition and reactant coverages on kinetic regimes, rates, and selectivities. Journal of Catalysis 2021, 404 , 661-678. https://doi.org/10.1016/j.jcat.2021.10.001
    26. Guang-Jie Xia, Yang-Gang Wang. Solvent promotion on the metal-support interaction and activity of Pd@ZrO2 Catalyst: Formation of metal hydrides as the new catalytic active phase at the Solid-Liquid interface. Journal of Catalysis 2021, 404 , 537-550. https://doi.org/10.1016/j.jcat.2021.10.030
    27. Jia Song, Luyu Wang, Ding Fan, Liang Zhang, Wenheng Wu, Zhibin Gao. Cooling rate dependence of the properties for Ti110Al14V4 alloy investigated by ab initio molecular dynamics. Journal of Molecular Liquids 2021, 343 , 117604. https://doi.org/10.1016/j.molliq.2021.117604
    28. Gauravjyoti D. Kalita, Podma P. Sarmah, Golap Kalita, Pankaj Das. Bimetallic Au–Pd nanoparticles supported on silica with a tunable core@shell structure: enhanced catalytic activity of Pd(core)–Au(shell) over Au(core)–Pd(shell). Nanoscale Advances 2021, 3 (18) , 5399-5416. https://doi.org/10.1039/D1NA00489A
    29. Yu Zhang, Zhiheng Lyu, Zitao Chen, Shangqian Zhu, Yifeng Shi, Ruhui Chen, Minghao Xie, Yao Yao, Miaofang Chi, Minhua Shao, Younan Xia. Maximizing the Catalytic Performance of Pd@Au x Pd 1− x Nanocubes in H 2 O 2 Production by Reducing Shell Thickness to Increase Compositional Stability. Angewandte Chemie 2021, 133 (36) , 19795-19799. https://doi.org/10.1002/ange.202105137
    30. Yu Zhang, Zhiheng Lyu, Zitao Chen, Shangqian Zhu, Yifeng Shi, Ruhui Chen, Minghao Xie, Yao Yao, Miaofang Chi, Minhua Shao, Younan Xia. Maximizing the Catalytic Performance of Pd@Au x Pd 1− x Nanocubes in H 2 O 2 Production by Reducing Shell Thickness to Increase Compositional Stability. Angewandte Chemie International Edition 2021, 60 (36) , 19643-19647. https://doi.org/10.1002/anie.202105137
    31. Alexander Korobov. Dynamic vs static behaviour of a supported nanoparticle with reaction-induced catalytic sites in a lattice model. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-59739-0
    32. Roger Rousseau, Vassiliki-Alexandra Glezakou, Annabella Selloni. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nature Reviews Materials 2020, 5 (6) , 460-475. https://doi.org/10.1038/s41578-020-0198-9
    33. Sambath Baskaran, Cong-Qiao Xu, Yang-Gang Wang, Ignacio L. Garzón, Jun Li. Catalytic mechanism and bonding analyses of Au-Pd single atom alloy (SAA): CO oxidation reaction. Science China Materials 2020, 63 (6) , 993-1002. https://doi.org/10.1007/s40843-019-1257-x
    34. Emilia Rucinska, Samuel Pattisson, Peter J. Miedziak, Gemma L. Brett, David J. Morgan, Meenakshisundaram Sankar, Graham J. Hutchings. Cinnamyl Alcohol Oxidation Using Supported Bimetallic Au–Pd Nanoparticles: An Optimization of Metal Ratio and Investigation of the Deactivation Mechanism Under Autoxidation Conditions. Topics in Catalysis 2020, 63 (1-2) , 99-112. https://doi.org/10.1007/s11244-020-01231-0
    35. Longfei Guo, Fuyi Chen, Tao Jin, Huazhen Liu, Nan Zhang, Yachao Jin, Qiao Wang, Quan Tang, Bowei Pan. Surface reconstruction of AgPd nanoalloy particles during the electrocatalytic formate oxidation reaction. Nanoscale 2020, 12 (5) , 3469-3481. https://doi.org/10.1039/C9NR09660D
    36. Andrés Aguado. Modeling the Electronic and Geometric Structure of Nanoalloys. 2020, 75-113. https://doi.org/10.1016/B978-0-12-819847-6.00009-7
    37. Wen‐Jing Kang, Chuan‐Qi Cheng, Zhe Li, Yi Feng, Gu‐Rong Shen, Xi‐Wen Du. Ultrafine Ag Nanoparticles as Active Catalyst for Electrocatalytic Hydrogen Production. ChemCatChem 2019, 11 (24) , 5976-5981. https://doi.org/10.1002/cctc.201901364
    38. Yun-Tao Xia, Xiao-Yu Xie, Su-Hang Cui, Yi-Gang Ji, Lei Wu. Secondary phosphine oxides stabilized Au/Pd nanoalloys: metal components-controlled regioselective hydrogenation toward phosphinyl ( Z )-[3]dendralenes. Chemical Communications 2019, 55 (78) , 11699-11702. https://doi.org/10.1039/C9CC05928H
    39. Tao Wang, Yida Xu, Jie Yang, Xuehai Ju, Weiping Ding, Yan Zhu. Predictable Catalysis of Electron‐Rich Palladium Catalyst toward Aldehydes Hydrogenation. ChemCatChem 2019, 11 (16) , 3770-3775. https://doi.org/10.1002/cctc.201900514
    40. Xianhu Liu, Ximei Wang, Jianyang Wu, Aimei Zhu, Qiugen Zhang, Qinglin Liu. Synergy effects between Sn and SiO2 on enhancing the anti-poison ability to CO for ethanol electrooxidation. Electrochimica Acta 2019, 302 , 145-152. https://doi.org/10.1016/j.electacta.2019.02.022
    41. Nirala Singh, Manh-Thuong Nguyen, David C. Cantu, B. Layla Mehdi, Nigel D. Browning, John L. Fulton, Jian Zheng, Mahalingam Balasubramanian, Oliver Y. Gutiérrez, Vassiliki-Alexandra Glezakou, Roger Rousseau, Niranjan Govind, Donald M. Camaioni, Charles T. Campbell, Johannes A. Lercher. Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. Journal of Catalysis 2018, 368 , 8-19. https://doi.org/10.1016/j.jcat.2018.09.021
    42. Madelyn R. Ball, Thejas S. Wesley, Keishla R. Rivera-Dones, George W. Huber, James A. Dumesic. Amination of 1-hexanol on bimetallic AuPd/TiO 2 catalysts. Green Chemistry 2018, 20 (20) , 4695-4709. https://doi.org/10.1039/C8GC02321B
    43. Remedios Cortese, Roberto Schimmenti, Antonio Prestianni, Dario Duca. DFT calculations on subnanometric metal catalysts: a short review on new supported materials. Theoretical Chemistry Accounts 2018, 137 (4) https://doi.org/10.1007/s00214-018-2236-x
    44. Yafan Zhao, Xin Chen, Jun Li. TGMin: A global-minimum structure search program based on a constrained basin-hopping algorithm. Nano Research 2017, 10 (10) , 3407-3420. https://doi.org/10.1007/s12274-017-1553-z
    45. Hyesung An, Hyunwoo Ha, Mi Yoo, Hyun You Kim. Understanding the atomic-level process of CO-adsorption-driven surface segregation of Pd in (AuPd) 147 bimetallic nanoparticles. Nanoscale 2017, 9 (33) , 12077-12086. https://doi.org/10.1039/C7NR04435F

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect