ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Hybrid Nanowire Photodetector Integrated in a Silicon Photonic Crystal

  • Masato Takiguchi*
    Masato Takiguchi
    Nanophotonics Center, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    *E-mail: [email protected]
  • Satoshi Sasaki
    Satoshi Sasaki
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    More by Satoshi Sasaki
  • Kouta Tateno
    Kouta Tateno
    Nanophotonics Center, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    More by Kouta Tateno
  • Edward Chen
    Edward Chen
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    More by Edward Chen
  • Kengo Nozaki
    Kengo Nozaki
    Nanophotonics Center, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    More by Kengo Nozaki
  • Sylvain Sergent
    Sylvain Sergent
    Nanophotonics Center, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    More by Sylvain Sergent
  • Eiichi. Kuramochi
    Eiichi. Kuramochi
    Nanophotonics Center, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
  • Guoqiang Zhang
    Guoqiang Zhang
    Nanophotonics Center, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    More by Guoqiang Zhang
  • Akihiko Shinya
    Akihiko Shinya
    Nanophotonics Center, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    More by Akihiko Shinya
  • , and 
  • Masaya Notomi*
    Masaya Notomi
    Nanophotonics Center, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    NTT Basic Research Laboratories, NTT Corp., 3-1, Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
    *E-mail: [email protected]
    More by Masaya Notomi
Cite this: ACS Photonics 2020, 7, 12, 3467–3473
Publication Date (Web):October 21, 2020
https://doi.org/10.1021/acsphotonics.0c01356
Copyright © 2020 American Chemical Society

    Article Views

    1396

    Altmetric

    -

    Citations

    16
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The combination of hybrid nanowire photodetector on silicon photonic crystals has the potential to be both highly sensitive and ultrafast. A p-i-n nanowire was integrated into a silicon photonic crystal via nanomanipulation technique and has been successfully implemented as a photodiode on silicon chip with Al:ZnO transparent electrode. The hybrid nanowire photodiode can detect laser light through the Al:ZnO coated input waveguide and is capable of measuring the photonic crystal enhanced photocurrent. In addition, a measurement of the enhanced photocurrent in the light cone by the nanoantenna was also conducted. Our results reveal the prospects for future photonic on-chip processors utilizing CMOS-compatible hybrid nanowire photodetector in a photonic crystal.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsphotonics.0c01356.

    • SEM images, EDS mapping images, fabrication process flow, IV curve of a single p-i-n nanowire, optical property of patterned Al:ZnO on PhC waveguide, and emission spectra of nanowires (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 16 publications.

    1. Preksha Tiwari, Anna Fischer, Markus Scherrer, Daniele Caimi, Heinz Schmid, Kirsten E. Moselund. Single-Mode Emission in InP Microdisks on Si Using Au Antenna. ACS Photonics 2022, 9 (4) , 1218-1225. https://doi.org/10.1021/acsphotonics.1c01677
    2. Domenic Prete, Francesco Amanti, Greta Andrini, Fabrizio Armani, Vittorio Bellani, Vincenzo Bonaiuto, Simone Cammarata, Matteo Campostrini, Samuele Cornia, Thu Ha Dao, Fabio De Matteis, Valeria Demontis, Giovanni Di Giuseppe, Sviatoslav Ditalia Tchernij, Simone Donati, Andrea Fontana, Jacopo Forneris, Roberto Francini, Luca Frontini, Gian Carlo Gazzadi, Roberto Gunnella, Simone Iadanza, Ali Emre Kaplan, Cosimo Lacava, Valentino Liberali, Leonardo Martini, Francesco Marzioni, Claudia Menozzi, Elena Nieto Hernández, Elena Pedreschi, Paolo Piergentili, Paolo Prosposito, Valentino Rigato, Carlo Roncolato, Francesco Rossella, Andrea Salamon, Matteo Salvato, Fausto Sargeni, Jafar Shojaii, Franco Spinella, Alberto Stabile, Alessandra Toncelli, Gabriella Trucco, Valerio Vitali. Hybrid Integrated Silicon Photonics Based on Nanomaterials. Photonics 2024, 11 (5) , 418. https://doi.org/10.3390/photonics11050418
    3. Ningning Gao, Qing Wang, Jun Tang, Xiaoyi Lv, Hongmei Li, Xiaxia Yue, Furu Zhong, Jihong Fu, Tao Wang. Serum SERS spectroscopy combined with classification algorithm in the non-destructive identification of cervical cancer. Applied Physics A 2023, 129 (12) https://doi.org/10.1007/s00339-023-07116-9
    4. Anoopshi Johari, Sanjeev Naithani, Baljinder Kaur, Abhinav Bhatnagar, Brajesh Kumar Kaushik. Simulation of waveguide integrated Ge2Sb2Te5-based tunable photodetector. Optical Engineering 2023, 62 (08) https://doi.org/10.1117/1.OE.62.8.087106
    5. Xue Chen, Bingkun Chen, Pengfei Zhao, Vellaisamy A L Roy, Su-Ting Han, Ye Zhou. Nanowire-based synaptic devices for neuromorphic computing. Materials Futures 2023, 2 (2) , 023501. https://doi.org/10.1088/2752-5724/acc678
    6. Masato Takiguchi, Guoqiang Zhang, Satoshi Sasaki, Kouta Tateno, Caleb John, Masaaki Ono, Hisashi Sumikura, Akihiko Shinya, Masaya Notomi. Damage protection from focused ion beam process toward nanocavity-implemented compound semiconductor nanowire lasers. Nanotechnology 2023, 34 (13) , 135301. https://doi.org/10.1088/1361-6528/acb0d5
    7. Xue Chen, Bingkun Chen, Bei Jiang, Tengfei Gao, Gang Shang, Su‐Ting Han, Chi‐Ching Kuo, Vellaisamy A. L. Roy, Ye Zhou. Nanowires for UV–vis–IR Optoelectronic Synaptic Devices. Advanced Functional Materials 2023, 33 (1) https://doi.org/10.1002/adfm.202208807
    8. E. S. Kadir, R. N. Gayen, M. Pal Chowdhury. Enhanced photodetection properties of GO incorporated flexible PVDF membranes under solar spectrum. Journal of Polymer Research 2022, 29 (12) https://doi.org/10.1007/s10965-022-03364-0
    9. Pengyan Wen, Preksha Tiwari, Svenja Mauthe, Heinz Schmid, Marilyne Sousa, Markus Scherrer, Michael Baumann, Bertold Ian Bitachon, Juerg Leuthold, Bernd Gotsmann, Kirsten E. Moselund. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28502-6
    10. N Peric, T Dursap, J Becdelievre, M Berthe, A Addad, P Rojo Romeo, R Bachelet, G Saint-Girons, O Lancry, S Legendre, L Biadala, J Penuelas, B Grandidier. Assessing the insulating properties of an ultrathin SrTiO 3 shell grown around GaAs nanowires with molecular beam epitaxy. Nanotechnology 2022, 33 (37) , 375702. https://doi.org/10.1088/1361-6528/ac7576
    11. Tangyou Sun, Furong Shui, Xiancui Yang, Zhiping Zhou, Rongqiao Wan, Yun Liu, Cheng Qian, Zhimou Xu, Haiou Li, Wenjing Guo. High Anti-Reflection Large-Scale Cup-Shaped Nano-Pillar Arrays via Thin Film Anodic Aluminum Oxide Replication. Nanomaterials 2022, 12 (11) , 1875. https://doi.org/10.3390/nano12111875
    12. Nasir Ilyas, Jinyong Wang, Chunmei Li, Dongyang Li, Hao Fu, Deen Gu, Xiangdong Jiang, Fucai Liu, Yadong Jiang, Wei Li. Nanostructured Materials and Architectures for Advanced Optoelectronic Synaptic Devices. Advanced Functional Materials 2022, 32 (15) https://doi.org/10.1002/adfm.202110976
    13. Qinghai Zhu, Peng Ye, Youmei Tang, Xiaodong Zhu, Zhiyuan Cheng, Jing Xu, Mingsheng Xu. High-performance broadband photoresponse of self-powered Mg 2 Si/Si photodetectors. Nanotechnology 2022, 33 (11) , 115202. https://doi.org/10.1088/1361-6528/ac3f53
    14. Jeng Yi Lee, Yi-Huan Chen, Pai-Yen Chen. Degeneracy of light scattering and absorption by a single nanowire. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-98011-x
    15. Masato Takiguchi, Guoqiang Zhang, Evans Frandsen, Hisashi Sumikura, Tai Tsuchizawa, Satoshi Sasaki, Akihiko Shinya, Katsuya Oguri, Hideki Gotoh, Masaya Notomi. Thermal effect of InP/InAs nanowire lasers integrated on different optical platforms. OSA Continuum 2021, 4 (6) , 1838. https://doi.org/10.1364/OSAC.424375
    16. Markus Scherrer, Noelia Vico Triviño, Svenja Mauthe, Preksha Tiwari, Heinz Schmid, Kirsten E. Moselund. In-Plane Monolithic Integration of Scaled III-V Photonic Devices. Applied Sciences 2021, 11 (4) , 1887. https://doi.org/10.3390/app11041887

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect