ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Functional Characterization of Staphylococcus epidermidis IcaB, a De-N-acetylase Important for Biofilm Formation

View Author Information
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
§ Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
*E-mail [email protected], phone 416-946-0640 (M.N.).
Cite this: Biochemistry 2013, 52, 32, 5463–5471
Publication Date (Web):July 18, 2013
https://doi.org/10.1021/bi400836g
Copyright © 2013 American Chemical Society

    Article Views

    1225

    Altmetric

    -

    Citations

    27
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A polymer of partially de-N-acetylated β-1,6-linked N-acetylglucosamine (dPNAG), also known as the polysaccharide intercellular adhesin (PIA), is an important component of many bacterial biofilm matrices. In Staphyloccocus epidermidis, the poly-N-acetylglucosamine polymer is partially de-N-acetylated by the extracellular protein IcaB. To understand the mechanism of action of IcaB, the enzyme was overexpressed and purified. IcaB demonstrates metal-dependent de-N-acetylase activity on β-1,6-linked N-acetylglucosamine oligomers with a broad preference for divalent metals. Steady-state kinetic analysis reveals the low catalytic efficiency (pentasaccharide kcat/KM 0.03 M–1 s–1) of the enzyme toward the oligomeric substrates. While IcaB displays similar rates of de-N-acetylation with tri- through hexasaccharide PNAG oligomers, position specific de-N-acetylation was only observed with penta- and hexasaccharides. The enzyme preferentially de-N-acetylates the second residue from the reducing terminus in the pentasaccharide and second and third residues from the reducing terminus in the hexasaccharide. The data described here represent an important step toward a detailed understanding of dPNAG biosynthesis in S. epidermidis, an important nosocomial pathogen, as well as in other Gram-positive bacteria. The low catalytic activity of IcaB is consistent with reports of other enzymes which act on biofilm-related polysaccharides, and this emerging trend may indicate a common feature among this group of polysaccharide processing enzymes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    IcaBHis10 expression and purification SDS-PAGE gel, gel filtration chromatography of IcaBHis10 and IcaB, ESI-MS/MS analysis of the [M + H]+ precursor ion, structures and calculated molecular weights of each fragment of monode-N-acetylated GlcNAc trisaccharides, tetrasaccharides, and hexasaccharides. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 27 publications.

    1. Alexander C. Anderson, Alysha J. N. Burnett, Shirley Constable, Lana Hiscock, Kenneth E. Maly, Joel T. Weadge. A Mechanistic Basis for Phosphoethanolamine Modification of the Cellulose Biofilm Matrix in Escherichia coli. Biochemistry 2021, 60 (47) , 3659-3669. https://doi.org/10.1021/acs.biochem.1c00605
    2. Alexander Eddenden, Elena N. Kitova, John S. Klassen, Mark Nitz. An Inactive Dispersin B Probe for Monitoring PNAG Production in Biofilm Formation. ACS Chemical Biology 2020, 15 (5) , 1204-1211. https://doi.org/10.1021/acschembio.9b00907
    3. Patrice François, Jacques Schrenzel, Friedrich Götz. Biology and Regulation of Staphylococcal Biofilm. International Journal of Molecular Sciences 2023, 24 (6) , 5218. https://doi.org/10.3390/ijms24065218
    4. Tiger Aspell, Adrina Hema J. Khemlani, Catherine Jia-Yun Tsai, Jacelyn Mei San Loh, Thomas Proft. The Cell Wall Deacetylases Spy1094 and Spy1370 Contribute to Streptococcus pyogenes Virulence. Microorganisms 2023, 11 (2) , 305. https://doi.org/10.3390/microorganisms11020305
    5. Shoko Kutsuno, Ikue Hayashi, Liansheng Yu, Sakuo Yamada, Junzo Hisatsune, Motoyuki Sugai. Non-deacetylated poly-N-acetylglucosamine-hyperproducing Staphylococcus aureus undergoes immediate autoaggregation upon vortexing. Frontiers in Microbiology 2023, 13 https://doi.org/10.3389/fmicb.2022.1101545
    6. Jeffrey S. Rush, Prakash Parajuli, Alessandro Ruda, Jian Li, Amol Arunrao Pohane, Svetlana Zamakhaeva, Mohammad M. Rahman, Jennifer C. Chang, Artemis Gogos, Cameron W. Kenner, Gérard Lambeau, Michael J. Federle, Konstantin V. Korotkov, Göran Widmalm, Natalia Korotkova. PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28257-0
    7. Tiger Aspell, Adrina Hema Jethanand Khemlani, Jacelyn Mei San Loh, Catherine Jia-Yun Tsai, Thomas Proft. Functional Characterisation of Two Novel Deacetylases from Streptococcus pyogenes. Microbiology Research 2022, 13 (2) , 323-331. https://doi.org/10.3390/microbiolres13020025
    8. Christian Kranjec, Danae Morales Angeles, Marita Torrissen Mårli, Lucía Fernández, Pilar García, Morten Kjos, Dzung B. Diep. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics 2021, 10 (2) , 131. https://doi.org/10.3390/antibiotics10020131
    9. Natalie C. Bamford, François Le Mauff, Jaime C. Van Loon, Hanna Ostapska, Brendan D. Snarr, Yongzhen Zhang, Elena N. Kitova, John S. Klassen, Jeroen D. C. Codée, Donald C. Sheppard, P. Lynne Howell. Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16144-5
    10. Hoai T.T. Nguyen, Thuan H. Nguyen, Michael Otto. The staphylococcal exopolysaccharide PIA – Biosynthesis and role in biofilm formation, colonization, and infection. Computational and Structural Biotechnology Journal 2020, 18 , 3324-3334. https://doi.org/10.1016/j.csbj.2020.10.027
    11. Yusibeska Ramos, Jorge Rocha, Ana L. Hael, Jordi van Gestel, Hera Vlamakis, Colette Cywes-Bentley, Juan R. Cubillos-Ruiz, Gerald B. Pier, Michael S. Gilmore, Roberto Kolter, Diana K. Morales, . PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis. PLOS Pathogens 2019, 15 (2) , e1007571. https://doi.org/10.1371/journal.ppat.1007571
    12. Mehrnoush Sharifinejad, Narjes Shokatpour, Farshad Farnaghi, Zohreh Abedinyfar, Fahimeh Asadi Amoli, Farahnoosh Doustdar. Different Genotypes of Adhesion Operon Genes in Staphylococcus epidermidis Isolates From Various Ocular Infections. Eye & Contact Lens: Science & Clinical Practice 2018, 44 (2) , S277-S280. https://doi.org/10.1097/ICL.0000000000000464
    13. David J. Harvey. Analysis of carbohydrates and glycoconjugates by matrix‐assisted laser desorption/ionization mass spectrometry: An update for 2013–2014. Mass Spectrometry Reviews 2018, 37 (4) , 353-491. https://doi.org/10.1002/mas.21530
    14. M. Shanmugam, A.O. Oyeniyi, C. Parthiban, S.K. Gujjarlapudi, G.B. Pier, N. Ramasubbu. Role of de‐ N ‐acetylase PgaB from Aggregatibacter actinomycetemcomitans in exopolysaccharide export in biofilm mode of growth. Molecular Oral Microbiology 2017, 32 (6) , 500-510. https://doi.org/10.1111/omi.12188
    15. C. Parthiban, D. Varudharasu, M. Shanmugam, P. Gopal, C. Ragunath, L. Thomas, M. Nitz, N. Ramasubbu. Structural and functional analysis of de‐ N ‐acetylase PgaB from periodontopathogen Aggregatibacter actinomycetemcomitans. Molecular Oral Microbiology 2017, 32 (4) , 324-340. https://doi.org/10.1111/omi.12175
    16. Yuta Kawasaki, Tomoyuki Endo, Atsuo Fujiwara, Keiko Kondo, Masato Katahira, Tadashi Nittami, Michio Sato, Minoru Takeda. Elongation pattern and fine structure of the sheaths formed by Thiothrix nivea and Thiothrix fructosivorans. International Journal of Biological Macromolecules 2017, 95 , 1280-1288. https://doi.org/10.1016/j.ijbiomac.2016.11.025
    17. Mehrdad Zalipour, Hadi Sedigh Ebrahim-Saraie, Jamal Sarvari, Reza Khashei. Detection of Biofilm Production Capability and icaA/D Genes Among Staphylococci Isolates from Shiraz, Iran. Jundishapur Journal of Microbiology 2016, 9 (12) https://doi.org/10.5812/jjm.41431
    18. Yuta Kawasaki, Keiko Kondo, Rie Narizuka, Tomoyuki Endo, Masato Katahira, Izuru Kawamura, Michio Sato, Minoru Takeda. Presence of N-l-lactyl-d-perosamine residue in the sheath-forming polysaccharide of Thiothrix fructosivorans. International Journal of Biological Macromolecules 2016, 82 , 772-779. https://doi.org/10.1016/j.ijbiomac.2015.10.028
    19. Cécile Berne, Adrien Ducret, Gail G. Hardy, Yves V. Brun. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. 2015, 163-199. https://doi.org/10.1128/9781555817466.ch9
    20. Dustin J. Little, Sonja Milek, Natalie C. Bamford, Tridib Ganguly, Benjamin R. DiFrancesco, Mark Nitz, Rajendar Deora, P. Lynne Howell. The Protein BpsB Is a Poly-β-1,6-N-acetyl-d-glucosamine Deacetylase Required for Biofilm Formation in Bordetella bronchiseptica. Journal of Biological Chemistry 2015, 290 (37) , 22827-22840. https://doi.org/10.1074/jbc.M115.672469
    21. Laura Hobley, Catriona Harkins, Cait E. MacPhee, Nicola R. Stanley-Wall, . Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiology Reviews 2015, 39 (5) , 649-669. https://doi.org/10.1093/femsre/fuv015
    22. Cécile Berne, Adrien Ducret, Gail G. Hardy, Yves V. Brun, , , , . Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. Microbiology Spectrum 2015, 3 (4) https://doi.org/10.1128/microbiolspec.MB-0018-2015
    23. Gregory B. Whitfield, Lindsey S. Marmont, P. Lynne Howell. Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Frontiers in Microbiology 2015, 6 https://doi.org/10.3389/fmicb.2015.00471
    24. Sofia Arnaouteli, Petros Giastas, Athina Andreou, Mary Tzanodaskalaki, Christine Aldridge, Socrates J. Tzartos, Waldemar Vollmer, Elias Eliopoulos, Vassilis Bouriotis. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis. Journal of Biological Chemistry 2015, 290 (21) , 13465-13478. https://doi.org/10.1074/jbc.M115.640029
    25. Dustin J. Little, Natalie C. Bamford, Varvara Pokrovskaya, Howard Robinson, Mark Nitz, P. Lynne Howell. Structural Basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-d-glucosamine in Gram-positive Bacteria. Journal of Biological Chemistry 2014, 289 (52) , 35907-35917. https://doi.org/10.1074/jbc.M114.611400
    26. Dustin J. Little, Grace Li, Christopher Ing, Benjamin R. DiFrancesco, Natalie C. Bamford, Howard Robinson, Mark Nitz, Régis Pomès, P. Lynne Howell. Modification and periplasmic translocation of the biofilm exopolysaccharide poly-β-1,6- N -acetyl- d -glucosamine. Proceedings of the National Academy of Sciences 2014, 111 (30) , 11013-11018. https://doi.org/10.1073/pnas.1406388111
    27. Kate E. Atkin, Sandy J. MacDonald, Andrew S. Brentnall, Jennifer R. Potts, Gavin H. Thomas. A different path: Revealing the function of staphylococcal proteins in biofilm formation. FEBS Letters 2014, 588 (10) , 1869-1872. https://doi.org/10.1016/j.febslet.2014.04.002

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect