ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Alanine Scanning Mutagenesis of the Switch I Region in the ATPase Site of Dictyostelium discoideum Myosin II

View Author Information
Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153, Japan
Cite this: Biochemistry 1997, 36, 46, 14037–14043
Publication Date (Web):November 18, 1997
https://doi.org/10.1021/bi971837i
Copyright © 1997 American Chemical Society

    Article Views

    379

    Altmetric

    -

    Citations

    79
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    In order to determine the functional roles of the conserved sequence (NXNSSRFG) of the “switch I” loop (residues 233−240 in Dictyostelium myosin II), alanine scanning mutagenesis was performed on Dictyostelium myosin II. N233A and S237A mutant myosins did not bind a fluorescent analog of ADP, mant-deoxyADP, at the low concentration range (micromolar and had low level of ATPase activities. They were nonmotile when examined by the in vitro motility assay. Dictyostelium cells expressing these myosins showed worse phenotypes than that of myosin-null cells. In contrast to these mutant myosins, R238A myosin tightly bound mant-deoxyADP. However, the mutant had a defect in the ATP hydrolysis step and exhibited the lowest ATPase activities among the mutants examined here. The R238A myosin was nonmotile. R238C or R238H mutations, which mimic the Usher syndrome mutations, generated myosins with similar functional defects to those of the R238A mutation. Cells expressing the R238A myosin exhibited the phenotype similar to that of the myosin-null cells. N235A, S236A, F239A, and G240A myosins retained moderate levels of ATPase activities and could drive sliding of actin filaments at various speeds. Phenotypes of cells expressing them were very similar to that of the wild-type cells. Taken together, these results suggest that side chains of N233 and S237 may play essential roles in holding a nucleotide in the ATPase pocket and that R238 may play crucial roles in the ATP hydrolysis step, while those of the other residues in the switch I loop are not essential for the process.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by a grant-in-aid by the Ministry of Education, Science and Culture of Japan, and a grant from the International Human Frontier Science Program (HFSP) Organization to K.S.

    *

     To whom correspondence should be addressed.

     Abstract published in Advance ACS Abstracts, November 1, 1997.

    Cited By

    This article is cited by 79 publications.

    1. Yang Cao, Howard D. White, and Xiang-dong Li . Drosophila Myosin-XX Functions as an Actin-Binding Protein To Facilitate the Interaction between Zyx102 and Actin. Biochemistry 2014, 53 (2) , 350-360. https://doi.org/10.1021/bi401236c
    2. Tianming Lin, Michael J. Greenberg, Jeffrey R. Moore, and E. Michael Ostap . A Hearing Loss-Associated myo1c Mutation (R156W) Decreases the Myosin Duty Ratio and Force Sensitivity. Biochemistry 2011, 50 (11) , 1831-1838. https://doi.org/10.1021/bi1016777
    3. Jeremiah J. Frye, Vadim A. Klenchin, Clive R. Bagshaw, and Ivan Rayment . Insights into the Importance of Hydrogen Bonding in the γ-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Serine 236,. Biochemistry 2010, 49 (23) , 4897-4907. https://doi.org/10.1021/bi1001344
    4. Yang Yang and Qiang Cui. Does Water Relay Play an Important Role in Phosphoryl Transfer Reactions? Insights from Theoretical Study of a Model Reaction in Water and tert-Butanol. The Journal of Physical Chemistry B 2009, 113 (14) , 4930-4939. https://doi.org/10.1021/jp810755p
    5. Markus Horsthemke, Charles-Adrien Arnaud, Peter J. Hanley. Are the class 18 myosins Myo18A and Myo18B specialist sarcomeric proteins?. Frontiers in Physiology 2024, 15 https://doi.org/10.3389/fphys.2024.1401717
    6. Luisa Moretto, Marko Ušaj, Oleg Matusovsky, Dilson E. Rassier, Ran Friedman, Alf Månsson. Multistep orthophosphate release tunes actomyosin energy transduction. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32110-9
    7. Pei-Ju Liu, Laura K. Gunther, Michael E. Garone, Chunling Zhang, Diana Perez, Jing Bi-Karchin, Christopher D. Pellenz, Sharon E. Chase, Maria F. Presti, Eric L. Plante, Claire E. Martin, Svjetlana Lovric, Christopher M. Yengo, Friedhelm Hildebrandt, Mira Krendel. Steroid-Resistant Nephrotic Syndrome–Associated MYO1E Mutations Have Differential Effects on Myosin 1e Localization, Dynamics, and Activity. Journal of the American Society of Nephrology 2022, 33 (11) , 1989-2007. https://doi.org/10.1681/ASN.2021111505
    8. Akhil Gargey, Yuri E. Nesmelov. The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin. International Journal of Molecular Sciences 2022, 23 (3) , 1220. https://doi.org/10.3390/ijms23031220
    9. Matthew Carter Childers, Michael Geeves, Valerie Daggett, Michael Regnier. Modulation of post-powerstroke dynamics in myosin II by 2′-deoxy-ADP. Archives of Biochemistry and Biophysics 2021, 699 , 108733. https://doi.org/10.1016/j.abb.2020.108733
    10. Sandra A. Hemkemeyer, Veith Vollmer, Vera Schwarz, Birgit Lohmann, Ulrike Honnert, Muna Taha, Hans-Joachim Schnittler, Martin Bähler. Local Myo9b RhoGAP activity regulates cell motility. Journal of Biological Chemistry 2021, 296 , 100136. https://doi.org/10.1074/jbc.RA120.013623
    11. Colbie R. Chinowsky, Julia A. Pinette, Leslie M. Meenderink, Ken S. Lau, Matthew J. Tyska, . Nonmuscle myosin-2 contractility-dependent actin turnover limits the length of epithelial microvilli. Molecular Biology of the Cell 2020, 31 (25) , 2803-2815. https://doi.org/10.1091/mbc.E20-09-0582
    12. Laura K. Gunther, John A. Rohde, Wanjian Tang, Joseph A. Cirilo, Christopher P. Marang, Brent D. Scott, David D. Thomas, Edward P. Debold, Christopher M. Yengo. FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V. Journal of Biological Chemistry 2020, 295 (51) , 17383-17397. https://doi.org/10.1074/jbc.RA120.015632
    13. Beáta Bugyi, András Kengyel. Myosin XVI. 2020, 405-419. https://doi.org/10.1007/978-3-030-38062-5_18
    14. Daniel S. Osório, Fung-Yi Chan, Joana Saramago, Joana Leite, Ana M. Silva, Ana F. Sobral, Reto Gassmann, Ana Xavier Carvalho. Crosslinking activity of non-muscle myosin II is not sufficient for embryonic cytokinesis in C. elegans. Development 2019, 146 (21) https://doi.org/10.1242/dev.179150
    15. Joana Leite, Daniel Sampaio Osorio, Ana Filipa Sobral, Ana Marta Silva, Ana Xavier Carvalho. Network Contractility during Cytokinesis—From Molecular to Global Views. Biomolecules 2019, 9 (5) , 194. https://doi.org/10.3390/biom9050194
    16. Nivetha Kannan, Vivian W. Tang. Myosin-1c promotes E-cadherin tension and force-dependent recruitment of α-actinin to the epithelial cell junction. Journal of Cell Science 2018, 131 (12) https://doi.org/10.1242/jcs.211334
    17. Sarah M. Heissler, Krishna Chinthalapudi, James R. Sellers. Kinetic signatures of myosin-5B, the motor involved in microvillus inclusion disease. Journal of Biological Chemistry 2017, 292 (44) , 18372-18385. https://doi.org/10.1074/jbc.M117.801456
    18. Jinghua Ge, Furong Huang, Yuri E. Nesmelov. Metal cation controls phosphate release in the myosin ATPase. Protein Science 2017, 26 (11) , 2181-2186. https://doi.org/10.1002/pro.3267
    19. M. Preller, D.J. Manstein. Myosin Motors: Structural Aspects and Functionality☆. 2017https://doi.org/10.1016/B978-0-12-809633-8.08058-4
    20. Farooq Ahmad Kiani, Stefan Fischer. Effects of protonation on the hydrolysis of triphosphate in vacuum and the implications for catalysis by nucleotide hydrolyzing enzymes. BMC Biochemistry 2016, 17 (1) https://doi.org/10.1186/s12858-016-0068-7
    21. Meredith L. Weck, Scott W. Crawley, Colin R. Stone, Matthew J. Tyska. Myosin-7b Promotes Distal Tip Localization of the Intermicrovillar Adhesion Complex. Current Biology 2016, 26 (20) , 2717-2728. https://doi.org/10.1016/j.cub.2016.08.014
    22. Nadine Kittelberger, Markus Breunig, René Martin, Hans-Joachim Knölker, Pika Miklavc. The role of myosin 1c and myosin 1b in surfactant exocytosis. Journal of Cell Science 2016, 129 (8) , 1685-1696. https://doi.org/10.1242/jcs.181313
    23. Farooq Ahmad Kiani, Stefan Fischer. Comparing the catalytic strategy of ATP hydrolysis in biomolecular motors. Physical Chemistry Chemical Physics 2016, 18 (30) , 20219-20233. https://doi.org/10.1039/C6CP01364C
    24. Masak Takaine, Osamu Numata, Kentaro Nakano. An actin–myosin-II interaction is involved in maintaining the contractile ring in fission yeast. Journal of Cell Science 2015, 128 (15) , 2903-2918. https://doi.org/10.1242/jcs.171264
    25. Farooq Ahmad Kiani, Stefan Fischer. Advances in quantum simulations of ATPase catalysis in the myosin motor. Current Opinion in Structural Biology 2015, 31 , 115-123. https://doi.org/10.1016/j.sbi.2015.04.006
    26. Onur Varol, Deniz Yuret, Burak Erman, Alkan Kabakçıoğlu. Mode coupling points to functionally important residues in myosin II. Proteins: Structure, Function, and Bioinformatics 2014, 82 (9) , 1777-1786. https://doi.org/10.1002/prot.24531
    27. Farooq Ahmad Kiani, Stefan Fischer. Catalytic strategy used by the myosin motor to hydrolyze ATP. Proceedings of the National Academy of Sciences 2014, 111 (29) https://doi.org/10.1073/pnas.1401862111
    28. Tae-Jun Kwon, Se-Kyung Oh, Hong-Joon Park, Osamu Sato, Hanka Venselaar, Soo Young Choi, SungHee Kim, Kyu-Yup Lee, Jinwoong Bok, Sang-Heun Lee, Gert Vriend, Mitsuo Ikebe, Un-Kyung Kim, Jae Young Choi. The effect of novel mutations on the structure and enzymatic activity of unconventional myosins associated with autosomal dominant non-syndromic hearing loss. Open Biology 2014, 4 (7) , 140107. https://doi.org/10.1098/rsob.140107
    29. Hanna Brzeska, Kevin Pridham, Godefroy Chery, Margaret A. Titus, Edward D. Korn, . The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail. PLoS ONE 2014, 9 (4) , e94306. https://doi.org/10.1371/journal.pone.0094306
    30. Jessica N. Mazerik, Lewis J. Kraft, Anne K. Kenworthy, Matthew J. Tyska. Motor and Tail Homology 1 (TH1) Domains Antagonistically Control Myosin-1 Dynamics. Biophysical Journal 2014, 106 (3) , 649-658. https://doi.org/10.1016/j.bpj.2013.12.038
    31. Farooq Ahmad Kiani, Stefan Fischer. Stabilization of the ADP/Metaphosphate Intermediate during ATP Hydrolysis in Pre-power Stroke Myosin. Journal of Biological Chemistry 2013, 288 (49) , 35569-35580. https://doi.org/10.1074/jbc.M113.500298
    32. Hiroshi Tokuo, Lynne M. Coluccio, . Myosin-1c regulates the dynamic stability of E-cadherin–based cell–cell contacts in polarized Madin–Darby canine kidney cells. Molecular Biology of the Cell 2013, 24 (18) , 2820-2833. https://doi.org/10.1091/mbc.e12-12-0884
    33. Jared C. Cochran, Morgan E. Thompson, F. Jon Kull. Metal Switch-controlled Myosin II from Dictyostelium discoideum Supports Closure of Nucleotide Pocket during ATP Binding Coupled to Detachment from Actin Filaments. Journal of Biological Chemistry 2013, 288 (39) , 28312-28323. https://doi.org/10.1074/jbc.M113.466045
    34. Stephanie Guzik-Lendrum, Sarah M. Heissler, Neil Billington, Yasuharu Takagi, Yi Yang, Peter J. Knight, Earl Homsher, James R. Sellers. Mammalian Myosin-18A, a Highly Divergent Myosin. Journal of Biological Chemistry 2013, 288 (13) , 9532-9548. https://doi.org/10.1074/jbc.M112.441238
    35. Darshan V. Trivedi, Charles David, Donald J. Jacobs, Christopher M. Yengo. Switch II Mutants Reveal Coupling between the Nucleotide- and Actin-Binding Regions in Myosin V. Biophysical Journal 2012, 102 (11) , 2545-2555. https://doi.org/10.1016/j.bpj.2012.04.025
    36. Hanna Brzeska, Jake Guag, G. Michael Preston, Margaret A. Titus, Edward D. Korn. Molecular Basis of Dynamic Relocalization of Dictyostelium Myosin IB. Journal of Biological Chemistry 2012, 287 (18) , 14923-14936. https://doi.org/10.1074/jbc.M111.318667
    37. Xuefei Ma, Mihály Kovács, Mary Anne Conti, Aibing Wang, Yingfan Zhang, James R. Sellers, Robert S. Adelstein. Nonmuscle myosin II exerts tension but does not translocate actin in vertebrate cytokinesis. Proceedings of the National Academy of Sciences 2012, 109 (12) , 4509-4514. https://doi.org/10.1073/pnas.1116268109
    38. M. Preller, D.J. Manstein. 4.8 Myosin Motors: Structural Aspects and Functionality. 2012, 118-150. https://doi.org/10.1016/B978-0-12-374920-8.00410-0
    39. Simone Sanna-Cherchi, Katelyn E. Burgess, Shannon N. Nees, Gianluca Caridi, Patricia L. Weng, Monica Dagnino, Monica Bodria, Alba Carrea, Maddalena A. Allegretta, Hyunjae R. Kim, Brittany J. Perry, Maddalena Gigante, Lorraine N. Clark, Sergey Kisselev, Daniele Cusi, Loreto Gesualdo, Landino Allegri, Francesco Scolari, Vivette D'Agati, Lawrence S. Shapiro, Carmine Pecoraro, Teresa Palomero, Gian M. Ghiggeri, Ali G. Gharavi. Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. Kidney International 2011, 80 (4) , 389-396. https://doi.org/10.1038/ki.2011.148
    40. Claudia G. Almeida, Ayako Yamada, Danièle Tenza, Daniel Louvard, Graça Raposo, Evelyne Coudrier. Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nature Cell Biology 2011, 13 (7) , 779-789. https://doi.org/10.1038/ncb2262
    41. Stephanie Guzik-Lendrum, Attila Nagy, Yasuharu Takagi, Anne Houdusse, James R. Sellers. Drosophila melanogaster Myosin-18 Represents a Highly Divergent Motor with Actin Tethering Properties. Journal of Biological Chemistry 2011, 286 (24) , 21755-21766. https://doi.org/10.1074/jbc.M111.218669
    42. Tsuyoshi Sakai, Nobuhisa Umeki, Reiko Ikebe, Mitsuo Ikebe. Cargo binding activates myosin VIIA motor function in cells. Proceedings of the National Academy of Sciences 2011, 108 (17) , 7028-7033. https://doi.org/10.1073/pnas.1009188108
    43. Nancy Adamek, Michael A. Geeves, Lynne M. Coluccio. Myo1c mutations associated with hearing loss cause defects in the interaction with nucleotide and actin. Cellular and Molecular Life Sciences 2011, 68 (1) , 139-150. https://doi.org/10.1007/s00018-010-0448-x
    44. Wolfgang Wagner, Stephan D. Brenowitz, John A. Hammer. Myosin-Va transports the endoplasmic reticulum into the dendritic spines of Purkinje neurons. Nature Cell Biology 2011, 13 (1) , 40-48. https://doi.org/10.1038/ncb2132
    45. Shigeru Komaba, Lynne M. Coluccio. Localization of Myosin 1b to Actin Protrusions Requires Phosphoinositide Binding*. Journal of Biological Chemistry 2010, 285 (36) , 27686-27693. https://doi.org/10.1074/jbc.M109.087270
    46. Wenjun Zheng. Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex. Proteins: Structure, Function, and Bioinformatics 2010, 78 (3) , 638-660. https://doi.org/10.1002/prot.22594
    47. Balaji Olety, Mike Wälte, Ulrike Honnert, Hermann Schillers, Martin Bähler. Myosin 1G (Myo1G) is a haematopoietic specific myosin that localises to the plasma membrane and regulates cell elasticity. FEBS Letters 2010, 584 (3) , 493-499. https://doi.org/10.1016/j.febslet.2009.11.096
    48. Shunya Hozumi, Reo Maeda, Maiko Taniguchi-Kanai, Takashi Okumura, Kiichiro Taniguchi, Yasuhiro Kawakatsu, Naotaka Nakazawa, Ryo Hatori, Kenji Matsuno. Head region of unconventional myosin I family members is responsible for the organ-specificity of their roles in left-right polarity in Drosophila. Developmental Dynamics 2008, 237 (12) , 3528-3537. https://doi.org/10.1002/dvdy.21583
    49. Yang Yang, Haibo Yu, Qiang Cui. Extensive Conformational Transitions Are Required to Turn On ATP Hydrolysis in Myosin. Journal of Molecular Biology 2008, 381 (5) , 1407-1420. https://doi.org/10.1016/j.jmb.2008.06.071
    50. Hiroshi Tokuo, Katsuhide Mabuchi, Mitsuo Ikebe. The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. Journal of Cell Biology 2007, 179 (2) , 229-238. https://doi.org/10.1083/jcb.200703178
    51. Frank van den Boom, Heiko Düssmann, Katharina Uhlenbrock, Marouan Abouhamed, Martin Bähler, . The Myosin IXb Motor Activity Targets the Myosin IXb RhoGAP Domain as Cargo to Sites of Actin Polymerization. Molecular Biology of the Cell 2007, 18 (4) , 1507-1518. https://doi.org/10.1091/mbc.e06-08-0771
    52. Haibo Yu, Liang Ma, Yang Yang, Qiang Cui, . Mechanochemical Coupling in the Myosin Motor Domain. I. Insights from Equilibrium Active-Site Simulations. PLoS Computational Biology 2007, 3 (2) , e21. https://doi.org/10.1371/journal.pcbi.0030021
    53. Richard S. Cameron, Changdan Liu, April S. Mixon, Jeanene P. S. Pihkala, Rebecca J. Rahn, Patricia L. Cameron. Myosin16b: The COOH‐tail region directs localization to the nucleus and overexpression delays S‐phase progression. Cell Motility 2007, 64 (1) , 19-48. https://doi.org/10.1002/cm.20162
    54. Norio Takeshita, Akinori Ohta, Hiroyuki Horiuchi. CsmA, a Class V Chitin Synthase with a Myosin Motor-like Domain, Is Localized through Direct Interaction with the Actin Cytoskeleton in Aspergillus nidulans. Molecular Biology of the Cell 2005, 16 (4) , 1961-1970. https://doi.org/10.1091/mbc.e04-09-0761
    55. Inna A. Belyantseva, Erich T. Boger, Sadaf Naz, Gregory I. Frolenkov, James R. Sellers, Zubair M. Ahmed, Andrew J. Griffith, Thomas B. Friedman. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nature Cell Biology 2005, 7 (2) , 148-156. https://doi.org/10.1038/ncb1219
    56. K. C. Holmes, D. R. Trentham, R. Simmons, Wei Zeng, Paul B. Conibear, Jane L. Dickens, Ruth A. Cowie, Stuart Wakelin, András Málnási–Csizmadia, Clive R. Bagshaw. Dynamics of actomyosin interactions in relation to the cross-bridge cycle. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 2004, 359 (1452) , 1843-1855. https://doi.org/10.1098/rstb.2004.1527
    57. Jennifer Lin-Jones, Ed Parker, Mike Wu, Andréa Dosé, Beth Burnside. Myosin 3A transgene expression produces abnormal actin filament bundles in transgenic Xenopus laevis rod photoreceptors. Journal of Cell Science 2004, 117 (24) , 5825-5834. https://doi.org/10.1242/jcs.01512
    58. J. David Lawson, Edward Pate, Ivan Rayment, Ralph G. Yount. Molecular Dynamics Analysis of Structural Factors Influencing Back Door Pi Release in Myosin. Biophysical Journal 2004, 86 (6) , 3794-3803. https://doi.org/10.1529/biophysj.103.037390
    59. Guohui Li, Qiang Cui. Mechanochemical Coupling in Myosin:  A Theoretical Analysis with Molecular Dynamics and Combined QM/MM Reaction Path Calculations. The Journal of Physical Chemistry B 2004, 108 (10) , 3342-3357. https://doi.org/10.1021/jp0371783
    60. F. Les Erickson, Amoreena C. Corsa, Andréa C. Dosé, Beth Burnside. Localization of a Class III Myosin to Filopodia Tips in Transfected HeLa Cells Requires an Actin-binding Site in its Tail Domain. Molecular Biology of the Cell 2003, 14 (10) , 4173-4180. https://doi.org/10.1091/mbc.e02-10-0656
    61. Lisa M. Klumpp, Andrew T. Mackey, Christopher M. Farrell, John M. Rosenberg, Susan P. Gilbert. A Kinesin Switch I Arginine to Lysine Mutation Rescues Microtubule Function. Journal of Biological Chemistry 2003, 278 (40) , 39059-39067. https://doi.org/10.1074/jbc.M304250200
    62. Christopher M. Farrell, Andrew T. Mackey, Lisa M. Klumpp, Susan P. Gilbert. The Role of ATP Hydrolysis for Kinesin Processivity. Journal of Biological Chemistry 2002, 277 (19) , 17079-17087. https://doi.org/10.1074/jbc.M108793200
    63. Hideo Asukagawa, Kazuo Sutoh. The Alanine-Scanning Mutagenesis of Dictyostelium Myosin II at the Ionic Interface with Actin. 2002, 65-74. https://doi.org/10.1007/978-3-540-46558-4_6
    64. Naoya Sasaki, Reiko Ohkura, Kazuo Sutoh. Insertion or Deletion of a Single Residue in the Strut Sequence of Dictyostelium Myosin II Abolishes Strong Binding to Actin. Journal of Biological Chemistry 2000, 275 (49) , 38705-38709. https://doi.org/10.1074/jbc.M001966200
    65. Noboru Oishi, Hiroyuki Adachi, Kazuo Sutoh. Novel Dictyostelium unconventional myosin, MyoM, has a putative RhoGEF domain. FEBS Letters 2000, 474 (1) , 16-22. https://doi.org/10.1016/S0014-5793(00)01564-7
    66. S.A. Endow. Molecular motors--a paradigm for mutant analysis. Journal of Cell Science 2000, 113 (8) , 1311-1318. https://doi.org/10.1242/jcs.113.8.1311
    67. Yasushi Hirayama, Kazuo Sutoh, Shugo Watabe. Structure-Function Relationships of the Two Surface Loops of Myosin Heavy Chain Isoforms from Thermally Acclimated Carp. Biochemical and Biophysical Research Communications 2000, 269 (1) , 237-241. https://doi.org/10.1006/bbrc.2000.2273
    68. Ibuki Shirakawa, Shigeru Chaen, Clive R. Bagshaw, Haruo Sugi. Measurement of Nucleotide Exchange Rate Constants in Single Rabbit Soleus Myofibrils during Shortening and Lengthening Using a Fluorescent ATP Analog. Biophysical Journal 2000, 78 (2) , 918-926. https://doi.org/10.1016/S0006-3495(00)76649-5
    69. Naoya Sasaki, Hideo Asukagawa, Ryohei Yasuda, Toshiaki Hiratsuka, Kazuo Sutoh. Deletion of the Myopathy Loop of Dictyostelium Myosin II and Its Impact on Motor Functions. Journal of Biological Chemistry 1999, 274 (53) , 37840-37844. https://doi.org/10.1074/jbc.274.53.37840
    70. M. A. Geeves, K. C. Holmes. Structural Mechanism of Muscle Contraction. Annual Review of Biochemistry 1999, 68 (1) , 687-728. https://doi.org/10.1146/annurev.biochem.68.1.687
    71. Moeru Yazu, Hiroyuki Adachi, Kazuo Sutoh. NovelDictyosteliumUnconventional Myosin MyoK Is a Class I Myosin with the Longest Loop-1 Insert and the Shortest Tail. Biochemical and Biophysical Research Communications 1999, 255 (3) , 711-716. https://doi.org/10.1006/bbrc.1999.0264
    72. Marcus Furch, Setsuko Fujita-Becker, Michael A. Geeves, Kenneth C. Holmes, Dietmar J. Manstein. Role of the salt-bridge between switch-1 and switch-2 of Dictyostelium myosin 1 1Edited by A. R. Fersht. Journal of Molecular Biology 1999, 290 (3) , 797-809. https://doi.org/10.1006/jmbi.1999.2921
    73. Yoshikazu Suzuki, Takuo Yasunaga, Reiko Ohkura, Takeyuki Wakabayashi, Kazuo Sutoh. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 1998, 396 (6709) , 380-383. https://doi.org/10.1038/24640
    74. Xiang-dong Li, Troy E. Rhodes, Reiko Ikebe, Taketoshi Kambara, Howard D. White, Mitsuo Ikebe. Effects of Mutations in the γ-Phosphate Binding Site of Myosin on Its Motor Function. Journal of Biological Chemistry 1998, 273 (42) , 27404-27411. https://doi.org/10.1074/jbc.273.42.27404
    75. Naoya Sasaki, Takashi Shimada, Kazuo Sutoh. Mutational Analysis of the Switch II Loop ofDictyostelium Myosin II. Journal of Biological Chemistry 1998, 273 (32) , 20334-20340. https://doi.org/10.1074/jbc.273.32.20334
    76. Bruce Patterson. Intragenic Suppressors of Dictyostelium Myosin G680 Mutants Demarcate Discrete Structural Elements: Implications for Conformational States of the Motor. Genetics 1998, 149 (4) , 1799-1807. https://doi.org/10.1093/genetics/149.4.1799
    77. Hirofumi Onishi, Shin-ichiro Kojima, Kazuo Katoh, Keigi Fujiwara, Hugo M. Martinez, Manuel F. Morales. Functional transitions in myosin: Formation of a critical salt-bridge and transmission of effect to the sensitive tryptophan. Proceedings of the National Academy of Sciences 1998, 95 (12) , 6653-6658. https://doi.org/10.1073/pnas.95.12.6653
    78. N SASAKI, K SUTOH. Structure-mutation analysis of the ATPase site of myosin II. Advances in Biophysics 1998, 35 , 1-24. https://doi.org/10.1016/S0065-227X(98)80002-6
    79. Mohammed El-Mezgueldi, Clive R. Bagshaw. The Myosin Family: Biochemical And Kinetic Properties. , 55-93. https://doi.org/10.1007/978-1-4020-6519-4_3

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect