ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Sediment Trapping by Dams Creates Methane Emission Hot Spots

View Author Information
| Institute for Environmental Sciences, University of Koblenz-Landau, 76829 Landau, Germany
Swiss Federal Institute of Aquatic Science and Technology, Eawag, 6047 Kastanienbaum, Switzerland and Institute of Biogeochemistry and Pollutant Dynamics, ETH, 8092 Zurich, Switzerland
GEOMAR Helmholtz Centre for Ocean Research, RD2 Marine Biogeochemistry, 24148 Kiel, Germany
Nordic Center for Earth Evolution (NordCEE), Institute of Biology, University of Southern Denmark, 5230 Odense M, Denmark
§ Federal Institute of Hydrology (BfG), 56068 Koblenz, Germany
Department of Bioscience, Center for Geomicrobiology, Aarhus University, 8000 Aarhus C, Denmark
CONTROS Systems and Solutions GmbH, 24148 Kiel, Germany
*Phone: +49 6341 280 31573. E-mail: [email protected]
Cite this: Environ. Sci. Technol. 2013, 47, 15, 8130–8137
Publication Date (Web):June 25, 2013
https://doi.org/10.1021/es4003907
Copyright © 2013 American Chemical Society

    Article Views

    3478

    Altmetric

    -

    Citations

    213
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Inland waters transport and transform substantial amounts of carbon and account for ∼18% of global methane emissions. Large reservoirs with higher areal methane release rates than natural waters contribute significantly to freshwater emissions. However, there are millions of small dams worldwide that receive and trap high loads of organic carbon and can therefore potentially emit significant amounts of methane to the atmosphere. We evaluated the effect of damming on methane emissions in a central European impounded river. Direct comparison of riverine and reservoir reaches, where sedimentation in the latter is increased due to trapping by dams, revealed that the reservoir reaches are the major source of methane emissions (∼0.23 mmol CH4 m–2 d–1 vs ∼19.7 mmol CH4 m–2 d–1, respectively) and that areal emission rates far exceed previous estimates for temperate reservoirs or rivers. We show that sediment accumulation correlates with methane production and subsequent ebullitive release rates and may therefore be an excellent proxy for estimating methane emissions from small reservoirs. Our results suggest that sedimentation-driven methane emissions from dammed river hot spot sites can potentially increase global freshwater emissions by up to 7%.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 213 publications.

    1. Cheng Yang, Wen Jie Du, Ru-Li He, Yi-Rong Hu, Houqi Liu, Tianyin Huang, Wen-Wei Li. Spatiotemporal Patterns of Methane and Nitrous Oxide Emissions in China’s Inland Waters Identified by Machine Learning Technique. ACS ES&T Water 2024, 4 (3) , 936-947. https://doi.org/10.1021/acsestwater.3c00064
    2. Shu Chen, Dongqi Wang, Yan Ding, Zhongjie Yu, Lijie Liu, Yu Li, Dong Yang, Yingyuan Gao, Haowen Tian, Rui Cai, Zhenlou Chen. Ebullition Controls on CH4 Emissions in an Urban, Eutrophic River: A Potential Time-Scale Bias in Determining the Aquatic CH4 Flux. Environmental Science & Technology 2021, 55 (11) , 7287-7298. https://doi.org/10.1021/acs.est.1c00114
    3. Ping Yang, Hong Yang, Jordi Sardans, Chuan Tong, Guanghui Zhao, Josep Peñuelas, Ling Li, Yifei Zhang, Lishan Tan, Kwok Pan Chun, Derrick Y. F. Lai. Large Spatial Variations in Diffusive CH4 Fluxes from a Subtropical Coastal Reservoir Affected by Sewage Discharge in Southeast China. Environmental Science & Technology 2020, 54 (22) , 14192-14203. https://doi.org/10.1021/acs.est.0c03431
    4. Liu Liu, Tim De Kock, Jeremy Wilkinson, Veerle Cnudde, Shangbin Xiao, Christian Buchmann, Daniel Uteau, Stephan Peth, and Andreas Lorke . Methane Bubble Growth and Migration in Aquatic Sediments Observed by X-ray μCT. Environmental Science & Technology 2018, 52 (4) , 2007-2015. https://doi.org/10.1021/acs.est.7b06061
    5. Wenqing Shi, Qiuwen Chen, Qitao Yi, Juhua Yu, Yuyu Ji, Liuming Hu, and Yuchen Chen . Carbon Emission from Cascade Reservoirs: Spatial Heterogeneity and Mechanisms. Environmental Science & Technology 2017, 51 (21) , 12175-12181. https://doi.org/10.1021/acs.est.7b03590
    6. Daniel F. McGinnis, Nicole Bilsley, Mark Schmidt, Peer Fietzek, Pascal Bodmer, Katrin Premke, Andreas Lorke, and Sabine Flury . Deconstructing Methane Emissions from a Small Northern European River: Hydrodynamics and Temperature as Key Drivers. Environmental Science & Technology 2016, 50 (21) , 11680-11687. https://doi.org/10.1021/acs.est.6b03268
    7. Zeyad Alshboul, Jorge Encinas-Fernández, Hilmar Hofmann, and Andreas Lorke . Export of Dissolved Methane and Carbon Dioxide with Effluents from Municipal Wastewater Treatment Plants. Environmental Science & Technology 2016, 50 (11) , 5555-5563. https://doi.org/10.1021/acs.est.5b04923
    8. Jeremy Wilkinson, Andreas Maeck, Zeyad Alshboul, and Andreas Lorke . Continuous Seasonal River Ebullition Measurements Linked to Sediment Methane Formation. Environmental Science & Technology 2015, 49 (22) , 13121-13129. https://doi.org/10.1021/acs.est.5b01525
    9. Sabine Flury, Ronnie N. Glud, Katrin Premke, and Daniel F. McGinnis . Effect of Sediment Gas Voids and Ebullition on Benthic Solute Exchange. Environmental Science & Technology 2015, 49 (17) , 10413-10420. https://doi.org/10.1021/acs.est.5b01967
    10. T. DelSontro, D. F. McGinnis, B. Wehrli, and I. Ostrovsky . Size Does Matter: Importance of Large Bubbles and Small-Scale Hot Spots for Methane Transport. Environmental Science & Technology 2015, 49 (3) , 1268-1276. https://doi.org/10.1021/es5054286
    11. Jake J. Beaulieu, Rebecca L. Smolenski, Christopher T. Nietch, Amy Townsend-Small, and Michael S. Elovitz . High Methane Emissions from a Midlatitude Reservoir Draining an Agricultural Watershed. Environmental Science & Technology 2014, 48 (19) , 11100-11108. https://doi.org/10.1021/es501871g
    12. Edgar G. Hertwich . Addressing Biogenic Greenhouse Gas Emissions from Hydropower in LCA. Environmental Science & Technology 2013, 47 (17) , 9604-9611. https://doi.org/10.1021/es401820p
    13. Tamara Michaelis, Felicitas Kaplar, Thomas Baumann, Anja Wunderlich, Florian Einsiedl. High methane ebullition throughout one year in a regulated central European stream. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-54760-z
    14. A. Bednařík, P. Bodmer, E. Darenova, L. Kokrda, M. Pavelka. Temperature, Water Depth, and Flow Velocity Are Important Drivers of Methane Ebullition in a Temperate Lowland Stream. Journal of Geophysical Research: Biogeosciences 2024, 129 (5) https://doi.org/10.1029/2023JG007597
    15. Laura C. Naslund, Andrew S. Mehring, Amy D. Rosemond, Seth J. Wenger. Toward more accurate estimates of carbon emissions from small reservoirs. Limnology and Oceanography 2024, https://doi.org/10.1002/lno.12577
    16. Yongjin Chen, Mengxian Hu, Yixuan Hou, Zhao Jin, Xinzhe Que, Yongchao Zhou, Yiping Zhang. Bubble Growth and Release in Sediments during Water Level Drop: A Growth Model of Isolated Bubbles. Journal of Geotechnical and Geoenvironmental Engineering 2024, 150 (4) https://doi.org/10.1061/JGGEFK.GTENG-11736
    17. Manchun Kang, Liu Liu, Hans-Peter Grossart. Spatio-temporal variations of methane fluxes in sediments of a deep stratified temperate lake. iScience 2024, 27 (4) , 109520. https://doi.org/10.1016/j.isci.2024.109520
    18. Eliana Bohórquez-Bedoya, Juan Gabriel León-Hernández, Andreas Lorke, Andrés Gómez-Giraldo, . CO2 and CH4 dynamics in a eutrophic tropical Andean reservoir. PLOS ONE 2024, 19 (3) , e0298169. https://doi.org/10.1371/journal.pone.0298169
    19. Maurílio Kaique Barreto, Camila Tâmires Alves Oliveira, Gustavo Gonzaga Henry-Silva. Greenhouse gas emission flux (CO2, CH4, N2O) from marine shrimp (Litopenaeus vannamei) monoculture cultures in the Brazilian semi-arid region. Aquaculture 2024, 582 , 740536. https://doi.org/10.1016/j.aquaculture.2023.740536
    20. Murugesan Sobanaa, Ragothaman Prathiviraj, Joseph Selvin, Munisamy Prathaban. A comprehensive review on methane’s dual role: effects in climate change and potential as a carbon–neutral energy source. Environmental Science and Pollution Research 2024, 31 (7) , 10379-10394. https://doi.org/10.1007/s11356-023-30601-w
    21. Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, Ingeborg Bussmann. Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany. Biogeosciences 2024, 21 (6) , 1613-1628. https://doi.org/10.5194/bg-21-1613-2024
    22. Simone Moras, Ursula Ronja Zellmer, Evelina Hiltunen, Charlotte Grasset, Sebastian Sobek. Predicting Methane Formation Rates of Freshwater Sediments in Different Biogeographic Regions. Journal of Geophysical Research: Biogeosciences 2024, 129 (1) https://doi.org/10.1029/2023JG007463
    23. Martin Dalvai Ragnoli, Thea Schwingshackl, Serafine Kattus, Julius Lissy, Elisabeth Wenninger, Gabriel Singer. Differential controls on CO2 and CH4 emissions from the free-flowing Neretva River, Bosnia and Herzegovina. Natura Sloveniae 2023, 25 (3) , 213-237. https://doi.org/10.14720/ns.25.3.213-237
    24. Zhihao Xu, Yunying Li, Ximing Cai, Yanpeng Cai, Zhifeng Yang. Impact of Reservoir Operation Policies on Spatiotemporal Dynamics of Sediment Methane Production and Release in a Large Reservoir. Water Resources Research 2023, 59 (12) https://doi.org/10.1029/2023WR035072
    25. Lediane Marcon, Michael Schwarz, Laura Backes, Mara Offermann, Felix Schreiber, Stephan Hilgert, Klajdi Sotiri, Christian Jokiel, Andreas Lorke. Linking Sediment Gas Storage to the Methane Dynamics in a Shallow Freshwater Reservoir. Journal of Geophysical Research: Biogeosciences 2023, 128 (10) https://doi.org/10.1029/2022JG007365
    26. Lluís Gómez-Gener, Marina Gubau, Daniel von Schiller, Rafael Marcé, Biel Obrador. Integrated assessment of the net carbon footprint of small hydropower plants. Environmental Research Letters 2023, 18 (8) , 084015. https://doi.org/10.1088/1748-9326/acdfe5
    27. Lan Feng, Pan Hu. Changing temporal and spatial patterns of methane emission from rivers by reservoir dams: a review. Environmental Science and Pollution Research 2023, 30 (30) , 74485-74499. https://doi.org/10.1007/s11356-023-27716-5
    28. Wenqing Shi, Boqiang Qin. Sediment and Nutrient Trapping by River Dams: A Critical Review Based on 15-Year Big Data. Current Pollution Reports 2023, 9 (2) , 165-173. https://doi.org/10.1007/s40726-023-00258-7
    29. Fanyan Yang, Chuanzhe Sun, Hongwei Wang, Xiaokang Hu, Shaoming Wang, Min Zhang, Lei Zhang, Jicheng Zhong. Significant spatiotemporal variability of nitrous oxide emissions from a temperate reservoir experiencing intensive aquaculture disturbance. Agriculture, Ecosystems & Environment 2023, 348 , 108427. https://doi.org/10.1016/j.agee.2023.108427
    30. Yunying Li, Wenjie Fan, Guni Xiang, Zhihao Xu. Evaluating the Feedback of the Reservoir Methane Cycle to Climate Warming under Hydrological Uncertainty. Sustainability 2023, 15 (12) , 9197. https://doi.org/10.3390/su15129197
    31. Ognjen Bonacci. Factors affecting variations in the hydrological cycle at different temporal and spatial scales. Acta hydrotechnica 2023, , 1-15. https://doi.org/10.15292/acta.hydro.2023.01
    32. Elizabeth León-Palmero. Understanding the fluxes of greenhouse gases in reservoirs under the inspiration of Margalef. Limnetica 2023, 42 (2) , 1. https://doi.org/10.23818/limn.42.22
    33. Ronny Lauerwald, George H. Allen, Bridget R. Deemer, Shaoda Liu, Taylor Maavara, Peter Raymond, Lewis Alcott, David Bastviken, Adam Hastie, Meredith A. Holgerson, Matthew S. Johnson, Bernhard Lehner, Peirong Lin, Alessandra Marzadri, Lishan Ran, Hanqin Tian, Xiao Yang, Yuanzhi Yao, Pierre Regnier. Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State‐Of‐The‐Art of Global Scale Assessments. Global Biogeochemical Cycles 2023, 37 (5) https://doi.org/10.1029/2022GB007657
    34. Haixiang Cheng, Yuling Yang, Yefan He, Xugang Zhan, Yan Liu, Zhengfeng Hu, Hechen Huang, Xiaochen Yao, Wangting Yang, Jinghao Jin, Bingjie Ren, Jiaqi Liu, Qinan Hu, Yuhan Jin, Lidong Shen. Spatio-temporal variations of activity of nitrate-driven anaerobic oxidation of methane and community structure of Candidatus Methanoperedens-like archaea in sediment of Wuxijiang river. Chemosphere 2023, 324 , 138295. https://doi.org/10.1016/j.chemosphere.2023.138295
    35. Wenqing Shi, Taylor Maavara, Qiuwen Chen, Jianyun Zhang, Jinren Ni, Daniele Tonina. Spatial patterns of diffusive greenhouse gas emissions from cascade hydropower reservoirs. Journal of Hydrology 2023, 619 , 129343. https://doi.org/10.1016/j.jhydrol.2023.129343
    36. Yi Wu, Xufeng Mao, Liang Xia, Hongyan Yu, Yao Yu, Wenjia Tang, Feng Xiao, Haichuan Ji. Microbial Community Abundance Affects the Methane Ebullition Flux in Dahejia Reservoir of the Yellow River in the Warm Season. Diversity 2023, 15 (2) , 154. https://doi.org/10.3390/d15020154
    37. Jiao Liu, Shaoda Liu, Xin Chen, Siyue Sun, Yuan Xin, Liu Liu, Xinghui Xia. Strong CH4 emissions modulated by hydrology and bed sediment properties in Qinghai-Tibetan Plateau rivers. Journal of Hydrology 2023, 617 , 129053. https://doi.org/10.1016/j.jhydrol.2022.129053
    38. Chen Sixiang, Yang Zhengjian, Wang Congfeng, Wei Chenyu, Liu Defu, . A method for continuous monitoring of the ebullition process and application to methane flux variations in Xiangxi Bay, Three Gorges Reservoir. Journal of Lake Sciences 2023, 35 (5) , 1659-1669. https://doi.org/10.18307/2023.0526
    39. Ole Lessmann, Jorge Encinas Fernández, Karla Martínez-Cruz, Frank Peeters. Methane emissions due to reservoir flushing: a significant emission pathway?. Biogeosciences 2023, 20 (19) , 4057-4068. https://doi.org/10.5194/bg-20-4057-2023
    40. Gerhard Wiegleb. Life Sciences. 2023, 1087-1170. https://doi.org/10.1007/978-3-658-37232-3_16
    41. Amanda Sikirica, Nicholas Theis, Mauricio Betancourt. Conflicting outcomes of alternative energies: agricultural methane emissions and hydroelectricity, 1975–2015. Environmental Research: Climate 2022, 1 (2) , 025005. https://doi.org/10.1088/2752-5295/ac8ca9
    42. Yadi Ai, Tao Huang, Cuncun Duan, Di Huang, Yiwei Gong, Hongguang Cheng. Knowledge domain of greenhouse gas emissions from hydropower reservoirs: Hotspots, frontiers and future perspectives. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.1055891
    43. Mohd Alsaleh, AS Abdul-Rahim. Moving toward sustainable environment: The effects of hydropower industry on water quality in EU economies. Energy & Environment 2022, 33 (7) , 1304-1325. https://doi.org/10.1177/0958305X211039452
    44. Renata Gruca-Rokosz, Dorota Szal. Isotopic Evidence for Anaerobic Oxidation of Methane in the Freshwater Sediments of Reservoirs: The Impact of Selected Environmental Factors. Water 2022, 14 (21) , 3375. https://doi.org/10.3390/w14213375
    45. Thomas P.A. Nijman, Maxime Lemmens, Miquel Lurling, Sarian Kosten, Cornelia Welte, Annelies J. Veraart. Phosphorus control and dredging decrease methane emissions from shallow lakes. Science of The Total Environment 2022, 847 , 157584. https://doi.org/10.1016/j.scitotenv.2022.157584
    46. Chao Gu, Susan Waldron, Adrian Michael Bass. Anthropogenic land use and urbanization alter the dynamics and increase the export of dissolved carbon in an urbanized river system. Science of The Total Environment 2022, 846 , 157436. https://doi.org/10.1016/j.scitotenv.2022.157436
    47. Rachel M. Pilla, Natalie A. Griffiths, Lianhong Gu, Shih‐Chieh Kao, Ryan McManamay, Daniel M. Ricciuto, Xiaoying Shi. Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going?. Global Change Biology 2022, 28 (19) , 5601-5629. https://doi.org/10.1111/gcb.16324
    48. Luis Miguel Silva-Novoa Sánchez, Lisa Bossenbroek, Janpeter Schilling, Elisabeth Berger. Governance and Sustainability Challenges in the Water Policy of Morocco 1995–2020: Insights from the Middle Draa Valley. Water 2022, 14 (18) , 2932. https://doi.org/10.3390/w14182932
    49. Xiaofeng Wang, Tingting Liu, Yixin He, Huai Chen, Shengnan Wu, Jilong Wang, Hang Li, Ziyi Que, Xingzhong Yuan. Greenhouse gases concentrations and emissions from a small subtropical cascaded river-reservoir system. Journal of Hydrology 2022, 612 , 128190. https://doi.org/10.1016/j.jhydrol.2022.128190
    50. Henriette I. Jager, Natalie A. Griffiths, Carly H. Hansen, Anthony W. King, Paul G. Matson, Debjani Singh, Rachel M. Pilla. Getting lost tracking the carbon footprint of hydropower. Renewable and Sustainable Energy Reviews 2022, 162 , 112408. https://doi.org/10.1016/j.rser.2022.112408
    51. Phakamile Ndlovu, Saeideh Babaee, Paramespri Naidoo. Review on CH4-CO2 replacement for CO2 sequestration and CH4/CO2 hydrate formation in porous media. Fuel 2022, 320 , 123795. https://doi.org/10.1016/j.fuel.2022.123795
    52. Wojciech Krztoń, Edward Walusiak, Elżbieta Wilk-Woźniak. Possible consequences of climate change on global water resources stored in dam reservoirs. Science of The Total Environment 2022, 830 , 154646. https://doi.org/10.1016/j.scitotenv.2022.154646
    53. Jinren Ni, Haizhen Wang, Tao Ma, Rong Huang, Philippe Ciais, Zhe Li, Yao Yue, Jinfeng Chen, Bin Li, Yuchun Wang, Maosheng Zheng, Ting Wang, Alistair G L Borthwick. Three Gorges Dam: friend or foe of riverine greenhouse gases?. National Science Review 2022, 9 (6) https://doi.org/10.1093/nsr/nwac013
    54. Alistair Grinham, Cathryn O’Sullivan, Matthew Dunbabin, Katrin Sturm, Deborah Gale, William Clarke, Simon Albert. Drivers of Anaerobic Methanogenesis in Sub-Tropical Reservoir Sediments. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.852344
    55. Pascal Breil, Marie‐Noëlle Pons, Gilles Armani, Ranya Amer, Harrison Pienaar, Paul Oberholster, Philippe Namour. Natural‐Based Solutions for Bioremediation in Water Environment. 2022, 1-93. https://doi.org/10.1002/9781119827665.ch1
    56. Bradford S. Sherman, Phillip W. Ford. Extreme Hydrological Events and Reservoir Methane Emissions. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.893180
    57. Xiaoxia Bai, Qiang He, Hong Li, Qiang Xu, Cheng Cheng. Response of CO2 and CH4 transport to damming: A case study of Yulin River in the Three Gorges Reservoir, China. Environmental Research 2022, 208 , 112733. https://doi.org/10.1016/j.envres.2022.112733
    58. Lediane Marcon, Klajdi Sotiri, Tobias Bleninger, Andreas Lorke, Michael Männich, Stephan Hilgert. Acoustic Mapping of Gas Stored in Sediments of Shallow Aquatic Systems Linked to Methane Production and Ebullition Patterns. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.876540
    59. Felipe Rust, Pascal Bodmer, Paul del Giorgio. Modeling the spatial and temporal variability in surface water CO2 and CH4 concentrations in a newly created complex of boreal hydroelectric reservoirs. Science of The Total Environment 2022, 815 , 152459. https://doi.org/10.1016/j.scitotenv.2021.152459
    60. Sofia L. D’Ambrosio, John A. Harrison. Measuring CH4 Fluxes From Lake and Reservoir Sediments: Methodologies and Needs. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.850070
    61. Ingeborg Bussmann, Uta Koedel, Claudia Schütze, Norbert Kamjunke, Matthias Koschorreck. Spatial Variability and Hotspots of Methane Concentrations in a Large Temperate River. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.833936
    62. Xueping Chen, Meilin Yang, Jing Sun, Juan Yu, Lihua Liu, Shuang Bai, Fayan Bai, Ming Yang, Zheng Chen, Chiquan He, Xiaoyan Liu, Jing Liang, Fushun Wang. The anaerobic oxidation of methane driven by multiple electron acceptors suppresses the release of methane from the sediments of a reservoir. Journal of Soils and Sediments 2022, 22 (2) , 682-691. https://doi.org/10.1007/s11368-022-03138-7
    63. Mohd Alsaleh, A.S. Abdul-Rahim. The pathway toward pollution mitigation in EU28 region: Does hydropower growth make a difference?. Renewable Energy 2022, 185 , 291-301. https://doi.org/10.1016/j.renene.2021.12.045
    64. Tianyu Xia, Wangshou Zhang, Hengpeng Li, Huiliang Wang, Peng He, Xingfeng Wang. Rivers draining contrasting landscapes exhibit distinct potentials to emit diffusive methane (CH4). Science of The Total Environment 2022, 807 , 150898. https://doi.org/10.1016/j.scitotenv.2021.150898
    65. Gerhard Wiegleb. Life Science. 2022, 1085-1172. https://doi.org/10.1007/978-3-658-35278-3_16
    66. Yu Wang, Bao-long Li, Juan-juan Liu, Qi Feng, Wei Liu, Xu Wang, Yu-hua He. Effects of cascade reservoir systems on the longitudinal distribution of sediment characteristics: a case study of the Heihe River Basin. Environmental Science and Pollution Research 2022, 29 (2) , 2911-2923. https://doi.org/10.1007/s11356-021-15760-y
    67. David Bastviken. Methane. 2022, 136-154. https://doi.org/10.1016/B978-0-12-819166-8.00147-X
    68. 超利 刘. The Analysis of Seasonal Characteristics of Fish Habitat Suitability in Coastal Urban Rivers. Advances in Environmental Protection 2022, 12 (06) , 1265-1271. https://doi.org/10.12677/AEP.2022.126156
    69. Bei Nie, Yuhong Zeng, Lanhua Niu, Xiaofeng Zhang. Long-term impacts of reservoir operation on the spatiotemporal variation in nitrogen forms in the post-Three Gorges Dam period (2004–2016). Environmental Science and Pollution Research 2021, 28 (46) , 65633-65643. https://doi.org/10.1007/s11356-021-15557-z
    70. Renata Gruca-Rokosz, Maksymilian Cieśla. Sediment methane production within eutrophic reservoirs: The importance of sedimenting organic matter. Science of The Total Environment 2021, 799 , 149219. https://doi.org/10.1016/j.scitotenv.2021.149219
    71. Jia Liu, Shangbin Xiao, Chenghao Wang, Zhengjian Yang, Defu Liu, Xiaojuan Guo, Liu Liu, Andreas Lorke. Spatial and temporal variability of dissolved methane concentrations and diffusive emissions in the Three Gorges Reservoir. Water Research 2021, 207 , 117788. https://doi.org/10.1016/j.watres.2021.117788
    72. Yu Qin, Yujia Gou, Zongtai Yu, Wei Tan. Effects of environmental factors on the methane and carbon dioxide fluxes at the middle of Three Gorges Reservoir. Journal of Water and Climate Change 2021, 12 (8) , 4007-4020. https://doi.org/10.2166/wcc.2021.081
    73. Lei Wang, Zhiheng Du, Zhiqiang Wei, Qian Xu, Yaru Feng, Penglin Lin, Jiahui Lin, Shengyun Chen, Yongping Qiao, Jianzong Shi, Cunde Xiao. High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes. Science of The Total Environment 2021, 801 , 149692. https://doi.org/10.1016/j.scitotenv.2021.149692
    74. Nan Yang, Chi Zhang, Linqiong Wang, Yi Li, Wenlong Zhang, Lihua Niu, Huanjun Zhang, Longfei Wang. Nitrogen cycling processes and the role of multi-trophic microbiota in dam-induced river-reservoir systems. Water Research 2021, 206 , 117730. https://doi.org/10.1016/j.watres.2021.117730
    75. Shengnan Wu, Xiaofeng Wang, Tingting Liu, Yixin He, Ziyi Que, Jilong Wang, Hang Li, Lele Yu, Yuanyuan Zhang, Xingzhong Yuan. Spatiotemporal Variability of the Nitrous Oxide Concentrations and Fluxes From a Cascaded Dammed River. Frontiers in Environmental Science 2021, 9 https://doi.org/10.3389/fenvs.2021.728489
    76. Wangshou Zhang, Hengpeng Li, Steven G. Pueppke, Jiaping Pang. Restored riverine wetlands in a headwater stream can simultaneously behave as sinks of N2O and hotspots of CH4 production. Environmental Pollution 2021, 284 , 117114. https://doi.org/10.1016/j.envpol.2021.117114
    77. Axel Bastián Poque González, José Eduardo Viglio, Lúcia da Costa Ferreira. The transition of electrical systems to sustainability: Political and institutional drivers in Chile and Brazil. MRS Energy & Sustainability 2021, 8 (2) , 75-87. https://doi.org/10.1557/s43581-021-00011-x
    78. David Birt, Danielle Wain, Emily Slavin, Jun Zang, Robert Luckwell, Lee D. Bryant. Stratification in a Reservoir Mixed by Bubble Plumes under Future Climate Scenarios. Water 2021, 13 (18) , 2467. https://doi.org/10.3390/w13182467
    79. Daniel Köhn, Carla Welpelo, Anke Günther, Gerald Jurasinski. Drainage Ditches Contribute Considerably to the CH4 Budget of a Drained and a Rewetted Temperate Fen. Wetlands 2021, 41 (6) https://doi.org/10.1007/s13157-021-01465-y
    80. Peifang Leng, Norbert Kamjunke, Fadong Li, Matthias Koschorreck. Temporal Patterns of Methane Emissions From Two Streams With Different Riparian Connectivity. Journal of Geophysical Research: Biogeosciences 2021, 126 (8) https://doi.org/10.1029/2020JG006104
    81. Matthew S. Johnson, Elaine Matthews, David Bastviken, Bridget Deemer, Jinyang Du, Vanessa Genovese. Spatiotemporal Methane Emission From Global Reservoirs. Journal of Geophysical Research: Biogeosciences 2021, 126 (8) https://doi.org/10.1029/2021JG006305
    82. Xingcheng Yan, Vincent Thieu, Josette Garnier. Long-Term Evolution of Greenhouse Gas Emissions From Global Reservoirs. Frontiers in Environmental Science 2021, 9 https://doi.org/10.3389/fenvs.2021.705477
    83. Yifan Su, Weiming Li, Liu Liu, Wei Hu, Jinjing Li, Xuyang Sun, Yun Li. Health assessment of small-to-medium sized rivers: Comparison between comprehensive indicator method and biological monitoring method. Ecological Indicators 2021, 126 , 107686. https://doi.org/10.1016/j.ecolind.2021.107686
    84. Pedro M. Barbosa, John M. Melack, João H. F. Amaral, Annika Linkhorst, Bruce R. Forsberg. Large Seasonal and Habitat Differences in Methane Ebullition on the Amazon Floodplain. Journal of Geophysical Research: Biogeosciences 2021, 126 (7) https://doi.org/10.1029/2020JG005911
    85. Elisa Calamita, Annunziato Siviglia, Gretchen M. Gettel, Mário J. Franca, R. Scott Winton, Cristian R. Teodoru, Martin Schmid, Bernhard Wehrli. Unaccounted CO 2 leaks downstream of a large tropical hydroelectric reservoir. Proceedings of the National Academy of Sciences 2021, 118 (25) https://doi.org/10.1073/pnas.2026004118
    86. Chen Yang, Nan Xiao, Zi'ang Chang, Jinhui Jeanne Huang, Wenlu Zeng. Biodegradation of TOC by Nano‐Fe 2 O 3 Modified SMFC and Its Potential Environmental Effects**. ChemistrySelect 2021, 6 (22) , 5597-5602. https://doi.org/10.1002/slct.202101125
    87. Marcel Schmiedeskamp, Leandra Stephanie Emilia Praetzel, David Bastviken, Klaus‐Holger Knorr. Whole‐lake methane emissions from two temperate shallow lakes with fluctuating water levels: Relevance of spatiotemporal patterns. Limnology and Oceanography 2021, 66 (6) , 2455-2469. https://doi.org/10.1002/lno.11764
    88. Chun-Ngai Chan, Hongyan Shi, Boyi Liu, Lishan Ran. CO2 and CH4 Emissions from an Arid Fluvial Network on the Chinese Loess Plateau. Water 2021, 13 (12) , 1614. https://doi.org/10.3390/w13121614
    89. Yi Li, Jiahui Shang, Chi Zhang, Wenlong Zhang, Lihua Niu, Longfei Wang, Huanjun Zhang. The role of freshwater eutrophication in greenhouse gas emissions: A review. Science of The Total Environment 2021, 768 , 144582. https://doi.org/10.1016/j.scitotenv.2020.144582
    90. Annika Linkhorst, José R. Paranaíba, Raquel Mendonça, David Rudberg, Tonya DelSontro, Nathan Barros, Sebastian Sobek. Spatially Resolved Measurements in Tropical Reservoirs Reveal Elevated Methane Ebullition at River Inflows and at High Productivity. Global Biogeochemical Cycles 2021, 35 (5) https://doi.org/10.1029/2020GB006717
    91. Dexter W. Howard, Alexandria G. Hounshell, Mary E. Lofton, Whitney M. Woelmer, Paul C. Hanson, Cayelan C. Carey. Variability in fluorescent dissolved organic matter concentrations across diel to seasonal time scales is driven by water temperature and meteorology in a eutrophic reservoir. Aquatic Sciences 2021, 83 (2) https://doi.org/10.1007/s00027-021-00784-w
    92. B. R. Deemer, M. A. Holgerson. Drivers of Methane Flux Differ Between Lakes and Reservoirs, Complicating Global Upscaling Efforts. Journal of Geophysical Research: Biogeosciences 2021, 126 (4) https://doi.org/10.1029/2019JG005600
    93. Wenqing Shi, Qiuwen Chen, Jianyun Zhang, Ji Lu, Yuchen Chen, Bohui Pang, Juhua Yu, Bryce R. Van Dam. Spatial Patterns of Diffusive Methane Emissions Across Sediment Deposited Riparian Zones in Hydropower Reservoirs. Journal of Geophysical Research: Biogeosciences 2021, 126 (3) https://doi.org/10.1029/2020JG005945
    94. A. Levasseur, S. Mercier-Blais, Y.T. Prairie, A. Tremblay, C. Turpin. Improving the accuracy of electricity carbon footprint: Estimation of hydroelectric reservoir greenhouse gas emissions. Renewable and Sustainable Energy Reviews 2021, 136 , 110433. https://doi.org/10.1016/j.rser.2020.110433
    95. Xiaoxia Bai, Qiang Xu, Hong Li, Cheng Cheng, Qiang He. Lack of methane hotspot in the upstream dam: Case study in a tributary of the Three Gorges Reservoir, China. Science of The Total Environment 2021, 754 , 142151. https://doi.org/10.1016/j.scitotenv.2020.142151
    96. Mojmír Vašek, Allan T. Souza, Milan Říha, Jan Kubečka, Petr Znachor, Josef Hejzlar. Stable isotope evidence from archived fish scales indicates carbon cycle changes over the four-decade history of the Římov Reservoir (Czechia). Science of The Total Environment 2021, 755 , 142550. https://doi.org/10.1016/j.scitotenv.2020.142550
    97. Wangshou Zhang, Hengpeng Li, Qitao Xiao, Xinyan Li. Urban rivers are hotspots of riverine greenhouse gas (N2O, CH4, CO2) emissions in the mixed-landscape chaohu lake basin. Water Research 2021, 189 , 116624. https://doi.org/10.1016/j.watres.2020.116624
    98. Gongqin Wang, Xinghui Xia, Shaoda Liu, Ling Zhang, Sibo Zhang, Junfeng Wang, Nannan Xi, Qianru Zhang. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions. Water Research 2021, 189 , 116654. https://doi.org/10.1016/j.watres.2020.116654
    99. Qin Yu, Su Youheng, Li Zhe, Liu Zhengmian, Zhang Yuyang, . CH<sub>4</sub> variation and main influencing factors of bottom water column in the middle section of Three Gorges Reservoir. Journal of Lake Sciences 2021, 33 (1) , 299-308. https://doi.org/10.18307/2021.0123
    100. Sarah Waldo, Jake J. Beaulieu, William Barnett, D. Adam Balz, Michael J. Vanni, Tanner Williamson, John T. Walker. Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst. Biogeosciences 2021, 18 (19) , 5291-5311. https://doi.org/10.5194/bg-18-5291-2021
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect