ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments

View Author Information
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland, Institute for Biogeochemistry and Pollutant Dynamics, ETH, Zurich, Switzerland, IFM-GEOMAR, Leibniz Institute of Marine Sciences at the University of Kiel, Wischhofstrasse 1-3, D-24148 Kiel, Germany, and Israel Oceanographic & Limnological Research, Yigal Allon Kinneret Limnological Laboratory, Midgal, Israel
* Corresponding author phone: +41 41 349 2151; fax: +41 41 349 2168; e-mail: [email protected]
†Eawag.
‡IFM-GEOMAR.
§Present address: Department of Ecology and Evolution, Limnology, Uppsala University, Sweden.
⊥ETH, Zurich.
∥Israel Oceanographic & Limnological Research, Yigal Allon Kinneret Limnological Laboratory.
Cite this: Environ. Sci. Technol. 2010, 44, 7, 2419–2425
Publication Date (Web):March 10, 2010
https://doi.org/10.1021/es9031369
Copyright © 2010 American Chemical Society

    Article Views

    3286

    Altmetric

    -

    Citations

    214
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Methane emission pathways and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using gas traps indicated very high ebullition rates, but due to the stochastic nature of ebullition a mass balance approach was crucial to deduce system-wide methane sources and losses. Methane diffusion from the sediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane measured in the reservoir discharge. A strong positive correlation between water temperature and the observed dissolved methane concentration enabled us to quantify the dissolved methane addition from bubble dissolution using a system-wide mass balance. Finally, knowing the contribution due to bubble dissolution, we used a bubble model to estimate bubble emission directly to the atmosphere. Our results indicated that the total methane emission from Lake Wohlen was on average >150 mg CH4 m−2 d−1, which is the highest ever documented for a midlatitude reservoir. The substantial temperature-dependent methane emissions discovered in this 90-year-old reservoir indicate that temperate water bodies can be an important but overlooked methane source.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    An extended methods section, three tables containing measurements from various surveys, and three figures showing gas trap and floating chamber details and temperature relationship with CH4 saturation concentrations and production. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 214 publications.

    1. Maciej Bartosiewicz, Przemyslaw Rzepka, Moritz F. Lehmann. Tapping Freshwaters for Methane and Energy. Environmental Science & Technology 2021, 55 (8) , 4183-4189. https://doi.org/10.1021/acs.est.0c06210
    2. Ilissa B. Ocko, Steven P. Hamburg. Climate Impacts of Hydropower: Enormous Differences among Facilities and over Time. Environmental Science & Technology 2019, 53 (23) , 14070-14082. https://doi.org/10.1021/acs.est.9b05083
    3. Shahrazad Tarboush Sirhan, Regina Katsman, Michael Lazar. Methane Bubble Ascent within Fine-Grained Cohesive Aquatic Sediments: Dynamics and Controlling Factors. Environmental Science & Technology 2019, 53 (11) , 6320-6329. https://doi.org/10.1021/acs.est.8b06848
    4. Martin Dorber, Roel May, and Francesca Verones . Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment. Environmental Science & Technology 2018, 52 (4) , 2375-2384. https://doi.org/10.1021/acs.est.7b05125
    5. Liu Liu, Tim De Kock, Jeremy Wilkinson, Veerle Cnudde, Shangbin Xiao, Christian Buchmann, Daniel Uteau, Stephan Peth, and Andreas Lorke . Methane Bubble Growth and Migration in Aquatic Sediments Observed by X-ray μCT. Environmental Science & Technology 2018, 52 (4) , 2007-2015. https://doi.org/10.1021/acs.est.7b06061
    6. Wenqing Shi, Qiuwen Chen, Qitao Yi, Juhua Yu, Yuyu Ji, Liuming Hu, and Yuchen Chen . Carbon Emission from Cascade Reservoirs: Spatial Heterogeneity and Mechanisms. Environmental Science & Technology 2017, 51 (21) , 12175-12181. https://doi.org/10.1021/acs.est.7b03590
    7. Daniel F. McGinnis, Nicole Bilsley, Mark Schmidt, Peer Fietzek, Pascal Bodmer, Katrin Premke, Andreas Lorke, and Sabine Flury . Deconstructing Methane Emissions from a Small Northern European River: Hydrodynamics and Temperature as Key Drivers. Environmental Science & Technology 2016, 50 (21) , 11680-11687. https://doi.org/10.1021/acs.est.6b03268
    8. Lina Tyroller, Yama Tomonaga, Matthias S. Brennwald, Cyprien Ndayisaba, Sebastian Naeher, Carsten Schubert, Ryan P. North, and Rolf Kipfer . Improved Method for the Quantification of Methane Concentrations in Unconsolidated Lake Sediments. Environmental Science & Technology 2016, 50 (13) , 7047-7055. https://doi.org/10.1021/acs.est.5b05292
    9. Yuting Pan, Liu Ye, Ben van den Akker, Ramon Ganigué Pagès, Ronald S. Musenze, and Zhiguo Yuan . Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants. Environmental Science & Technology 2016, 50 (3) , 1368-1375. https://doi.org/10.1021/acs.est.5b04844
    10. Jeremy Wilkinson, Andreas Maeck, Zeyad Alshboul, and Andreas Lorke . Continuous Seasonal River Ebullition Measurements Linked to Sediment Methane Formation. Environmental Science & Technology 2015, 49 (22) , 13121-13129. https://doi.org/10.1021/acs.est.5b01525
    11. Sabine Flury, Ronnie N. Glud, Katrin Premke, and Daniel F. McGinnis . Effect of Sediment Gas Voids and Ebullition on Benthic Solute Exchange. Environmental Science & Technology 2015, 49 (17) , 10413-10420. https://doi.org/10.1021/acs.est.5b01967
    12. T. DelSontro, D. F. McGinnis, B. Wehrli, and I. Ostrovsky . Size Does Matter: Importance of Large Bubbles and Small-Scale Hot Spots for Methane Transport. Environmental Science & Technology 2015, 49 (3) , 1268-1276. https://doi.org/10.1021/es5054286
    13. Jake J. Beaulieu, Rebecca L. Smolenski, Christopher T. Nietch, Amy Townsend-Small, and Michael S. Elovitz . High Methane Emissions from a Midlatitude Reservoir Draining an Agricultural Watershed. Environmental Science & Technology 2014, 48 (19) , 11100-11108. https://doi.org/10.1021/es501871g
    14. Edgar G. Hertwich . Addressing Biogenic Greenhouse Gas Emissions from Hydropower in LCA. Environmental Science & Technology 2013, 47 (17) , 9604-9611. https://doi.org/10.1021/es401820p
    15. Andreas Maeck, Tonya DelSontro, Daniel F. McGinnis, Helmut Fischer, Sabine Flury, Mark Schmidt, Peer Fietzek, and Andreas Lorke . Sediment Trapping by Dams Creates Methane Emission Hot Spots. Environmental Science & Technology 2013, 47 (15) , 8130-8137. https://doi.org/10.1021/es4003907
    16. Nguyen Thanh Duc, Samuel Silverstein, Lars Lundmark, Henrik Reyier, Patrick Crill, and David Bastviken . Automated Flux Chamber for Investigating Gas Flux at Water–Air Interfaces. Environmental Science & Technology 2013, 47 (2) , 968-975. https://doi.org/10.1021/es303848x
    17. Carsten J. Schubert, Torsten Diem, and Werner Eugster . Methane Emissions from a Small Wind Shielded Lake Determined by Eddy Covariance, Flux Chambers, Anchored Funnels, and Boundary Model Calculations: A Comparison. Environmental Science & Technology 2012, 46 (8) , 4515-4522. https://doi.org/10.1021/es203465x
    18. Tonya DelSontro, Manuel J. Kunz, Tim Kempter, Alfred Wüest, Bernhard Wehrli, and David B. Senn . Spatial Heterogeneity of Methane Ebullition in a Large Tropical Reservoir. Environmental Science & Technology 2011, 45 (23) , 9866-9873. https://doi.org/10.1021/es2005545
    19. Tamara Michaelis, Felicitas Kaplar, Thomas Baumann, Anja Wunderlich, Florian Einsiedl. High methane ebullition throughout one year in a regulated central European stream. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-54760-z
    20. Regina Katsman, Ernst Uzhansky, Andrey Lunkov, Boris Katsnelson. Methane gas dynamics in sediments of Lake Kinneret, Israel, and their controls: Insights from a multiannual acoustic investigation and correlation analysis. Science of The Total Environment 2024, 918 , 170480. https://doi.org/10.1016/j.scitotenv.2024.170480
    21. Mao Yufeng, He Ruixu, Li Hong, Yang Shengfa, Yu Weiwei, Ye Kailai, Lin Tong, Bai Xiaoxia, He Qiang, . Research progress on methane emissions from tributaries of the Three Gorges Reservoir. Journal of Lake Sciences 2024, 36 (1) , 17-33. https://doi.org/10.18307/2024.0102
    22. Zhihao Xu, Yunying Li, Ximing Cai, Yanpeng Cai, Zhifeng Yang. Impact of Reservoir Operation Policies on Spatiotemporal Dynamics of Sediment Methane Production and Release in a Large Reservoir. Water Resources Research 2023, 59 (12) https://doi.org/10.1029/2023WR035072
    23. E.A. Pryakhin, Yu.G. Mokrov, A.V. Trapeznikov, N.I. Atamanyuk, S.S. Andreyev, A.A. Peretykin, K. Yu. Mokrov, M.A. Semenov, A.V. Akleyev. Gas ebullition associated with biological processes in radioactively contaminated reservoirs could lead to airborne radioactive contamination. Nuclear Engineering and Technology 2023, 55 (11) , 4204-4212. https://doi.org/10.1016/j.net.2023.07.042
    24. Guanghui Zhao, Dongqi Wang, Taihu Sun, Yan Ding, Shu Chen, Yizhe Li, Hechen Sun, Chenyang Wu, Zhongjie Yu, Zhenlou Chen. Emission of greenhouse gas from urban polluted river during different rainfall events: Typhoon and storm will promote stronger evasions. Journal of Hydrology 2023, 625 , 130166. https://doi.org/10.1016/j.jhydrol.2023.130166
    25. Lluís Gómez-Gener, Marina Gubau, Daniel von Schiller, Rafael Marcé, Biel Obrador. Integrated assessment of the net carbon footprint of small hydropower plants. Environmental Research Letters 2023, 18 (8) , 084015. https://doi.org/10.1088/1748-9326/acdfe5
    26. Shucong Lv, Qibiao Yu, Liping Wang, Chenning Deng, Lusan Liu. Downstream carbon transport and surface CO2 evasion in the Hanjiang River Network and their implications for regional carbon budget. Science of The Total Environment 2023, 884 , 163839. https://doi.org/10.1016/j.scitotenv.2023.163839
    27. Lan Feng, Pan Hu. Changing temporal and spatial patterns of methane emission from rivers by reservoir dams: a review. Environmental Science and Pollution Research 2023, 30 (30) , 74485-74499. https://doi.org/10.1007/s11356-023-27716-5
    28. Yunying Li, Wenjie Fan, Guni Xiang, Zhihao Xu. Evaluating the Feedback of the Reservoir Methane Cycle to Climate Warming under Hydrological Uncertainty. Sustainability 2023, 15 (12) , 9197. https://doi.org/10.3390/su15129197
    29. Emanuele Quaranta, Sebastian Muntean. Wasted and excess energy in the hydropower sector: A European assessment of tailrace hydrokinetic potential, degassing-methane capture and waste-heat recovery. Applied Energy 2023, 329 , 120213. https://doi.org/10.1016/j.apenergy.2022.120213
    30. Gabriela Elena Dumitran, Liana Ioana Vuţă, Angela Neagoe, Eliza-Isabela Tică, Bogdan Popa, , , , . Carbon footprint of reservoirs in Bucharest. E3S Web of Conferences 2023, 404 , 02001. https://doi.org/10.1051/e3sconf/202340402001
    31. Ole Lessmann, Jorge Encinas Fernández, Karla Martínez-Cruz, Frank Peeters. Methane emissions due to reservoir flushing: a significant emission pathway?. Biogeosciences 2023, 20 (19) , 4057-4068. https://doi.org/10.5194/bg-20-4057-2023
    32. Haotian Liu, Linsen Zhan, Hailong Lu. Mechanisms for upward migration of methane in marine sediments. Frontiers in Marine Science 2022, 9 https://doi.org/10.3389/fmars.2022.1031096
    33. Karelle Desrosiers, Tonya DelSontro, Paul A. del Giorgio. Disproportionate Contribution of Vegetated Habitats to the CH4 and CO2 Budgets of a Boreal Lake. Ecosystems 2022, 25 (7) , 1522-1541. https://doi.org/10.1007/s10021-021-00730-9
    34. Ralf C.H. Aben, Mandy Velthuis, Garabet Kazanjian, Thijs Frenken, Edwin T.H.M. Peeters, Dedmer B. Van de Waal, Sabine Hilt, Lisette N. de Senerpont Domis, Leon P.M. Lamers, Sarian Kosten. Temperature response of aquatic greenhouse gas emissions differs between dominant plant types. Water Research 2022, 226 , 119251. https://doi.org/10.1016/j.watres.2022.119251
    35. Mabano Amani, Daniel von Schiller, Isabel Suárez, Miren Atristain, Arturo Elosegi, Rafael Marcé, Gonzalo García-Baquero, Biel Obrador. The drawdown phase of dam decommissioning is a hot moment of gaseous carbon emissions from a temperate reservoir. Inland Waters 2022, 12 (4) , 451-462. https://doi.org/10.1080/20442041.2022.2096977
    36. Eskinder Gemechu, Amit Kumar. A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy. Renewable and Sustainable Energy Reviews 2022, 167 , 112684. https://doi.org/10.1016/j.rser.2022.112684
    37. Xiantao Fang, Chao Wang, Tianrui Zhang, Fengwei Zheng, Jianting Zhao, Shuang Wu, Matti Barthel, Johan Six, Jianwen Zou, Shuwei Liu. Ebullitive CH4 flux and its mitigation potential by aeration in freshwater aquaculture: Measurements and global data synthesis. Agriculture, Ecosystems & Environment 2022, 335 , 108016. https://doi.org/10.1016/j.agee.2022.108016
    38. Kyle B. Delwiche, John A. Harrison, Joannes D. Maasakkers, Melissa P. Sulprizio, John Worden, Daniel J. Jacob, Elsie M. Sunderland. Estimating Drivers and Pathways for Hydroelectric Reservoir Methane Emissions Using a New Mechanistic Model. Journal of Geophysical Research: Biogeosciences 2022, 127 (8) https://doi.org/10.1029/2022JG006908
    39. Bradford S. Sherman, Phillip W. Ford. Extreme Hydrological Events and Reservoir Methane Emissions. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.893180
    40. Felipe Rust, Pascal Bodmer, Paul del Giorgio. Modeling the spatial and temporal variability in surface water CO2 and CH4 concentrations in a newly created complex of boreal hydroelectric reservoirs. Science of The Total Environment 2022, 815 , 152459. https://doi.org/10.1016/j.scitotenv.2021.152459
    41. Sofia L. D’Ambrosio, John A. Harrison. Measuring CH4 Fluxes From Lake and Reservoir Sediments: Methodologies and Needs. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.850070
    42. Ingeborg Bussmann, Uta Koedel, Claudia Schütze, Norbert Kamjunke, Matthias Koschorreck. Spatial Variability and Hotspots of Methane Concentrations in a Large Temperate River. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.833936
    43. Regina Katsman, Abhishek Painuly. Influence of anisotropy in mechanical properties of muddy aquatic sediment on CH4 bubble growth direction and migration pattern. Engineering Geology 2022, 299 , 106565. https://doi.org/10.1016/j.enggeo.2022.106565
    44. A.A.P. Baron, L.T. Dyck, H. Amjad, J. Bragg, E. Kroft, J. Newson, K. Oleson, N.J. Casson, R.L. North, J.J. Venkiteswaran, C.J. Whitfield. Differences in ebullitive methane release from small, shallow ponds present challenges for scaling. Science of The Total Environment 2022, 802 , 149685. https://doi.org/10.1016/j.scitotenv.2021.149685
    45. 晨 吴. Prospects of Reservoir Operation for the Goals of Carbon Peaking and Carbon Neutrality. Journal of Water Resources Research 2022, 11 (01) , 1-19. https://doi.org/10.12677/JWRR.2022.111001
    46. Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, Florian Einsiedl. High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling. Biogeosciences 2022, 19 (18) , 4551-4569. https://doi.org/10.5194/bg-19-4551-2022
    47. Renata Gruca-Rokosz, Maksymilian Cieśla. Sediment methane production within eutrophic reservoirs: The importance of sedimenting organic matter. Science of The Total Environment 2021, 799 , 149219. https://doi.org/10.1016/j.scitotenv.2021.149219
    48. Mina Bizic. Phytoplankton photosynthesis: an unexplored source of biogenic methane emission from oxic environments. Journal of Plankton Research 2021, 43 (6) , 822-830. https://doi.org/10.1093/plankt/fbab069
    49. Jérémie Gaillard, Vincent Chanudet, Guillaume Cunillera, Etienne Dambrine. Coarse and Fine Particulate Organic Matter Transport by a Fourth-Order Mountain Stream to Lake Bourget (France). Water 2021, 13 (19) , 2783. https://doi.org/10.3390/w13192783
    50. Yves T. Prairie, Sara Mercier-Blais, John A. Harrison, Cynthia Soued, Paul del Giorgio, Atle Harby, Jukka Alm, Vincent Chanudet, Roy Nahas. A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool. Environmental Modelling & Software 2021, 143 , 105117. https://doi.org/10.1016/j.envsoft.2021.105117
    51. Maciej Bartosiewicz, Liah X. Coggins, Patricia Glaz, Alicia Cortés, Sebastien Bourget, Elke S. Reichwaldt, Sally MacIntyre, Anas Ghadouani, Isabelle Laurion. Integrated approach towards quantifying carbon dioxide and methane release from waste stabilization ponds. Water Research 2021, 202 , 117389. https://doi.org/10.1016/j.watres.2021.117389
    52. Matthew S. Johnson, Elaine Matthews, David Bastviken, Bridget Deemer, Jinyang Du, Vanessa Genovese. Spatiotemporal Methane Emission From Global Reservoirs. Journal of Geophysical Research: Biogeosciences 2021, 126 (8) https://doi.org/10.1029/2021JG006305
    53. Arianto B. Santoso, David P. Hamilton, Louis A. Schipper, Ilia S. Ostrovsky, Chris H. Hendy. High contribution of methane in greenhouse gas emissions from a eutrophic lake: a mass balance synthesis. New Zealand Journal of Marine and Freshwater Research 2021, 55 (3) , 411-430. https://doi.org/10.1080/00288330.2020.1798476
    54. Pedro M. Barbosa, John M. Melack, João H. F. Amaral, Annika Linkhorst, Bruce R. Forsberg. Large Seasonal and Habitat Differences in Methane Ebullition on the Amazon Floodplain. Journal of Geophysical Research: Biogeosciences 2021, 126 (7) https://doi.org/10.1029/2020JG005911
    55. Lina Tyroller, Matthias S. Brennwald, Yama Tomonaga, Colin Maden, Rolf Kipfer. Noble gases as tracers for the gas dynamics in methane supersaturated lacustrine sediments. Chemical Geology 2021, 568 , 119905. https://doi.org/10.1016/j.chemgeo.2020.119905
    56. Annika Linkhorst, José R. Paranaíba, Raquel Mendonça, David Rudberg, Tonya DelSontro, Nathan Barros, Sebastian Sobek. Spatially Resolved Measurements in Tropical Reservoirs Reveal Elevated Methane Ebullition at River Inflows and at High Productivity. Global Biogeochemical Cycles 2021, 35 (5) https://doi.org/10.1029/2020GB006717
    57. Xiang Lu, Xiaotian Zhou, Yaofei Xu, Aidong Ruan, Zhongbo Yu. The Investigation of the Connections Among Hydrogeological Factors and the Emissions of Two Greenhouse Gases in Lake Sediment. Water Resources Research 2021, 57 (5) https://doi.org/10.1029/2020WR029375
    58. Henrique O. Sawakuchi, David Bastviken, Alex Enrich-Prast, Nicholas D. Ward, Plínio B. Camargo, Jeffrey E. Richey. Low Diffusive Methane Emissions From the Main Channel of a Large Amazonian Run-of-the-River Reservoir Attributed to High Methane Oxidation. Frontiers in Environmental Science 2021, 9 https://doi.org/10.3389/fenvs.2021.655455
    59. Xiaoxi Li, Changsheng Jiang, Xue Ni, Shijie Chen, Qingju Hao. Diffusive greenhouse gases fluxes from the surface of the Three Gorges Reservoir: Study at a site in Fuling. Acta Ecologica Sinica 2021, 41 (2) , 79-87. https://doi.org/10.1016/j.chnaes.2020.09.001
    60. Wenqing Shi, Qiuwen Chen, Jianyun Zhang, Ji Lu, Yuchen Chen, Bohui Pang, Juhua Yu, Bryce R. Van Dam. Spatial Patterns of Diffusive Methane Emissions Across Sediment Deposited Riparian Zones in Hydropower Reservoirs. Journal of Geophysical Research: Biogeosciences 2021, 126 (3) https://doi.org/10.1029/2020JG005945
    61. Xiaoxia Bai, Qiang Xu, Hong Li, Cheng Cheng, Qiang He. Lack of methane hotspot in the upstream dam: Case study in a tributary of the Three Gorges Reservoir, China. Science of The Total Environment 2021, 754 , 142151. https://doi.org/10.1016/j.scitotenv.2020.142151
    62. Dan Zhu, Ning Wu, Nabin Bhattarai, Krishna Prasad Oli, Huai Chen, Gopal Singh Rawat, Irfan Rashid, Maheshwar Dhakal, Srijana Joshi, Jianqing Tian, Qiu’an Zhu, Sunita Chaudhary, Kuenzang Tshering. Methane emissions respond to soil temperature in convergent patterns but divergent sensitivities across wetlands along altitude. Global Change Biology 2021, 27 (4) , 941-955. https://doi.org/10.1111/gcb.15454
    63. Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, Carsten J. Schubert. Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics. Biogeosciences 2021, 18 (10) , 3087-3101. https://doi.org/10.5194/bg-18-3087-2021
    64. Jake J. Beaulieu, Sarah Waldo, David A. Balz, Will Barnett, Alexander Hall, Michelle C. Platz, Karen M. White. Methane and Carbon Dioxide Emissions From Reservoirs: Controls and Upscaling. Journal of Geophysical Research: Biogeosciences 2020, 125 (12) https://doi.org/10.1029/2019JG005474
    65. Jorge Encinas Fernández, Hilmar Hofmann, Frank Peeters. Diurnal Pumped‐Storage Operation Minimizes Methane Ebullition Fluxes From Hydropower Reservoirs. Water Resources Research 2020, 56 (12) https://doi.org/10.1029/2020WR027221
    66. L. Liu, Z.J. Yang, K. Delwiche, L.H. Long, J. Liu, D.F. Liu, C.F. Wang, P. Bodmer, A. Lorke. Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River. Water Research 2020, 186 , 116319. https://doi.org/10.1016/j.watres.2020.116319
    67. Ruben Juanes, Yue Meng, Bauyrzhan K. Primkulov. Multiphase flow and granular mechanics. Physical Review Fluids 2020, 5 (11) https://doi.org/10.1103/PhysRevFluids.5.110516
    68. Gang Li, Meng Yang, Yunmo Zhang, John Grace, Cai Lu, Qing Zeng, Yifei Jia, Yunzhu Liu, Jialin Lei, Xuemeng Geng, Caicong Wu, Guangchun Lei, Ying Chen. Comparison model learning methods for methane emission prediction of reservoirs on a regional field scale: Performance and adaptation of methods with different experimental datasets. Ecological Engineering 2020, 157 , 105990. https://doi.org/10.1016/j.ecoleng.2020.105990
    69. Ping Yang, Yifei Zhang, Hong Yang, Qianqian Guo, Derrick Y.F. Lai, Guanghui Zhao, Ling Li, Chuan Tong. Ebullition was a major pathway of methane emissions from the aquaculture ponds in southeast China. Water Research 2020, 184 , 116176. https://doi.org/10.1016/j.watres.2020.116176
    70. Marco Donnini, Ivan Marchesini, Azzurra Zucchini. A new Alpine geo-lithological map (Alpine-Geo-LiM) and global carbon cycle implications. GSA Bulletin 2020, 132 (9-10) , 2004-2022. https://doi.org/10.1130/B35236.1
    71. Beibei Hu, Dongqi Wang, Weiqing Meng, Jun Zhou, Zongbin Sun, Xiaolong Liu. Greenhouse gas diffusive fluxes at the sediment–water interface of sewage-draining rivers. Journal of Soils and Sediments 2020, 20 (8) , 3243-3253. https://doi.org/10.1007/s11368-020-02653-9
    72. Annika Linkhorst, Carolin Hiller, Tonya DelSontro, Guilherme M. Azevedo, Nathan Barros, Raquel Mendonça, Sebastian Sobek. Comparing methane ebullition variability across space and time in a Brazilian reservoir. Limnology and Oceanography 2020, 65 (7) , 1623-1634. https://doi.org/10.1002/lno.11410
    73. Vincent Chanudet, Jérémie Gaillard, Johan Lambelain, Maud Demarty, Stéphane Descloux, Jim Félix-Faure, Alain Poirel, Etienne Dambrine. Emission of greenhouse gases from French temperate hydropower reservoirs. Aquatic Sciences 2020, 82 (3) https://doi.org/10.1007/s00027-020-00721-3
    74. Lin Zhu, Jianghua Yu, Bryce Van Dam, Huayong Cao, Yinyu Pu, Wenqing Shi, Boqiang Qin. Optimized methods for diffusive greenhouse gas flux analyses in inland waters. Environmental Science and Pollution Research 2020, 27 (21) , 25870-25876. https://doi.org/10.1007/s11356-019-06436-9
    75. Andrzej Bielecki, Sebastian Ernst, Wioletta Skrodzka, Igor Wojnicki. The externalities of energy production in the context of development of clean energy generation. Environmental Science and Pollution Research 2020, 27 (11) , 11506-11530. https://doi.org/10.1007/s11356-020-07625-7
    76. Adam P. Cohen, John M. Melack. Carbon dioxide supersaturation in high‐elevation oligotrophic lakes and reservoirs in the Sierra Nevada, California. Limnology and Oceanography 2020, 65 (3) , 612-626. https://doi.org/10.1002/lno.11330
    77. R. P. McClure, M. E. Lofton, S. Chen, K. M. Krueger, J. C. Little, C. C. Carey. The Magnitude and Drivers of Methane Ebullition and Diffusion Vary on a Longitudinal Gradient in a Small Freshwater Reservoir. Journal of Geophysical Research: Biogeosciences 2020, 125 (3) https://doi.org/10.1029/2019JG005205
    78. Renata Gruca-Rokosz. Quantitative Fluxes of the Greenhouse Gases CH4 and CO2 from the Surfaces of Selected Polish Reservoirs. Atmosphere 2020, 11 (3) , 286. https://doi.org/10.3390/atmos11030286
    79. Mina Bižić, Hans‐Peter Grossart, Danny Ionescu. Methane Paradox. 2020, 1-11. https://doi.org/10.1002/9780470015902.a0028892
    80. Meagan L. Beaton, Neda Mashhadi, R. Paul Weidman, Karlynne R. Dominato, Scott O. C. Mundle. Geochemical Approaches to Improve Nutrient Source Tracking in the Great Lakes. 2020, 183-216. https://doi.org/10.1007/698_2020_574
    81. Béla Tuzson, Manuel Graf, Jonas Ravelid, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Randulph Paulo Morales, Lukas Emmenegger. A compact QCL spectrometer for mobile, high-precision methane sensing aboard drones. Atmospheric Measurement Techniques 2020, 13 (9) , 4715-4726. https://doi.org/10.5194/amt-13-4715-2020
    82. Kyle Delwiche, Junyao Gu, Harold Hemond, Sarah P. Preheim. Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake. Biogeosciences 2020, 17 (12) , 3135-3147. https://doi.org/10.5194/bg-17-3135-2020
    83. Cynthia Soued, Yves T. Prairie. The carbon footprint of a Malaysian tropical reservoir: measured versus modelled estimates highlight the underestimated key role of downstream processes. Biogeosciences 2020, 17 (2) , 515-527. https://doi.org/10.5194/bg-17-515-2020
    84. Le Yang. Contrasting methane emissions from upstream and downstream rivers and their associated subtropical reservoir in eastern China. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-44470-2
    85. Jörg Tittel, Matthias Hüls, Matthias Koschorreck. Terrestrial Vegetation Drives Methane Production in the Sediments of two German Reservoirs. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-52288-1
    86. Sonia Herrero Ortega, Clara Romero González‐Quijano, Peter Casper, Gabriel A. Singer, Mark O. Gessner. Methane emissions from contrasting urban freshwaters: Rates, drivers, and a whole‐city footprint. Global Change Biology 2019, 25 (12) , 4234-4243. https://doi.org/10.1111/gcb.14799
    87. Maud Demarty, Alain Tremblay. Long term follow-up of pCO2, pCH4 and emissions from Eastmain 1 boreal reservoir, and the Rupert diversion bays, Canada. Ecohydrology & Hydrobiology 2019, 19 (4) , 529-540. https://doi.org/10.1016/j.ecohyd.2017.09.001
    88. Michael Mannich, Cristovão Vicente Scapulatempo Fernandes, Tobias Bernward Bleninger. Uncertainty analysis of gas flux measurements at air–water interface using floating chambers. Ecohydrology & Hydrobiology 2019, 19 (4) , 475-486. https://doi.org/10.1016/j.ecohyd.2017.09.002
    89. Dengzhong Zhao, Zhaohui Wang, Debao Tan, Yongbo Chen, Chong Li. Comparison of carbon emissions from the southern and northern tributaries of the Three Gorge Reservoir over the Changjiang River Basin, China. Ecohydrology & Hydrobiology 2019, 19 (4) , 515-528. https://doi.org/10.1016/j.ecohyd.2019.01.008
    90. Amit Kumar, Tao Yang, M.P. Sharma. Greenhouse gas measurement from Chinese freshwater bodies: A review. Journal of Cleaner Production 2019, 233 , 368-378. https://doi.org/10.1016/j.jclepro.2019.06.052
    91. Dominic Vachon, Timon Langenegger, Daphne Donis, Daniel F. McGinnis. Influence of water column stratification and mixing patterns on the fate of methane produced in deep sediments of a small eutrophic lake. Limnology and Oceanography 2019, 64 (5) , 2114-2128. https://doi.org/10.1002/lno.11172
    92. B. L. Miller, H. Chen, Y. He, X. Yuan, G. W. Holtgrieve. Magnitudes and Drivers of Greenhouse Gas Fluxes in Floodplain Ponds During Drawdown and Inundation by the Three Gorges Reservoir. Journal of Geophysical Research: Biogeosciences 2019, 124 (8) , 2499-2517. https://doi.org/10.1029/2018JG004701
    93. T. Langenegger, D. Vachon, D. Donis, D. F. McGinnis. What the bubble knows: Lake methane dynamics revealed by sediment gas bubble composition. Limnology and Oceanography 2019, 64 (4) , 1526-1544. https://doi.org/10.1002/lno.11133
    94. Regina Katsman. Methane Bubble Escape From Gas Horizon in Muddy Aquatic Sediment Under Periodic Wave Loading. Geophysical Research Letters 2019, 46 (12) , 6507-6515. https://doi.org/10.1029/2019GL083100
    95. Yannick Dück, Liu Liu, Andreas Lorke, Ilia Ostrovsky, Regina Katsman, Christian Jokiel. A novel freeze corer for characterization of methane bubbles and assessment of coring disturbances. Limnology and Oceanography: Methods 2019, 17 (5) , 305-319. https://doi.org/10.1002/lom3.10315
    96. W. W. Phyoe, F. Wang. A review of carbon sink or source effect on artificial reservoirs. International Journal of Environmental Science and Technology 2019, 16 (4) , 2161-2174. https://doi.org/10.1007/s13762-019-02237-2
    97. Jeremy Wilkinson, Pascal Bodmer, Andreas Lorke. Methane dynamics and thermal response in impoundments of the Rhine River, Germany. Science of The Total Environment 2019, 659 , 1045-1057. https://doi.org/10.1016/j.scitotenv.2018.12.424
    98. Yifei Zhang, Ping Yang, Hong Yang, Lishan Tan, Qianqian Guo, Guanghui Zhao, Ling Li, Yuchuan Gao, Chuan Tong. Plot-scale spatiotemporal variations of CO2 concentration and flux across water–air interfaces at aquaculture shrimp ponds in a subtropical estuary. Environmental Science and Pollution Research 2019, 26 (6) , 5623-5637. https://doi.org/10.1007/s11356-018-3929-3
    99. Mina Bižić-Ionescu, Danny Ionescu, Marco Günthel, Kam W. Tang, Hans-Peter Grossart. Oxic Methane Cycling: New Evidence for Methane Formation in Oxic Lake Water. 2019, 379-400. https://doi.org/10.1007/978-3-319-78108-2_10
    100. Carsten J. Schubert, Bernhard Wehrli. Contribution of Methane Formation and Methane Oxidation to Methane Emission from Freshwater Systems. 2019, 401-430. https://doi.org/10.1007/978-3-319-78108-2_18
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect