ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Insights into the Acylation Mechanism of Class A β-Lactamases from Molecular Dynamics Simulations of the TEM-1 Enzyme Complexed with Benzylpenicillin

View Author Information
Contribution from the Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain, and Department of Chemistry, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802-6300 USA
Cite this: J. Am. Chem. Soc. 2003, 125, 3, 672–684
Publication Date (Web):December 24, 2002
https://doi.org/10.1021/ja027704o
Copyright © 2003 American Chemical Society

    Article Views

    604

    Altmetric

    -

    Citations

    47
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Herein, we present results from molecular dynamics MD simulations (∼1 ns) of the TEM-1 β-lactamase in aqueous solution. Both the free form of the enzyme and its complex with benzylpenicillin were studied. During the simulation of the free enzyme, the conformation of the Ω loop and the interresidue contacts defining the complex H-bond network in the active site were quite stable. Most interestingly, the water molecule connecting Glu166 and Ser70 does not exchange with bulk solvent, emphasizing its structural and catalytic relevance. In the presence of the substrate, Ser130, Ser235, and Arg244 directly interact with the β-lactam carboxylate via H-bonds, whereas the Lys234 ammonium group has only an electrostatic influence. These interactions together with other specific contacts result in a very short distance (∼3 Å) between the attacking hydroxyl group of Ser70 and the β-lactam ring carbonyl group, which is a favorable orientation for nucleophilic attack. Our simulations also gave insight into the possible pathways for proton abstraction from the Ser70 hydroxyl group. We propose that either the Glu166 carboxylate-Wat1 or the substrate carboxylate-Ser130 moieties could abstract a proton from the nucleophilic Ser70.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Departamento de Química Física y Analítica, Universidad de Oviedo.

    §

     Current address:  Laboratoire de Dynamique Moleculaire, Institut Jean-Pierre Ebel, 41 rue Jules Horowitz, 38027 Grenoble, France.

    *

     To whom correspondence should be addressed. Fax:  +34-985103125.

     Department of Chemistry, The Pennsylvania State University.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Benzylpenicillin parameters. Table showing the first peak position of g(r) and its integrated value (6 pages, print/PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 47 publications.

    1. Wen-Mei Wei, Yan-Li Xu, Ren-Hui Zheng, Tingting Zhao, Weijun Fang, Yi-De Qin. Theoretical Study on the Mechanism of the Acylate Reaction of β-Lactamase. ACS Omega 2021, 6 (19) , 12598-12604. https://doi.org/10.1021/acsomega.1c00592
    2. Elena O. Levina, Nikita V. Penkov, Natalia N. Rodionova, Sergey A. Tarasov, Daria V. Barykina, and Mikhail V. Vener . Hydration of the Carboxylate Group in Anti-Inflammatory Drugs: ATR-IR and Computational Studies of Aqueous Solution of Sodium Diclofenac. ACS Omega 2018, 3 (1) , 302-313. https://doi.org/10.1021/acsomega.7b01034
    3. Rui Li, Jun-Min Liao, Chi-Ruei Gu, Yeng-Tseng Wang, and Cheng-Lung Chen . Theoretical Investigation on Reaction of Sulbactam with Wild-Type SHV-1 β-Lactamase: Acylation, Tautomerization, and Deacylation. The Journal of Physical Chemistry B 2011, 115 (34) , 10298-10310. https://doi.org/10.1021/jp111572v
    4. Liudmila Dzhekieva, Mathieu Rocaboy, Frédéric Kerff, Paulette Charlier, Eric Sauvage and R. F. Pratt . Crystal Structure of a Complex between the Actinomadura R39 dd-Peptidase and a Peptidoglycan-mimetic Boronate Inhibitor: Interpretation of a Transition State Analogue in Terms of Catalytic Mechanism. Biochemistry 2010, 49 (30) , 6411-6419. https://doi.org/10.1021/bi100757c
    5. Johannes C. Hermann, Juliette Pradon, Jeremy N. Harvey and Adrian J. Mulholland . High Level QM/MM Modeling of the Formation of the Tetrahedral Intermediate in the Acylation of Wild Type and K73A Mutant TEM-1 Class A β-Lactamase. The Journal of Physical Chemistry A 2009, 113 (43) , 11984-11994. https://doi.org/10.1021/jp9037254
    6. Rui Li, Dacheng Feng and Shengyu Feng. Computational Modeling Study on Formation of Acyclic Clavulanate Intermediates in Inhibition of Class A β-Lactamase: Water-Assisted Proton Transfer. The Journal of Physical Chemistry A 2009, 113 (8) , 1608-1613. https://doi.org/10.1021/jp809605t
    7. Jarrod W. Johnson, Darryl P. Evanoff, Marc E. Savard, Gerald Lange, Timothy R. Ramadhar, Abdeljalil Assoud, Nicholas J. Taylor and Gary I. Dmitrienko. Cyclobutanone Mimics of Penicillins: Effects of Substitution on Conformation and Hemiketal Stability. The Journal of Organic Chemistry 2008, 73 (18) , 6970-6982. https://doi.org/10.1021/jo801274m
    8. Pierre-Yves Savard and, Stéphane M. Gagné. Backbone Dynamics of TEM-1 Determined by NMR:  Evidence for a Highly Ordered Protein. Biochemistry 2006, 45 (38) , 11414-11424. https://doi.org/10.1021/bi060414q
    9. Guillermina Estiu and, Kenneth M. Merz, Jr.. Catalyzed Decomposition of Urea. Molecular Dynamics Simulations of the Binding of Urea to Urease. Biochemistry 2006, 45 (14) , 4429-4443. https://doi.org/10.1021/bi052020p
    10. Samy O. Meroueh,, Jed F. Fisher,, H. Bernhard Schlegel, and, Shahriar Mobashery. Ab Initio QM/MM Study of Class A β-Lactamase Acylation:  Dual Participation of Glu166 and Lys73 in a Concerted Base Promotion of Ser70. Journal of the American Chemical Society 2005, 127 (44) , 15397-15407. https://doi.org/10.1021/ja051592u
    11. Masayuki Hata,, Yoshikazu Tanaka,, Yasuyuki Fujii,, Saburo Neya, and, Tyuji Hoshino. A Theoretical Study on the Substrate Deacylation Mechanism of Class C β-Lactamase. The Journal of Physical Chemistry B 2005, 109 (33) , 16153-16160. https://doi.org/10.1021/jp045403q
    12. Kaushik Raha,, Arjan J. van der Vaart,, Kevin E. Riley,, Martin B. Peters,, Lance M. Westerhoff,, Hwanho Kim, and, Kenneth M. Merz, Jr.. Pairwise Decomposition of Residue Interaction Energies Using Semiempirical Quantum Mechanical Methods in Studies of Protein−Ligand Interaction. Journal of the American Chemical Society 2005, 127 (18) , 6583-6594. https://doi.org/10.1021/ja042666p
    13. Natalia Díaz,, Tomás L. Sordo, and, Dimas Suárez. Insights into the Base Catalysis Exerted by the DD-Transpeptidase from Streptomyces K15:  A Molecular Dynamics Study. Biochemistry 2005, 44 (9) , 3225-3240. https://doi.org/10.1021/bi048193g
    14. Johannes C. Hermann,, Christian Hensen,, Lars Ridder,, Adrian J. Mulholland, and, Hans-Dieter Höltje. Mechanisms of Antibiotic Resistance:  QM/MM Modeling of the Acylation Reaction of a Class A β-Lactamase with Benzylpenicillin. Journal of the American Chemical Society 2005, 127 (12) , 4454-4465. https://doi.org/10.1021/ja044210d
    15. Natalia Díaz,, Dimas Suárez,, Kenneth M. Merz, Jr., and, Tomás L. Sordo. Molecular Dynamics Simulations of the TEM-1 β-Lactamase Complexed with Cephalothin. Journal of Medicinal Chemistry 2005, 48 (3) , 780-791. https://doi.org/10.1021/jm0493663
    16. Johannes C. Hermann,, Lars Ridder,, Adrian J. Mulholland, and, Hans-Dieter Höltje. Identification of Glu166 as the General Base in the Acylation Reaction of Class A β-Lactamases through QM/MM Modeling. Journal of the American Chemical Society 2003, 125 (32) , 9590-9591. https://doi.org/10.1021/ja034434g
    17. Dipendra Khadka, Vindi M. Jayasinghe-Arachchige, Rajeev Prabhakar, Vaidhyanathan Ramamurthy. Application of molecular dynamic simulations in modeling the excited state behavior of confined molecules. Photochemical & Photobiological Sciences 2023, 22 (12) , 2781-2798. https://doi.org/10.1007/s43630-023-00486-2
    18. Zilin Song, Hongyu Zhou, Hao Tian, Xinlei Wang, Peng Tao. Unraveling the energetic significance of chemical events in enzyme catalysis via machine-learning based regression approach. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-00379-w
    19. Qianyi Cheng, Nathan J. DeYonker. Acylation and deacylation mechanism and kinetics of penicillin G reaction with Streptomyces R61 DD ‐peptidase. Journal of Computational Chemistry 2020, 41 (18) , 1685-1697. https://doi.org/10.1002/jcc.26210
    20. Sophie M. C. Gobeil, Maximillian C. C. J. C. Ebert, Jaeok Park, Donald Gagné, Nicolas Doucet, Albert M. Berghuis, Jürgen Pleiss, Joelle N. Pelletier. The Structural Dynamics of Engineered β-Lactamases Vary Broadly on Three Timescales yet Sustain Native Function. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-42866-8
    21. Feng Wang, Li Shen, Hongyu Zhou, Shouyi Wang, Xinlei Wang, Peng Tao. Machine Learning Classification Model for Functional Binding Modes of TEM-1 β-Lactamase. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00047
    22. Ignacio Lizana, Eduardo J. Delgado. Theoretical insights on the inhibition mechanism of a class A Serine Hydrolase by avibactam. Journal of Computational Chemistry 2018, 39 (24) , 1943-1948. https://doi.org/10.1002/jcc.25340
    23. Ignacio Lizana, Eduardo J. Delgado. A QM/MM study on the enzymatic inactivation of cefotaxime. Journal of Molecular Modeling 2017, 23 (7) https://doi.org/10.1007/s00894-017-3379-8
    24. Marisa L. Winkler, Krisztina M. Papp-Wallace, Magdalena A. Taracila, Robert A. Bonomo. Avibactam and Inhibitor-Resistant SHV β-Lactamases. Antimicrobial Agents and Chemotherapy 2015, 59 (7) , 3700-3709. https://doi.org/10.1128/AAC.04405-14
    25. K.M. Kumar, P. Lavanya, Anand Anbarasu, Sudha Ramaiah. Molecular dynamics and molecular docking studies on E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant forms of class A β-lactamases. Journal of Biomolecular Structure and Dynamics 2014, 32 (12) , 1953-1968. https://doi.org/10.1080/07391102.2013.847804
    26. Sophie M.C. Gobeil, Christopher M. Clouthier, Jaeok Park, Donald Gagné, Albert M. Berghuis, Nicolas Doucet, Joelle N. Pelletier. Maintenance of Native-like Protein Dynamics May Not Be Required for Engineering Functional Proteins. Chemistry & Biology 2014, 21 (10) , 1330-1340. https://doi.org/10.1016/j.chembiol.2014.07.016
    27. Deniz Meneksedag, Asligul Dogan, Pinar Kanlikilicer, Elif Ozkirimli. Communication between the active site and the allosteric site in class A beta-lactamases. Computational Biology and Chemistry 2013, 43 , 1-10. https://doi.org/10.1016/j.compbiolchem.2012.12.002
    28. Rui Li, Yeng-Tseng Wang, Cheng-Lung Chen. Computer modeling on the tautomerization of sulbactam intermediate in SHV-1 β-lactamases: E166A mutant vs. wild type. Journal of Molecular Graphics and Modelling 2013, 40 , 131-139. https://doi.org/10.1016/j.jmgm.2012.12.002
    29. Olivier Fisette, Stéphane Gagné, Patrick Lagüe. Molecular Dynamics of Class A β-lactamases—Effects of Substrate Binding. Biophysical Journal 2012, 103 (8) , 1790-1801. https://doi.org/10.1016/j.bpj.2012.09.009
    30. Manoj Kumar Singh, Brian N. Dominy. The Evolution of Cefotaximase Activity in the TEM β-Lactamase. Journal of Molecular Biology 2012, 415 (1) , 205-220. https://doi.org/10.1016/j.jmb.2011.10.041
    31. Sarah M. Drawz, Robert A. Bonomo. Three Decades of β-Lactamase Inhibitors. Clinical Microbiology Reviews 2010, 23 (1) , 160-201. https://doi.org/10.1128/CMR.00037-09
    32. Fabian Bös, Jürgen Pleiss. Multiple Molecular Dynamics Simulations of TEM β-Lactamase: Dynamics and Water Binding of the Ω-Loop. Biophysical Journal 2009, 97 (9) , 2550-2558. https://doi.org/10.1016/j.bpj.2009.08.031
    33. David C. Marciano, Nicholas G. Brown, Timothy Palzkill. Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM‐1 β‐lactamase. Protein Science 2009, 18 (10) , 2080-2089. https://doi.org/10.1002/pro.220
    34. Sébastien Morin, Stéphane M. Gagné. NMR Dynamics of PSE-4 β-Lactamase: An Interplay of ps-ns Order and μs-ms Motions in the Active Site. Biophysical Journal 2009, 96 (11) , 4681-4691. https://doi.org/10.1016/j.bpj.2009.02.068
    35. Cristina Fenollar-Ferrer, Juan Frau, Josefa Donoso, Francisco Muñoz. Evolution of class C β-lactamases: factors influencing their hydrolysis and recognition mechanisms. Theoretical Chemistry Accounts 2008, 121 (3-4) , 209-218. https://doi.org/10.1007/s00214-008-0463-2
    36. Hao Hu, Weitao Yang. Free Energies of Chemical Reactions in Solution and in Enzymes with Ab Initio Quantum Mechanics/Molecular Mechanics Methods. Annual Review of Physical Chemistry 2008, 59 (1) , 573-601. https://doi.org/10.1146/annurev.physchem.59.032607.093618
    37. Nicolas Doucet, Joelle N. Pelletier. Simulated annealing exploration of an active‐site tyrosine in TEM‐1β‐lactamase suggests the existence of alternate conformations. Proteins: Structure, Function, and Bioinformatics 2007, 69 (2) , 340-348. https://doi.org/10.1002/prot.21485
    38. Feng Zhu, Rui Li, Dacheng Feng, Maoxia He, Zhengting Cai. Theoretical studies of sulbactam: Reactions after acylation. International Journal of Quantum Chemistry 2007, 107 (9) , 1925-1934. https://doi.org/10.1002/qua.21307
    39. Rui Li, Dacheng Feng, Feng Zhu. Quantum chemical study of penicillin: Reactions after acylation. International Journal of Quantum Chemistry 2007, 107 (10) , 2032-2039. https://doi.org/10.1002/qua.21362
    40. A.A. Alex. Quantum Mechanical Calculations in Medicinal Chemistry: Relevant Method or a Quantum Leap Too Far?. 2007, 379-420. https://doi.org/10.1016/B0-08-045044-X/00259-5
    41. Masayuki Hata, Yasuyuki Fujii, Yoshikazu Tanaka, Hidenori Ishikawa, Miho Ishii, Saburo Neya, Minoru Tsuda, Tyuji Hoshino. Substrate Deacylation Mechanisms of Serine-.BETA.-lactamases. Biological and Pharmaceutical Bulletin 2006, 29 (11) , 2151-2159. https://doi.org/10.1248/bpb.29.2151
    42. Lee-Wei Yang, Ivet Bahar. Coupling between Catalytic Site and Collective Dynamics: A Requirement for Mechanochemical Activity of Enzymes. Structure 2005, 13 (6) , 893-904. https://doi.org/10.1016/j.str.2005.03.015
    43. Danilo Roccatano, Gianluca Sbardella, Massimiliano Aschi, Gianfranco Amicosante, Cecilia Bossa, Alfredo Di Nola, Fernando Mazza. Dynamical Aspects of TEM-1 β-Lactamase Probed by Molecular Dynamics. Journal of Computer-Aided Molecular Design 2005, 19 (5) , 329-340. https://doi.org/10.1007/s10822-005-7003-0
    44. Nicolas Doucet, Pierre-Yves De Wals, Joelle N. Pelletier. Site-saturation Mutagenesis of Tyr-105 Reveals Its Importance in Substrate Stabilization and Discrimination in TEM-1 β-Lactamase. Journal of Biological Chemistry 2004, 279 (44) , 46295-46303. https://doi.org/10.1074/jbc.M407606200
    45. Li Xie, Haiyan Liu, Weitao Yang. Adapting the nudged elastic band method for determining minimum-energy paths of chemical reactions in enzymes. The Journal of Chemical Physics 2004, 120 (17) , 8039-8052. https://doi.org/10.1063/1.1691404
    46. Natalia Díaz, Dimas Suárez, Tomás L. Sordo. Conformational properties of penicillins: Quantum chemical calculations and molecular dynamics simulations of benzylpenicillin. Journal of Computational Chemistry 2003, 24 (15) , 1864-1873. https://doi.org/10.1002/jcc.10350
    47. Jimena Alba, Cedric Bauvois, Yoshikazu Ishii, Moreno Galleni, Katsuyoshi Masuda, Masaji Ishiguro, Masahiko Ito, Jean-Marie Frere, Keizo Yamaguchi. A detailed kinetic study of Mox-1, a plasmid-encoded class C β-lactamase. FEMS Microbiology Letters 2003, 225 (2) , 183-188. https://doi.org/10.1016/S0378-1097(03)00448-8

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect