ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Molecular Oxygen Adsorption Behaviors on the Rutile TiO2(110)-1×1 Surface: An in Situ Study with Low-Temperature Scanning Tunneling Microscopy

View Author Information
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
Cite this: J. Am. Chem. Soc. 2011, 133, 6, 2002–2009
Publication Date (Web):January 19, 2011
https://doi.org/10.1021/ja110375n
Copyright © 2011 American Chemical Society

    Article Views

    3188

    Altmetric

    -

    Citations

    152
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    A knowledge of adsorption behaviors of oxygen on the model system of the reduced rutile TiO2(110)-1×1 surface is of great importance for an atomistic understanding of many chemical processes. We present a scanning tunneling microcopy (STM) study on the adsorption of molecular oxygen either at the bridge-bonded oxygen vacancies (BBOV) or at the hydroxyls (OH) on the TiO2(110)-1×1 surface. Using an in situ O2 dosing method, we are able to directly verify the exact adsorption sites and the dynamic behaviors of molecular O2. Our experiments provide direct evidence that an O2 molecule can intrinsically adsorb at both the BBOV and the OH sites. It has been identified that, at a low coverage of O2, the singly adsorbed molecular O2 at BBOV can be dissociated through an intermediate state as driven by the STM tip. However, singly adsorbed molecular O2 at OH can survive from such a tip-induced effect, which implies that the singly adsorbed O2 at OH is more stable than that at BBOV. It is interesting to observe that when the BBOVs are fully filled with excess O2 dosing, the adsorbed O2 molecules at BBOV tend to be nondissociative even under a higher bias voltage of 2.2 V. Such a nondissociative behavior is most likely attributed to the presence of two or more O2 molecules simultaneously adsorbed at a BBOV with a more stable configuration than singly adsorbed molecular O2 at a BBOV.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 152 publications.

    1. Yuemiao Lai, Yi Zeng, Xiao Chen, Tao Wang, Qing Guo. Photon Stimulated Desorption of C6H6 on Rutile TiO2(110): Hole or Electron Regulated?. The Journal of Physical Chemistry C 2024, 128 (11) , 4600-4606. https://doi.org/10.1021/acs.jpcc.4c00648
    2. Yijing Liu, Le Lin, Liang Yu, Rentao Mu, Qiang Fu. Spatially Separated Active Sites Enable Selective CO Oxidation Reaction on Oxide Catalyst. The Journal of Physical Chemistry Letters 2023, 14 (43) , 9780-9786. https://doi.org/10.1021/acs.jpclett.3c02247
    3. Zhihong Wu, Wen-Jin Yin, Bo Wen, Dongwei Ma, Li-Min Liu. Oxygen Vacancy Diffusion in Rutile TiO2: Insight from Deep Neural Network Potential Simulations. The Journal of Physical Chemistry Letters 2023, 14 (8) , 2208-2214. https://doi.org/10.1021/acs.jpclett.2c03827
    4. Shaohong Wang, Jiayi Zhu, Ting Li, Fei Ge, Zhihao Zhang, Runliang Zhu, Haijiao Xie, Yin Xu. Oxygen Vacancy-Mediated CuCoFe/Tartrate-LDH Catalyst Directly Activates Oxygen to Produce Superoxide Radicals: Transformation of Active Species and Implication for Nitrobenzene Degradation. Environmental Science & Technology 2022, 56 (12) , 7924-7934. https://doi.org/10.1021/acs.est.2c00522
    5. Hanna Bühlmeyer, Kræn C. Adamsen, Tao Xu, Lutz Lammich, Jörg Libuda, Jeppe V. Lauritsen, Stefan Wendt. Adsorption and Reaction of NH3 on Rutile TiO2(110): An STM Study. The Journal of Physical Chemistry C 2022, 126 (15) , 6590-6600. https://doi.org/10.1021/acs.jpcc.2c01414
    6. Yuemiao Lai, Zhengtian Pu, Peng Liu, Fangliang Li, Jie Zeng, Xueming Yang, Qing Guo. Low-Temperature C–H Bond Activation: Ethylbenzene-to-Styrene Conversion on Rutile TiO2(110). The Journal of Physical Chemistry C 2022, 126 (14) , 6231-6240. https://doi.org/10.1021/acs.jpcc.2c00244
    7. Guigu Xue, Yuemiao Lai, Fangliang Li, Yinuo Li, Peng Liu, Qing Guo. Photochemistry of 2-Propanol on Rutile TiO2(110). The Journal of Physical Chemistry C 2022, 126 (8) , 3949-3956. https://doi.org/10.1021/acs.jpcc.1c09861
    8. Peng Liu, Guigu Xue, Yuemiao Lai, Yinuo Li, Xiao Chen, Qing Guo. tert-Butanol Chemistry on Rutile TiO2(110): The Effect of Surface Oxidation. The Journal of Physical Chemistry C 2022, 126 (7) , 3457-3465. https://doi.org/10.1021/acs.jpcc.2c00844
    9. Hao Li, Huijun Zhu, Yanbiao Shi, Huan Shang, Lizhi Zhang, Jing Wang. Vacancy-Rich and Porous NiFe-Layered Double Hydroxide Ultrathin Nanosheets for Efficient Photocatalytic NO Oxidation and Storage. Environmental Science & Technology 2022, 56 (3) , 1771-1779. https://doi.org/10.1021/acs.est.1c07811
    10. Quanzhen Zhang, Ján Brndiar, Yuuki Adachi, Martin Konôpka, Huan Fei Wen, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Hongqian Sang, Yan Jun Li, Lev Kantorovich, Ivan Štich. Voltage- and Redox State-Triggered Oxygen Adatom Conductance Switch. The Journal of Physical Chemistry C 2021, 125 (48) , 26801-26807. https://doi.org/10.1021/acs.jpcc.1c07568
    11. Yinuo Li, Yuemiao Lai, Xiao Chen, Xueming Yang, Qing Guo. C–O versus C–C Bond Cleavage in Ethylene Glycol Photochemistry on Rutile TiO2(110): Selectivity Depends on Excess Electrons. The Journal of Physical Chemistry C 2021, 125 (46) , 25580-25588. https://doi.org/10.1021/acs.jpcc.1c08075
    12. Fei Rao, Gangqiang Zhu, Weibin Zhang, Yunhua Xu, Baowei Cao, Xianjin Shi, Jianzhi Gao, Yuhong Huang, Yu Huang, Mirabbos Hojamberdiev. Maximizing the Formation of Reactive Oxygen Species for Deep Oxidation of NO via Manipulating the Oxygen-Vacancy Defect Position on (BiO)2CO3. ACS Catalysis 2021, 11 (13) , 7735-7749. https://doi.org/10.1021/acscatal.1c01251
    13. Yongguang Bu, Hongchao Li, Wenjing Yu, Yifan Pan, Lijun Li, Yanfeng Wang, Liangtao Pu, Jie Ding, Guandao Gao, Bingcai Pan. Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. Environmental Science & Technology 2021, 55 (3) , 2110-2120. https://doi.org/10.1021/acs.est.0c07274
    14. Luca Brugnoli, Alfonso Pedone, Maria Cristina Menziani, Carlo Adamo, Frédéric Labat. O2 Activation over Ag-Decorated CeO2(111) and TiO2(110) Surfaces: A Theoretical Comparative Investigation. The Journal of Physical Chemistry C 2020, 124 (47) , 25917-25930. https://doi.org/10.1021/acs.jpcc.0c09080
    15. Haiping Lin, Zhijun Wang, Haochen Wang, Jianzhi Gao, Haoxuan Ding, Yong Xu, Qing Li, Qing Guo, Zhibo Ma, Xueming Yang, Minghu Pan. In Situ Observation of Stepwise C–H Bond Scission: Deciphering the Catalytic Selectivity of Ethylbenzene-to-Styrene Conversion on TiO2. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9850-9855. https://doi.org/10.1021/acs.jpclett.0c02729
    16. Ganhua Qiu, Ting Wang, Xiaoli Li, Xueqin Tao, Benxia Li. Novel BiOCl/BiCl3Br–CTA Heterostructure Photocatalyst with Abundant Oxygen Vacancies and a Superoleophilic Surface for Promoting Selective Oxidation of Toluene. Industrial & Engineering Chemistry Research 2020, 59 (25) , 11517-11526. https://doi.org/10.1021/acs.iecr.0c01796
    17. Jeong Su Kang, So-Dam Sohn, Hyung-Joon Shin. Dissociative Adsorption of H2O2 on the TiO2(110) Surface for Advanced Oxidation Process. The Journal of Physical Chemistry C 2020, 124 (22) , 11930-11934. https://doi.org/10.1021/acs.jpcc.0c02143
    18. Yuuki Adachi, Yasuhiro Sugawara, Yan Jun Li. Remotely Controlling the Charge State of Oxygen Adatoms on a Rutile TiO2(110) Surface Using Atomic Force Microscopy. The Journal of Physical Chemistry C 2020, 124 (22) , 12010-12015. https://doi.org/10.1021/acs.jpcc.0c03117
    19. Quanzhen Zhang, Huan Fei Wen, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Yan Jun Li. Electrical Engineering of the Oxygen Adatom and Vacancy on Rutile TiO2(110) by Atomic Force Microscopy at 78 K. The Journal of Physical Chemistry C 2019, 123 (47) , 28852-28858. https://doi.org/10.1021/acs.jpcc.9b10304
    20. Huan Fei Wen, Yuuki Adachi, Quanzhen Zhang, Masato Miyazaki, Yasuhiro Sugawara, Yan Jun Li. Identification of Atomic Defects and Adsorbate on Rutile TiO2(110)-(1 × 1) Surface by Atomic Force Microscopy. The Journal of Physical Chemistry C 2019, 123 (42) , 25756-25760. https://doi.org/10.1021/acs.jpcc.9b07949
    21. Quanzhen Zhang, Huan Fei Wen, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Yan Jun Li. Characterization and Reversible Migration of Subsurface Hydrogen on Rutile TiO2(110) by Atomic Force Microscopy at 78 K. The Journal of Physical Chemistry C 2019, 123 (36) , 22595-22602. https://doi.org/10.1021/acs.jpcc.9b05744
    22. Yuuki Adachi, Huan Fei Wen, Quanzhen Zhang, Masato Miyazaki, Yasuhiro Sugawara, Hongqian Sang, Ján Brndiar, Lev Kantorovich, Ivan Štich, Yan Jun Li. Tip-Induced Control of Charge and Molecular Bonding of Oxygen Atoms on the Rutile TiO2 (110) Surface with Atomic Force Microscopy. ACS Nano 2019, 13 (6) , 6917-6924. https://doi.org/10.1021/acsnano.9b01792
    23. Shijing Tan, Hao Feng, Yongfei Ji, Qijing Zheng, Yongliang Shi, Jin Zhao, Aidi Zhao, Jinlong Yang, Yi Luo, Bing Wang, J. G. Hou. Visualizing Elementary Reactions of Methanol by Electrons and Holes on TiO2(110) Surface. The Journal of Physical Chemistry C 2018, 122 (50) , 28805-28814. https://doi.org/10.1021/acs.jpcc.8b09784
    24. Quanzhen Zhang, Yan Jun Li, Huan Fei Wen, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Ján Brndiar, Lev Kantorovich, Ivan Štich. Measurement and Manipulation of the Charge State of an Adsorbed Oxygen Adatom on the Rutile TiO2(110)-1×1 Surface by nc-AFM and KPFM. Journal of the American Chemical Society 2018, 140 (46) , 15668-15674. https://doi.org/10.1021/jacs.8b07745
    25. Huanhuan Li, Mengting Si, Lihua Liu, Xiangqian Chu, Shuai Wang, Lei Wan, Rong Yan, Mengtao Sun, Yingcui Fang. Ag Nanoparticle-Induced Oxidative Dimerization of Thiophenols: Efficiency and Mechanism. Langmuir 2018, 34 (38) , 11347-11353. https://doi.org/10.1021/acs.langmuir.8b02068
    26. Huan Fei Wen, Quanzhen Zhang, Yuuki Adachi, Masato Miyazaki, Yoshitaka Naitoh, Yan Jun Li, Yasuhiro Sugawara. Direct Visualization of Oxygen Reaction with Paired Hydroxyl on TiO2(110) Surface at 78 K by Atomic Force Microscopy. The Journal of Physical Chemistry C 2018, 122 (30) , 17395-17399. https://doi.org/10.1021/acs.jpcc.8b06289
    27. José A. Rodriguez, David C. Grinter, Pedro J. Ramírez, Dario J. Stacchiola, and Sanjaya Senanayake . High Activity of Au/K/TiO2(110) for CO Oxidation: Alkali-Metal-Enhanced Dispersion of Au and Bonding of CO. The Journal of Physical Chemistry C 2018, 122 (8) , 4324-4330. https://doi.org/10.1021/acs.jpcc.7b11771
    28. Chengzhi Luo, Xiaohui Ren, Zhigao Dai, Yupeng Zhang, Xiang Qi, and Chunxu Pan . Present Perspectives of Advanced Characterization Techniques in TiO2-Based Photocatalysts. ACS Applied Materials & Interfaces 2017, 9 (28) , 23265-23286. https://doi.org/10.1021/acsami.7b00496
    29. Yongliang Shi, Huijuan Sun, Wissam A. Saidi, Manh Cuong Nguyen, Cai Zhuang Wang, Kaiming Ho, Jinlong Yang, and Jin Zhao . Role of Surface Stress on the Reactivity of Anatase TiO2(001). The Journal of Physical Chemistry Letters 2017, 8 (8) , 1764-1771. https://doi.org/10.1021/acs.jpclett.7b00181
    30. Ying-juan Hao, Bing Liu, Li-gang Tian, Fa-tang Li, Jie Ren, Shao-jia Liu, Ying Liu, Jun Zhao, and Xiao-jing Wang . Synthesis of {111} Facet-Exposed MgO with Surface Oxygen Vacancies for Reactive Oxygen Species Generation in the Dark. ACS Applied Materials & Interfaces 2017, 9 (14) , 12687-12693. https://doi.org/10.1021/acsami.6b16856
    31. Shiliang Ma, Matthew E. Reish, Zhen Zhang, Ian Harrison, and John T. Yates, Jr. . Anatase-Selective Photoluminescence Spectroscopy of P25 TiO2 Nanoparticles: Different Effects of Oxygen Adsorption on the Band Bending of Anatase. The Journal of Physical Chemistry C 2017, 121 (2) , 1263-1271. https://doi.org/10.1021/acs.jpcc.6b11714
    32. Hao Li, Jian Shang, Huijun Zhu, Zhiping Yang, Zhihui Ai, and Lizhi Zhang . Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl. ACS Catalysis 2016, 6 (12) , 8276-8285. https://doi.org/10.1021/acscatal.6b02613
    33. Hao Feng, Liming Liu, Shihui Dong, Xuefeng Cui, Jin Zhao, and Bing Wang . Dynamic Processes of Formaldehyde at Terminal Ti Sites on the Rutile TiO2(110) Surface. The Journal of Physical Chemistry C 2016, 120 (42) , 24287-24293. https://doi.org/10.1021/acs.jpcc.6b08797
    34. Hao Feng, Shijing Tan, Haoqi Tang, Qijing Zheng, Yongliang Shi, Xuefeng Cui, Xiang Shao, Aidi Zhao, Jin Zhao, and Bing Wang . Temperature- and Coverage-Dependent Kinetics of Photocatalytic Reaction of Methanol on TiO2 (110)-(1 × 1) Surface. The Journal of Physical Chemistry C 2016, 120 (10) , 5503-5514. https://doi.org/10.1021/acs.jpcc.5b12010
    35. Nikolay G. Petrik, Michael A. Henderson, and Greg A. Kimmel . Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate. The Journal of Physical Chemistry C 2015, 119 (22) , 12262-12272. https://doi.org/10.1021/acs.jpcc.5b02477
    36. Nikolay G. Petrik, Michael A. Henderson, and Greg A. Kimmel . Insights into Acetone Photochemistry on Rutile TiO2(110). 2. New Photodesorption Channel with CH3 Ejection along the Surface Normal. The Journal of Physical Chemistry C 2015, 119 (22) , 12273-12282. https://doi.org/10.1021/acs.jpcc.5b02478
    37. Hao Li, Jian Shang, Zhihui Ai, and Lizhi Zhang . Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets. Journal of the American Chemical Society 2015, 137 (19) , 6393-6399. https://doi.org/10.1021/jacs.5b03105
    38. Hui Shi, Ying-Chun Liu, Zhi-Jian Zhao, Meng Miao, Tao Wu, and Qi Wang . Reactivity of the Defective Rutile TiO2 (110) Surfaces with Two Bridging-Oxygen Vacancies: Water Molecule as a Probe. The Journal of Physical Chemistry C 2014, 118 (35) , 20257-20263. https://doi.org/10.1021/jp500721z
    39. Liangliang Liu, Qin Liu, Yongping Zheng, Zhu Wang, Chunxu Pan, and Wei Xiao . O2 Adsorption and Dissociation on A Hydrogenated Anatase (101) Surface. The Journal of Physical Chemistry C 2014, 118 (7) , 3471-3482. https://doi.org/10.1021/jp408221x
    40. Felix Rieboldt, Ralf Bechstein, Flemming Besenbacher, and Stefan Wendt . Vicinal Rutile TiO2 Surfaces and Their Interactions with O2. The Journal of Physical Chemistry C 2014, 118 (7) , 3620-3628. https://doi.org/10.1021/jp411324u
    41. Kun Zhao, Lizhi Zhang, Jiajun Wang, Qunxiang Li, Weiwei He, and Jun Jie Yin . Surface Structure-Dependent Molecular Oxygen Activation of BiOCl Single-Crystalline Nanosheets. Journal of the American Chemical Society 2013, 135 (42) , 15750-15753. https://doi.org/10.1021/ja4092903
    42. Michael A. Henderson and Igor Lyubinetsky . Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110). Chemical Reviews 2013, 113 (6) , 4428-4455. https://doi.org/10.1021/cr300315m
    43. Chi Lun Pang, Robert Lindsay, and Geoff Thornton . Structure of Clean and Adsorbate-Covered Single-Crystal Rutile TiO2 Surfaces. Chemical Reviews 2013, 113 (6) , 3887-3948. https://doi.org/10.1021/cr300409r
    44. Michael A. Henderson, Mingmin Shen, Zhi-Tao Wang, and Igor Lyubinetsky . Characterization of the Active Surface Species Responsible for UV-Induced Desorption of O2 from the Rutile TiO2(110) Surface. The Journal of Physical Chemistry C 2013, 117 (11) , 5774-5784. https://doi.org/10.1021/jp312161y
    45. Nikolay G. Petrik and Greg A. Kimmel . Multiple Nonthermal Reaction Steps for the Photooxidation of CO to CO2 on Reduced TiO2(110). The Journal of Physical Chemistry Letters 2013, 4 (3) , 344-349. https://doi.org/10.1021/jz302012j
    46. Yongfei Ji, Bing Wang, and Yi Luo . First Principles Study of O2 Adsorption on Reduced Rutile TiO2-(110) Surface Under UV Illumination and Its Role on CO Oxidation. The Journal of Physical Chemistry C 2013, 117 (2) , 956-961. https://doi.org/10.1021/jp310443p
    47. Shijing Tan, Hao Feng, Yongfei Ji, Yang Wang, Jin Zhao, Aidi Zhao, Bing Wang, Yi Luo, Jinlong Yang, and J. G. Hou . Observation of Photocatalytic Dissociation of Water on Terminal Ti Sites of TiO2(110)-1 × 1 Surface. Journal of the American Chemical Society 2012, 134 (24) , 9978-9985. https://doi.org/10.1021/ja211919k
    48. Shao-Chun Li, Peter Jacobson, Shu-Lei Zhao, Xue-Qing Gong, and Ulrike Diebold . Trapping Nitric Oxide by Surface Hydroxyls on Rutile TiO2(110). The Journal of Physical Chemistry C 2012, 116 (2) , 1887-1891. https://doi.org/10.1021/jp209290a
    49. Zhi-Tao Wang , N. A. Deskins , and Igor Lyubinetsky . Direct Imaging of Site-Specific Photocatalytical Reactions of O2 on TiO2(110). The Journal of Physical Chemistry Letters 2012, 3 (1) , 102-106. https://doi.org/10.1021/jz2014055
    50. Nikolay G. Petrik and Greg A. Kimmel . Oxygen Photochemistry on TiO2(110): Recyclable, Photoactive Oxygen Produced by Annealing Adsorbed O2. The Journal of Physical Chemistry Letters 2011, 2 (21) , 2790-2796. https://doi.org/10.1021/jz201225c
    51. Estephania Lira, Stefan Wendt, Peipei Huo, Jonas Ø. Hansen, Regine Streber, Søren Porsgaard, Yinying Wei, Ralf Bechstein, Erik Lægsgaard, and Flemming Besenbacher . The Importance of Bulk Ti3+ Defects in the Oxygen Chemistry on Titania Surfaces. Journal of the American Chemical Society 2011, 133 (17) , 6529-6532. https://doi.org/10.1021/ja200884w
    52. Qiong Liu, Chengbo Bai, Die He, Xueting Wu, Yiping Wu, Rong Chen. Oxygen Vacancy Mediation of BiOX (X=Cl, Br) towards Enhanced Photocatalytic CO2 Reduction Activity. Journal of Environmental Chemical Engineering 2024, 4 , 112449. https://doi.org/10.1016/j.jece.2024.112449
    53. Yali Guo, Minghao Sui, Shuan Liu, Tian Li, Xinyuan Lv, Miao Yu, Yaojun Mo. Insight into cobalt substitution in LaFeO3-based catalyst for enhanced activation of peracetic acid: Reactive species and catalytic mechanism. Journal of Hazardous Materials 2024, 461 , 132662. https://doi.org/10.1016/j.jhazmat.2023.132662
    54. Suxiang Ge, Yafei Wang, Panting Song, Guangming Zhan, Chunhui Liu, Xing Ding, Dapeng Li, Chengliang Mao, Zhi Zheng, Lizhi Zhang. Photo-switchable In(III)-to-In(I) site on oxygen vacancy-laden BiOCl surface for selective degradation of monocyclic aromatic compounds. Separation and Purification Technology 2023, 326 , 124716. https://doi.org/10.1016/j.seppur.2023.124716
    55. Jun Tang, Junbao Chen, Zhanyu Zhang, Qincheng Ma, Xiaolong Hu, Peng Li, Zhiqiang Liu, Peixin Cui, Chao Wan, Qingping Ke, Lei Fu, Jeonghun Kim, Takashi Hamada, Yunqing Kang, Yusuke Yamauchi. Spontaneous generation of singlet oxygen on microemulsion-derived manganese oxides with rich oxygen vacancies for efficient aerobic oxidation. Chemical Science 2023, 14 (46) , 13402-13409. https://doi.org/10.1039/D3SC04418A
    56. Qiang Yang, Longgang Chu, Tongliang Wu, Yiyi Zhou, Cun Liu, Long Cang, Guodong Fang, Peixin Cui, Yujun Wang. Investigation of dual-functional carbon cathode catalysts from agricultural wastes in the heterogeneous electro-Fenton process. Applied Catalysis B: Environmental 2023, 337 , 123018. https://doi.org/10.1016/j.apcatb.2023.123018
    57. Kousik Das, Sarika Lohkna, Gang Yang, Prasenjit Ghosh, Soumyajit Roy. Sulphur vacancy driven phase conversion of MoS 2 nanosheets for efficient photoreduction of CO 2 under visible light. Journal of Materials Chemistry A 2023, 11 (40) , 21721-21734. https://doi.org/10.1039/D3TA03788F
    58. Limin Jin, Shijie You, Nanqi Ren, Yanbiao Liu. Selective activation of peroxymonosulfate to singlet oxygen by engineering oxygen vacancy defects in Ti3CNTx MXene for effective removal of micropollutants in water. Fundamental Research 2023, 3 (5) , 770-776. https://doi.org/10.1016/j.fmre.2022.03.005
    59. Xiaolei Wang, Xiantang Liu, Yunping Tong, Cun Liu, Yingzhi Ding, Juan Gao, Guodong Fang, Xianghao Zha, Yujun Wang, Dongmei Zhou. Oxygen vacancies-dominated reactive species generation from peroxymonosulfate activated by MoO3−x for pollutant degradation. Journal of Hazardous Materials 2023, 458 , 131798. https://doi.org/10.1016/j.jhazmat.2023.131798
    60. Ubong J. Etim, Peng Bai, Oz M. Gazit, Ziyi Zhong. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. Catalysis Reviews 2023, 65 (2) , 239-425. https://doi.org/10.1080/01614940.2021.1919044
    61. Jingjing Li, Junhua You, Zhiwei Wang, Yao Zhao, Jingsheng Xu, Xuanhao Li, Hangzhou Zhang. Application of α-Fe2O3-based heterogeneous photo-Fenton catalyst in wastewater treatment: A review of recent advances. Journal of Environmental Chemical Engineering 2022, 10 (5) , 108329. https://doi.org/10.1016/j.jece.2022.108329
    62. Zineb Matouk, Mohammad Islam, Monserrat Gutiérrez, Jean-Jacques Pireaux, Amine Achour. X-ray Photoelectron Spectroscopy (XPS) Analysis of Ultrafine Au Nanoparticles Supported over Reactively Sputtered TiO2 Films. Nanomaterials 2022, 12 (20) , 3692. https://doi.org/10.3390/nano12203692
    63. Jun Ma, Ran Long, Dong Liu, Jingxiang Low, Yujie Xiong. Defect Engineering in Photocatalytic Methane Conversion. Small Structures 2022, 3 (1) https://doi.org/10.1002/sstr.202100147
    64. Xu Huang, Yechao Tian, Aimin Li, Yifan Feng, Dawei Li. Low-Crystalline Fe2o3 on Carboxylic Mwcnts as Singlet Oxygen Mediated Fenton-Like Catalysts with Dual Reaction Sites. SSRN Electronic Journal 2022, 137 https://doi.org/10.2139/ssrn.4191679
    65. Bahareh Reisi, Alireza Najafi Chermahini, Daily Rodríguez-Padrón, Mario J. Muñoz-Batista, Rafael Luque. Synthesis and characterization of Pd-Ni catalysts supported on KIT-6 and their application in cyclohexane oxidation using molecular oxygen. Journal of Industrial and Engineering Chemistry 2021, 102 , 103-111. https://doi.org/10.1016/j.jiec.2021.06.034
    66. Huan Fei Wen, Yasuhiro Sugawara, Yan Jun Li. Exploring the nature of hydrogen of Rutile TiO2(110) at 78 K. Surfaces and Interfaces 2021, 26 , 101339. https://doi.org/10.1016/j.surfin.2021.101339
    67. Huan Shang, Xiao Wang, Hao Li, Meiqi Li, Chengliang Mao, Pan Xing, Shengxi Zhao, Ziyue Chen, Jing Sun, Zhihui Ai, Lizhi Zhang. Oxygen vacancies promote sulfur species accumulation on TiO2 mineral particles. Applied Catalysis B: Environmental 2021, 290 , 120024. https://doi.org/10.1016/j.apcatb.2021.120024
    68. Muhammad Arif, Min Zhang, Bo Qiu, Jiacheng Yao, Qingxia Bu, Amjad Ali, Tahir Muhmood, Ijaz Hussian, Xiaoheng Liu, Baojing Zhou, Xin Wang. Synergistic effect of ultrathin thickness and surface oxygen vacancies in high-efficiency Ti-mediated Bi2MoO6 for immense photocatalytic nitrofurantoin degradation and Cr(VI) reduction. Applied Surface Science 2021, 543 , 148816. https://doi.org/10.1016/j.apsusc.2020.148816
    69. Maria C. Molina Higgins, Hailey Hall, Jessika V. Rojas. The effect of X-ray induced oxygen defects on the photocatalytic properties of titanium dioxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 2021, 409 , 113138. https://doi.org/10.1016/j.jphotochem.2021.113138
    70. Zisheng Zhang, Chenxiao Zhao, Shuanglong Lin, Hong Li, Yalan Feng, Xin Gao. Oxygen vacancy modified Bi2MoO6/WO3 electrode with enhanced photoelectrocatalytic degradation activity toward RhB. Fuel 2021, 285 , 119171. https://doi.org/10.1016/j.fuel.2020.119171
    71. Tianli Feng, Yang Wang, Andreas Herklotz, Matthew F. Chisholm, Thomas Z. Ward, Paul C. Snijders, Sokrates T. Pantelides. Determination of rutile transition metal oxide (110) surface terminations by scanning tunneling microscopy contrast reversal. Physical Review B 2021, 103 (3) https://doi.org/10.1103/PhysRevB.103.035409
    72. Guoxin Zhuang, Yawen Chen, Zanyong Zhuang, Yan Yu, Jiaguo Yu. Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design. Science China Materials 2020, 63 (11) , 2089-2118. https://doi.org/10.1007/s40843-020-1305-6
    73. Shasha Guo, Jun Di, Chao Chen, Chao Zhu, Meilin Duan, Cheng Lian, Mengxia Ji, Weiqiang Zhou, Manzhang Xu, Pin Song, Ran Long, Xun Cao, Kaizhi Gu, Jiexiang Xia, Honglai Liu, Yanli Zhao, Li Song, Yujie Xiong, Shuzhou Li, Zheng Liu. Oxygen vacancy mediated bismuth stannate ultra-small nanoparticle towards photocatalytic CO2-to-CO conversion. Applied Catalysis B: Environmental 2020, 276 , 119156. https://doi.org/10.1016/j.apcatb.2020.119156
    74. Huan Fei Wen, Hongqian Sang, Yasuhiro Sugawara, Yan Jun Li. Imaging oxygen molecular adsorption and dissociation on the Ti site of rutile TiO 2 (110) surface with real configuration at 78 K by atomic force microscopy. Physical Chemistry Chemical Physics 2020, 22 (35) , 19795-19801. https://doi.org/10.1039/D0CP03549A
    75. Wanchao Yu, Fengjie Chen, Yarui Wang, Lixia Zhao. Rapid evaluation of oxygen vacancies-enhanced photogeneration of the superoxide radical in nano-TiO 2 suspensions. RSC Advances 2020, 10 (49) , 29082-29089. https://doi.org/10.1039/D0RA06299E
    76. Huan Fei Wen, Hongqian Sang, Yasuhiro Sugawara, Yan Jun Li. Dynamic behavior of OH and its atomic contrast with O adatom on the Ti site of TiO2(110) at 78 K by atomic force microscopy imaging. Applied Physics Letters 2020, 117 (5) https://doi.org/10.1063/5.0016657
    77. Kai Wang, Lisha Jiang, Xiaoyong Wu, Gaoke Zhang. Vacancy mediated Z-scheme charge transfer in a 2D/2D La 2 Ti 2 O 7 /g-C 3 N 4 nanojunction as a bifunctional photocatalyst for solar-to-energy conversion. Journal of Materials Chemistry A 2020, 8 (26) , 13241-13247. https://doi.org/10.1039/D0TA01310B
    78. Igor Sokolović, Michele Reticcioli, Martin Čalkovský, Margareta Wagner, Michael Schmid, Cesare Franchini, Ulrike Diebold, Martin Setvín. Resolving the adsorption of molecular O 2 on the rutile TiO 2 (110) surface by noncontact atomic force microscopy. Proceedings of the National Academy of Sciences 2020, 117 (26) , 14827-14837. https://doi.org/10.1073/pnas.1922452117
    79. Shi-hui Dong, Ao-lei Wang, Jin Zhao, Shi-jing Tan, Bing Wang. Interaction of CO and O2 with supported Pt single-atoms on TiO2(110). Chinese Journal of Chemical Physics 2020, 33 (3) , 349-356. https://doi.org/10.1063/1674-0068/cjcp1911198
    80. Longxia Wu, Cong Fu, Weixin Huang. Surface chemistry of TiO 2 connecting thermal catalysis and photocatalysis. Physical Chemistry Chemical Physics 2020, 22 (18) , 9875-9909. https://doi.org/10.1039/C9CP07001J
    81. Zhiling Ma, Qunpeng Jia, Chang Tao, Bing Han. Highlighting unique function of immobilized superoxide on TiO2 for selective photocatalytic degradation. Separation and Purification Technology 2020, 238 , 116402. https://doi.org/10.1016/j.seppur.2019.116402
    82. Huan Fei Wen, Quanzhen Zhang, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Yan Jun Li. Contrast inversion of O adatom on rutile TiO2(1 1 0)-(1 × 1) surface by atomic force microscopy imaging. Applied Surface Science 2020, 505 , 144623. https://doi.org/10.1016/j.apsusc.2019.144623
    83. Chang Tao, Qunpeng Jia, Bing Han, Zhiling Ma. Tunable selectivity of radical generation over TiO2 for photocatalysis. Chemical Engineering Science 2020, 214 , 115438. https://doi.org/10.1016/j.ces.2019.115438
    84. Wonhee Ko, Chuanxu Ma, Giang D. Nguyen, Marek Kolmer, An‐Ping Li. Atomic‐Scale Manipulation and In Situ Characterization with Scanning Tunneling Microscopy. Advanced Functional Materials 2019, 29 (52) https://doi.org/10.1002/adfm.201903770
    85. Qing Guo, Chuanyao Zhou, Zhibo Ma, Xueming Yang. Fundamentals of TiO 2 Photocatalysis: Concepts, Mechanisms, and Challenges. Advanced Materials 2019, 31 (50) https://doi.org/10.1002/adma.201901997
    86. Han Zhao, Xiang Liu, Yuming Dong, Yongmei Xia, Haijun Wang. A special synthesis of BiOCl photocatalyst for efficient pollutants removal: New insight into the band structure regulation and molecular oxygen activation. Applied Catalysis B: Environmental 2019, 256 , 117872. https://doi.org/10.1016/j.apcatb.2019.117872
    87. Chih-Chieh Wang, Chih-Yu Chou, Shin-Ruey Yi, Huey-Dar Chen. Deposition of heterojunction of ZnO on hydrogenated TiO2 nanotube arrays by atomic layer deposition for enhanced photoelectrochemical water splitting. International Journal of Hydrogen Energy 2019, 44 (54) , 28685-28697. https://doi.org/10.1016/j.ijhydene.2019.09.133
    88. Shilong Chen, Feng Xiong, Weixin Huang. Surface chemistry and catalysis of oxide model catalysts from single crystals to nanocrystals. Surface Science Reports 2019, 74 (4) , 100471. https://doi.org/10.1016/j.surfrep.2019.100471
    89. Ning Zhang, Chao Gao, Yujie Xiong. Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions. Journal of Energy Chemistry 2019, 37 , 43-57. https://doi.org/10.1016/j.jechem.2018.09.010
    90. Wei-Kang Wang, Jie-Jie Chen, Zai-Zhu Lou, Sooyeon Kim, Mamoru Fujitsuka, Han-Qing Yu, Tetsuro Majima. Single-molecule and -particle probing crystal edge/corner as highly efficient photocatalytic sites on a single TiO 2 particle. Proceedings of the National Academy of Sciences 2019, 116 (38) , 18827-18833. https://doi.org/10.1073/pnas.1907122116
    91. Martin Dilla, Alina Jakubowski, Simon Ristig, Jennifer Strunk, Robert Schlögl. The fate of O 2 in photocatalytic CO 2 reduction on TiO 2 under conditions of highest purity. Physical Chemistry Chemical Physics 2019, 21 (29) , 15949-15957. https://doi.org/10.1039/C8CP07765G
    92. Xiaoli Jin, Chade Lv, Xin Zhou, Liqun Ye, Haiquan Xie, Yue Liu, Huan Su, Biao Zhang, Gang Chen. Oxygen Vacancy Engineering of Bi 24 O 31 Cl 10 for Boosted Photocatalytic CO 2 Conversion. ChemSusChem 2019, 12 (12) , 2740-2747. https://doi.org/10.1002/cssc.201900621
    93. Feng Fu, Huidong Shen, Xiang Sun, Wenwen Xue, Ayoola Shoneye, Jiani Ma, Lei Luo, Danjun Wang, Jianguo Wang, Junwang Tang. Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi2MoO6 for efficient photocatalysis. Applied Catalysis B: Environmental 2019, 247 , 150-162. https://doi.org/10.1016/j.apcatb.2019.01.056
    94. Ziyan Zhao, Yuehan Cao, Fan Dong, Fan Wu, Bangxin Li, Qian Zhang, Ying Zhou. The activation of oxygen through oxygen vacancies in BiOCl/PPy to inhibit toxic intermediates and enhance the activity of photocatalytic nitric oxide removal. Nanoscale 2019, 11 (13) , 6360-6367. https://doi.org/10.1039/C8NR10356A
    95. Huan Fei Wen, Masato Miyazaki, Quanzhen Zhang, Yuuki Adachi, Yan Jun Li, Yasuhiro Sugawara. Direct observation of atomic step edges on the rutile TiO 2 (110)-(1 × 1) surface using atomic force microscopy. Physical Chemistry Chemical Physics 2018, 20 (44) , 28331-28337. https://doi.org/10.1039/C8CP06156D
    96. Xiaoxing Zeng, Xiaofeng Gong, Yiqun Wan, Ruyang He, Zhaodi Xu. Formation of Oxygen Vacancies on the {010} Facets of BiOCl and Visible Light Activity for Degradation of Ciprofloxacin. Chemical Research in Chinese Universities 2018, 34 (5) , 711-718. https://doi.org/10.1007/s40242-018-8035-z
    97. Wenjuan Yang, Yongfa Zhu, Fei You, Long Yan, Yajun Ma, Cuiying Lu, Pingqiang Gao, Qiang Hao, Wenlu Li. Insights into the surface-defect dependence of molecular oxygen activation over birnessite-type MnO2. Applied Catalysis B: Environmental 2018, 233 , 184-193. https://doi.org/10.1016/j.apcatb.2018.03.107
    98. Lihuan Sun, Anning Dong, Jianmei Li, Dong Hao, Xiangqian Tang, Shichao Yan, Yang Guo, Xinyan Shan, Xinghua Lu. Optical Stark effect of a local defect on the Ti O 2 ( 110 ) surface. Physical Review B 2018, 98 (8) https://doi.org/10.1103/PhysRevB.98.081402
    99. Xiaoli Jin, Chade Lv, Xin Zhou, Congmin Zhang, Qingqiang Meng, Yue Liu, Gang Chen. Molecular adsorption promotes carrier migration: Key step for molecular oxygen activation of defective Bi4O5I2. Applied Catalysis B: Environmental 2018, 226 , 53-60. https://doi.org/10.1016/j.apcatb.2017.12.008
    100. Ehsan Rahimi, Ali Rafsanjani-Abbasi, Amin Imani, Ali Davoodi. TiO2/Cu2O coupled oxide films in Cl− ion containing solution: Volta potential and electronic properties characterization by scanning probe microscopy. Materials Chemistry and Physics 2018, 212 , 403-407. https://doi.org/10.1016/j.matchemphys.2018.03.066
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect