ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Importance of Bulk Ti3+ Defects in the Oxygen Chemistry on Titania Surfaces

View Author Information
Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, DK 8000 Aarhus C, Denmark
Cite this: J. Am. Chem. Soc. 2011, 133, 17, 6529–6532
Publication Date (Web):April 11, 2011
https://doi.org/10.1021/ja200884w
Copyright © 2011 American Chemical Society

    Article Views

    4418

    Altmetric

    -

    Citations

    199
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The role of bulk defects in the oxygen chemistry on reduced rutile TiO2(110)−(1 × 1) has been studied by means of temperature-programmed desorption spectroscopy and scanning tunneling microscopy measurements. Following O2 adsorption at 130 K, the amount of O2 desorbing at ∼410 K initially increased with increasing density of surface oxygen vacancies but decreased after further reduction of the TiO2(110) crystal. We explain these results by withdrawal of excess charge (Ti3+) from the TiO2(110) lattice to oxygen species on the surface and by a reaction of Ti interstitials with O adatoms upon heating. Important consequences for the understanding of the O2−TiO2 interaction are discussed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Background literature summary, experimental details, and additional STM data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 199 publications.

    1. Cheng Cheng, Niall J. English, Wei-Hai Fang, Run Long. Understanding Competitive Photo-Induced Molecular Oxygen Dissociation and Desorption Dynamics atop a Reduced Rutile TiO2(110) Surface: A Time-Domain Ab Initio Study. ACS Catalysis 2022, 12 (11) , 6702-6711. https://doi.org/10.1021/acscatal.2c01599
    2. Hanna Bühlmeyer, Kræn C. Adamsen, Tao Xu, Lutz Lammich, Jörg Libuda, Jeppe V. Lauritsen, Stefan Wendt. Adsorption and Reaction of NH3 on Rutile TiO2(110): An STM Study. The Journal of Physical Chemistry C 2022, 126 (15) , 6590-6600. https://doi.org/10.1021/acs.jpcc.2c01414
    3. Yuemiao Lai, Zhengtian Pu, Peng Liu, Fangliang Li, Jie Zeng, Xueming Yang, Qing Guo. Low-Temperature C–H Bond Activation: Ethylbenzene-to-Styrene Conversion on Rutile TiO2(110). The Journal of Physical Chemistry C 2022, 126 (14) , 6231-6240. https://doi.org/10.1021/acs.jpcc.2c00244
    4. William J. I. DeBenedetti, Melissa A. Hines. Photochemical Fluorination of TiO2(110) Produces an Atomically Thin Passivating Layer. The Journal of Physical Chemistry C 2022, 126 (10) , 4899-4906. https://doi.org/10.1021/acs.jpcc.2c00651
    5. Peng Liu, Guigu Xue, Yuemiao Lai, Yinuo Li, Xiao Chen, Qing Guo. tert-Butanol Chemistry on Rutile TiO2(110): The Effect of Surface Oxidation. The Journal of Physical Chemistry C 2022, 126 (7) , 3457-3465. https://doi.org/10.1021/acs.jpcc.2c00844
    6. Tao Xu, Kræn C. Adamsen, Zheshen Li, Lutz Lammich, Jeppe V. Lauritsen, Stefan Wendt. WO3 Monomers Supported on Anatase TiO2(101), −(001), and Rutile TiO2(110): A Comparative STM and XPS Study. The Journal of Physical Chemistry C 2022, 126 (5) , 2493-2502. https://doi.org/10.1021/acs.jpcc.1c09356
    7. Ádám Balog, Gergely F. Samu, Szabolcs Pető, Csaba Janáky. The Mystery of Black TiO2: Insights from Combined Surface Science and In Situ Electrochemical Methods. ACS Materials Au 2021, 1 (2) , 157-168. https://doi.org/10.1021/acsmaterialsau.1c00020
    8. Jingfeng Li, Stéphane Chenot, Jacques Jupille, Rémi Lazzari. Point Defects and Related Excess Electrons in the Dielectric Profile of the Reduced TiO2(110) Surface. The Journal of Physical Chemistry C 2021, 125 (30) , 16652-16663. https://doi.org/10.1021/acs.jpcc.1c01796
    9. Lars Mohrhusen, Luca Gerhards, Daniel Hirsch, Thorsten Klüner, Katharina Al-Shamery. Multidentate Interaction of Methylamine with Rutile TiO2 (110). The Journal of Physical Chemistry C 2021, 125 (22) , 11975-11986. https://doi.org/10.1021/acs.jpcc.1c02166
    10. Liang Xiang, Haisong Feng, Mingyang Liu, Xin Zhang, Guoli Fan, Feng Li. Surface Defect-Induced Site-Specific Dispersion of Pd Nanoclusters on TiO2 Nanoparticles for Semihydrogenation of Phenyl Acetylene. ACS Applied Nano Materials 2021, 4 (5) , 4688-4698. https://doi.org/10.1021/acsanm.1c00301
    11. Lars Mohrhusen, Maximilian Grebien, Katharina Al-Shamery. Electron Transfer in Oxide–Oxide Cocatalysts: Interaction of Tungsten Oxide Clusters with Ti3+ States in Rutile TiO2. The Journal of Physical Chemistry C 2020, 124 (43) , 23661-23673. https://doi.org/10.1021/acs.jpcc.0c06591
    12. Ryan J. Witzke, Alon Chapovetsky, Matthew P. Conley, David M. Kaphan, Massimiliano Delferro. Nontraditional Catalyst Supports in Surface Organometallic Chemistry. ACS Catalysis 2020, 10 (20) , 11822-11840. https://doi.org/10.1021/acscatal.0c03350
    13. S. Rhatigan, E. Sokalu, M. Nolan, G. Colón. Surface Modification of Rutile TiO2 with Alkaline-Earth Oxide Nanoclusters for Enhanced Oxygen Evolution. ACS Applied Nano Materials 2020, 3 (6) , 6017-6033. https://doi.org/10.1021/acsanm.0c01237
    14. Baoshun Liu, Hao Wu, Xintong Zhang, Ivan P. Parkin, Xiujian Zhao. New Insight into the Role of Electron Transfer to O2 in Photocatalytic Oxidations of Acetone over TiO2 and the Effect of Au Cocatalyst. The Journal of Physical Chemistry C 2019, 123 (51) , 30958-30971. https://doi.org/10.1021/acs.jpcc.9b08107
    15. Baoshun Liu, Hao Wu, Ivan P. Parkin. Gaseous Photocatalytic Oxidation of Formic Acid over TiO2: A Comparison between the Charge Carrier Transfer and Light-Assisted Mars–van Krevelen Pathways. The Journal of Physical Chemistry C 2019, 123 (36) , 22261-22272. https://doi.org/10.1021/acs.jpcc.9b05357
    16. Quanzhen Zhang, Huan Fei Wen, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Yan Jun Li. Characterization and Reversible Migration of Subsurface Hydrogen on Rutile TiO2(110) by Atomic Force Microscopy at 78 K. The Journal of Physical Chemistry C 2019, 123 (36) , 22595-22602. https://doi.org/10.1021/acs.jpcc.9b05744
    17. Lars Mohrhusen, Jessica Kräuter, Michael Willms, Katharina Al-Shamery. Argon Embedded by Ion Bombardment: Relevance of Hidden Dopants in Rutile TiO2. The Journal of Physical Chemistry C 2019, 123 (33) , 20434-20442. https://doi.org/10.1021/acs.jpcc.9b05975
    18. Milena Osmić, Lars Mohrhusen, Katharina Al-Shamery. Bulk Defect Dependence of Low-Temperature Partial Oxidation of Methanol and High-Temperature Hydrocarbon Formation on Rutile TiO2 (110). The Journal of Physical Chemistry C 2019, 123 (13) , 7615-7626. https://doi.org/10.1021/acs.jpcc.8b02953
    19. Alberto Naldoni, Marco Altomare, Giorgio Zoppellaro, Ning Liu, Štěpán Kment, Radek Zbořil, Patrik Schmuki. Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catalysis 2019, 9 (1) , 345-364. https://doi.org/10.1021/acscatal.8b04068
    20. Jayaseelan Dhakshinamoorthy, Arun K. Prasad, Sandip Dhara, Biji Pullithadathil. Anomalous Effects of Lattice Strain and Ti3+ Interstitials on Room-Temperature Magnetic Ordering in Defect-Engineered Nano-TiO2. The Journal of Physical Chemistry C 2018, 122 (48) , 27782-27794. https://doi.org/10.1021/acs.jpcc.8b09851
    21. Mengjiao Xu, Yao Chen, Jiangtao Qin, Yawei Feng, Wei Li, Wei Chen, Jian Zhu, Hexing Li, Zhenfeng Bian. Unveiling the Role of Defects on Oxygen Activation and Photodegradation of Organic Pollutants. Environmental Science & Technology 2018, 52 (23) , 13879-13886. https://doi.org/10.1021/acs.est.8b03558
    22. Quanzhen Zhang, Yan Jun Li, Huan Fei Wen, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Ján Brndiar, Lev Kantorovich, Ivan Štich. Measurement and Manipulation of the Charge State of an Adsorbed Oxygen Adatom on the Rutile TiO2(110)-1×1 Surface by nc-AFM and KPFM. Journal of the American Chemical Society 2018, 140 (46) , 15668-15674. https://doi.org/10.1021/jacs.8b07745
    23. Bradley W. Ewers, Andrew S. Crampton, Monika M. Biener, and Cynthia M. Friend . Thermally Activated Formation of Reactive Lattice Oxygen in Titania on Nanoporous Gold. The Journal of Physical Chemistry C 2017, 121 (39) , 21405-21410. https://doi.org/10.1021/acs.jpcc.7b06316
    24. Wenli Gu, Feixue Lu, Chao Wang, Shigenori Kuga, Lizhu Wu, Yong Huang, and Min Wu . Face-to-Face Interfacial Assembly of Ultrathin g-C3N4 and Anatase TiO2 Nanosheets for Enhanced Solar Photocatalytic Activity. ACS Applied Materials & Interfaces 2017, 9 (34) , 28674-28684. https://doi.org/10.1021/acsami.7b10010
    25. Kai Li, Zhenyu Huang, Xiaoqiao Zeng, Baibiao Huang, Shanmin Gao, and Jun Lu . Synergetic Effect of Ti3+ and Oxygen Doping on Enhancing Photoelectrochemical and Photocatalytic Properties of TiO2/g-C3N4 Heterojunctions. ACS Applied Materials & Interfaces 2017, 9 (13) , 11577-11586. https://doi.org/10.1021/acsami.6b16191
    26. Long Chen, R. Scott Smith, Bruce D. Kay, and Zdenek Dohnalek . Direct Deoxygenation of Phenylmethanol to Methylbenzene and Benzyl Radicals on Rutile TiO2(110). ACS Catalysis 2017, 7 (3) , 2002-2006. https://doi.org/10.1021/acscatal.6b03225
    27. Kazuki Morita, Taizo Shibuya, and Kenji Yasuoka . Stability of Excess Electrons Introduced by Ti Interstitial in Rutile TiO2(110) Surface. The Journal of Physical Chemistry C 2017, 121 (3) , 1602-1607. https://doi.org/10.1021/acs.jpcc.6b09669
    28. Shiliang Ma, Matthew E. Reish, Zhen Zhang, Ian Harrison, and John T. Yates, Jr. . Anatase-Selective Photoluminescence Spectroscopy of P25 TiO2 Nanoparticles: Different Effects of Oxygen Adsorption on the Band Bending of Anatase. The Journal of Physical Chemistry C 2017, 121 (2) , 1263-1271. https://doi.org/10.1021/acs.jpcc.6b11714
    29. Erik S. Skibinski, Anqi Song, William J. I. DeBenedetti, Amnon G. Ortoll-Bloch, and Melissa A. Hines . Solution Deposition of Self-Assembled Benzoate Monolayers on Rutile (110): Effect of π–π Interactions on Monolayer Structure. The Journal of Physical Chemistry C 2016, 120 (21) , 11581-11589. https://doi.org/10.1021/acs.jpcc.6b03099
    30. Benedikt Weiler, Alessio Gagliardi, and Paolo Lugli . Kinetic Monte Carlo Simulations of Defects in Anatase Titanium Dioxide. The Journal of Physical Chemistry C 2016, 120 (18) , 10062-10077. https://doi.org/10.1021/acs.jpcc.6b01687
    31. Trystan Bennett, Rohul H. Adnan, Jason F. Alvino, Rantej Kler, Vladimir B. Golovko, Gregory F. Metha, and Gunther G. Andersson . Effect of Gold Nanoclusters on the Production of Ti3+ Defect Sites in Titanium Dioxide Nanoparticles under Ultraviolet and Soft X-ray Radiation. The Journal of Physical Chemistry C 2015, 119 (20) , 11171-11177. https://doi.org/10.1021/jp5119162
    32. Yan-Yan Yu and Xue-Qing Gong . CO Oxidation at Rutile TiO2(110): Role of Oxygen Vacancies and Titanium Interstitials. ACS Catalysis 2015, 5 (4) , 2042-2050. https://doi.org/10.1021/cs501900q
    33. Yeohoon Yoon, Yang-Gang Wang, Roger Rousseau, and Vassiliki-Alexandra Glezakou . Impact of Nonadiabatic Charge Transfer on the Rate of Redox Chemistry of Carbon Oxides on Rutile TiO2(110) Surface. ACS Catalysis 2015, 5 (3) , 1764-1771. https://doi.org/10.1021/cs501873m
    34. Songbo Wang, Lun Pan, Jia-Jia Song, Wenbo Mi, Ji-Jun Zou, Li Wang, and Xiangwen Zhang . Titanium-Defected Undoped Anatase TiO2 with p-Type Conductivity, Room-Temperature Ferromagnetism, and Remarkable Photocatalytic Performance. Journal of the American Chemical Society 2015, 137 (8) , 2975-2983. https://doi.org/10.1021/ja512047k
    35. Boseong Kim, Bruce D. Kay, Zdenek Dohnálek, and Yu Kwon Kim . Ammonia Formation from NO Reaction with Surface Hydroxyls on Rutile TiO2(110)-1 × 1. The Journal of Physical Chemistry C 2015, 119 (2) , 1130-1135. https://doi.org/10.1021/jp5109619
    36. Till Cremer, Stephen C. Jensen, and Cynthia M. Friend . Enhanced Photo-Oxidation of Formaldehyde on Highly Reduced o-TiO2(110). The Journal of Physical Chemistry C 2014, 118 (50) , 29242-29251. https://doi.org/10.1021/jp5053908
    37. Long Chen, Zhenjun Li, R. Scott Smith, Bruce D. Kay, and Zdenek Dohnálek . Conversion of 1,2-Propylene Glycol on Rutile TiO2(110). The Journal of Physical Chemistry C 2014, 118 (28) , 15339-15347. https://doi.org/10.1021/jp504770f
    38. Simon Bonanni, Kamel Aït-Mansour, Wolfgang Harbich, and Harald Brune . Reaction-Induced Cluster Ripening and Initial Size-Dependent Reaction Rates for CO Oxidation on Ptn/TiO2(110)-(1×1). Journal of the American Chemical Society 2014, 136 (24) , 8702-8707. https://doi.org/10.1021/ja502867r
    39. Felix Rieboldt, Ralf Bechstein, Flemming Besenbacher, and Stefan Wendt . Vicinal Rutile TiO2 Surfaces and Their Interactions with O2. The Journal of Physical Chemistry C 2014, 118 (7) , 3620-3628. https://doi.org/10.1021/jp411324u
    40. Elizabeth R. Webster, Aileen Park, Miranda B. Stratton, Victoria C. Park, Amber M. Mosier, Ryan S. Shine, and Lauren Benz . Adsorption of Dibenzothiophene and Fluorene on TiO2(110) and Supported Ag Clusters. Energy & Fuels 2013, 27 (11) , 6575-6580. https://doi.org/10.1021/ef401581x
    41. Trevor P. Hardcastle, Che R. Seabourne, Rik M. D. Brydson, Ken J. T. Livi, and Andrew J. Scott . Energy of Step Defects on the TiO2 Rutile (110) Surface: An ab initio DFT Methodology. The Journal of Physical Chemistry C 2013, 117 (45) , 23766-23780. https://doi.org/10.1021/jp4078135
    42. Weiqiang Wu, Kaustava Bhattacharyya, Kimberly Gray, and Eric Weitz . Photoinduced Reactions of Surface-Bound Species on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FTIR Study. The Journal of Physical Chemistry C 2013, 117 (40) , 20643-20655. https://doi.org/10.1021/jp405902a
    43. Chenbiao Xu, Wenshao Yang, Qing Guo, Dongxu Dai, Timothy K. Minton, and Xueming Yang . Photoinduced Decomposition of Formaldehyde on a TiO2(110) Surface, Assisted by Bridge-Bonded Oxygen Atoms. The Journal of Physical Chemistry Letters 2013, 4 (16) , 2668-2673. https://doi.org/10.1021/jz401349q
    44. Jin Zhang and Anastassia N. Alexandrova . The Golden Crown: A Single Au Atom that Boosts the CO Oxidation Catalyzed by a Palladium Cluster on Titania Surfaces. The Journal of Physical Chemistry Letters 2013, 4 (14) , 2250-2255. https://doi.org/10.1021/jz400981a
    45. Michael A. Henderson and Igor Lyubinetsky . Molecular-Level Insights into Photocatalysis from Scanning Probe Microscopy Studies on TiO2(110). Chemical Reviews 2013, 113 (6) , 4428-4455. https://doi.org/10.1021/cr300315m
    46. Nikolay G. Petrik and Greg A. Kimmel . Multiple Nonthermal Reaction Steps for the Photooxidation of CO to CO2 on Reduced TiO2(110). The Journal of Physical Chemistry Letters 2013, 4 (3) , 344-349. https://doi.org/10.1021/jz302012j
    47. Zhen Zhang and John T. Yates, Jr. . Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chemical Reviews 2012, 112 (10) , 5520-5551. https://doi.org/10.1021/cr3000626
    48. Juan C. Garcia and N. Aaron Deskins . Detailing Ionosorption over TiO2, ZrO2, and HfO2 from First Principles. The Journal of Physical Chemistry C 2012, 116 (31) , 16573-16581. https://doi.org/10.1021/jp3043285
    49. Lauren Benz, Aileen Park, Jenelle R. Corey, Michelle P. Mezher, and Victoria C. Park . Interaction of Petroleum-Relevant Organosulfur Compounds with TiO2(110). Langmuir 2012, 28 (27) , 10209-10216. https://doi.org/10.1021/la301811q
    50. Simon Bonanni, Kamel Aït-Mansour, Wolfgang Harbich, and Harald Brune . Effect of the TiO2 Reduction State on the Catalytic CO Oxidation on Deposited Size-Selected Pt Clusters. Journal of the American Chemical Society 2012, 134 (7) , 3445-3450. https://doi.org/10.1021/ja2098854
    51. Shao-Chun Li, Peter Jacobson, Shu-Lei Zhao, Xue-Qing Gong, and Ulrike Diebold . Trapping Nitric Oxide by Surface Hydroxyls on Rutile TiO2(110). The Journal of Physical Chemistry C 2012, 116 (2) , 1887-1891. https://doi.org/10.1021/jp209290a
    52. Zhuhua Cai, Yener Kuru, Jeong Woo Han, Yan Chen, and Bilge Yildiz . Surface Electronic Structure Transitions at High Temperature on Perovskite Oxides: The Case of Strained La0.8Sr0.2CoO3 Thin Films. Journal of the American Chemical Society 2011, 133 (44) , 17696-17704. https://doi.org/10.1021/ja2059445
    53. Nikolay G. Petrik and Greg A. Kimmel . Oxygen Photochemistry on TiO2(110): Recyclable, Photoactive Oxygen Produced by Annealing Adsorbed O2. The Journal of Physical Chemistry Letters 2011, 2 (21) , 2790-2796. https://doi.org/10.1021/jz201225c
    54. Ming Kong, Yuanzhi Li, Xiong Chen, Tingting Tian, Pengfei Fang, Feng Zheng, and Xiujian Zhao . Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. Journal of the American Chemical Society 2011, 133 (41) , 16414-16417. https://doi.org/10.1021/ja207826q
    55. Jiale Liu, Xiayan Chen, Kaizhong Chen, Wenming Tian, Yusong Sheng, Bin She, Youyu Jiang, Deyi Zhang, Yang Liu, Jianhang Qi, Kai Chen, Yongmin Ma, Zexiong Qiu, Chaoyang Wang, Yanfeng Yin, Shengli Zhao, Jing Leng, Shengye Jin, Wenshan Zhao, Yanyang Qin, Yaqiong Su, Xiaoyu Li, Xiaojiang Li, Yang Zhou, Yinhua Zhou, Furi Ling, Anyi Mei, Hongwei Han. Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells. Science 2024, 383 (6688) , 1198-1204. https://doi.org/10.1126/science.adk9089
    56. Ke Wang, Fanxing Zhang, Ning Cao, Ying Bao, Mi Yan, Keping Yan, Pengfei Xie. Unraveling the evolution of oxygen vacancies in TiO2−x/Cu and its role in CO2 hydrogenation. Science China Chemistry 2024, 476 https://doi.org/10.1007/s11426-023-1995-6
    57. Soontorn Tuntithavornwat, Chonticha Saisawang, Thanchanok Ratvijitvech, Anyarat Watthanaphanit, Mali Hunsom, Arunachala M. Kannan. Recent development of black TiO2 nanoparticles for photocatalytic H2 production: An extensive review. International Journal of Hydrogen Energy 2024, 55 , 1559-1593. https://doi.org/10.1016/j.ijhydene.2023.12.102
    58. Mahdieh Rezaei, Alireza Nezamzadeh-Ejhieh, Ahmad Reza Massah. A comprehensive review on the boosted effects of anion vacancy in the heterogeneous photocatalytic degradation, part I: Focus on sulfur, nitrogen, carbon, and halogen vacancies. Ecotoxicology and Environmental Safety 2024, 269 , 115927. https://doi.org/10.1016/j.ecoenv.2024.115927
    59. Jun Li, Haoyi Wu, Ruyi Zhong, Yinhai Wang, Siyu Ye, Hui Zhao, Kai Yan, Yingshan Zhu, ZhengFa Hu, Wei Xie, Tao Zhang. Quenching-Induced Oxygen Vacancy Engineering Boosts Photocatalytic Activities of Catio3. 2024https://doi.org/10.2139/ssrn.4805221
    60. He Cui, Jiayu Cao, Yi Zhao, Jiabo Wang, Shunli Li, Kai Ge, Jianxin Chen, Yongfang Yang. Construction of IO-B-TiO2/In2O3 S-scheme heterojunction with photothermal effects and its highly efficient photocatalytic reduction of CO2 under full-spectrum light. Chemical Engineering Journal 2024, 479 , 147618. https://doi.org/10.1016/j.cej.2023.147618
    61. Javid Khan, Lei Han. Oxygen Vacancy in TiO 2 : Production Methods and Properties. 2023https://doi.org/10.5772/intechopen.111545
    62. Ubong J. Etim, Peng Bai, Oz M. Gazit, Ziyi Zhong. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. Catalysis Reviews 2023, 65 (2) , 239-425. https://doi.org/10.1080/01614940.2021.1919044
    63. Kinran Lau, Felix Niemann, Kaltum Abdiaziz, Markus Heidelmann, Yuke Yang, Yujin Tong, Michael Fechtelkord, Torsten C. Schmidt, Alexander Schnegg, R. Kramer Campen, Baoxiang Peng, Martin Muhler, Sven Reichenberger, Stephan Barcikowski. Differentiating between Acidic and Basic Surface Hydroxyls on Metal Oxides by Fluoride Substitution: A Case Study on Blue TiO 2 from Laser Defect Engineering. Angewandte Chemie International Edition 2023, 62 (12) https://doi.org/10.1002/anie.202213968
    64. Kinran Lau, Felix Niemann, Kaltum Abdiaziz, Markus Heidelmann, Yuke Yang, Yujin Tong, Michael Fechtelkord, Torsten C. Schmidt, Alexander Schnegg, R. Kramer Campen, Baoxiang Peng, Martin Muhler, Sven Reichenberger, Stephan Barcikowski. Unterscheidung zwischen sauren und basischen Oberflächenhydroxylgruppen auf Metalloxiden durch Fluoridsubstitution: Eine Fallstudie am Beispiel von defektreichem, blauem TiO 2 aus der laserbasierten Defekterzeugung. Angewandte Chemie 2023, 135 (12) https://doi.org/10.1002/ange.202213968
    65. Lars Mohrhusen, Katharina Al-Shamery. Conversion of Alcohols on Stoichiometric and Reduced Rutile TiO2 (110): Point Defects Meet Bifunctionality in Oxide (Photo-)Chemistry. Catalysis Letters 2023, 153 (2) , 321-337. https://doi.org/10.1007/s10562-022-04077-1
    66. Nafisa Gull, Atif Islam, Abdul Mannan, Tabinda Riaz, Asma Khalid, Shahzad Maqsood Khan, Rafi Ullah Khan. Challenges and Future Perspectives of Mxenes. 2023, 377-387. https://doi.org/10.1007/978-981-99-2038-9_22
    67. Liping Fang, Baolin Gao, Fangbai Li, Kai Liu, Jialin Chi. The nature of metal atoms incorporated in hematite determines oxygen activation by surface-bound Fe(II) for As(III) oxidation. Water Research 2022, 227 , 119351. https://doi.org/10.1016/j.watres.2022.119351
    68. Elena Fakhrutdinova, Olesia Reutova, Liubov Maliy, Tamara Kharlamova, Olga Vodyankina, Valery Svetlichnyi. Laser-Based Synthesis of TiO2-Pt Photocatalysts for Hydrogen Generation. Materials 2022, 15 (21) , 7413. https://doi.org/10.3390/ma15217413
    69. Kunlei Wang, Oliwia Paszkiewicz, Mewin Vincent, Patrycja Henkiel, Damian Kowalski, Ewa Kowalska, Agata Markowska-Szczupak. Evaluation of Antifungal Properties of Titania P25. Micromachines 2022, 13 (11) , 1851. https://doi.org/10.3390/mi13111851
    70. Heguang Liu, Zhe Wang, Jing Wang, Yujia Yang, Shaoqing Wu, Caiyin You, Na Tian, Yuan Li. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications. Nanoscale 2022, 14 (26) , 9218-9247. https://doi.org/10.1039/D2NR02224A
    71. Subhasree Panda, Kalim Deshmukh, S.K. Khadheer Pasha, Jayaraman Theerthagiri, Sivakumar Manickam, Myong Yong Choi. MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives. Coordination Chemistry Reviews 2022, 462 , 214518. https://doi.org/10.1016/j.ccr.2022.214518
    72. Zaheer Ud Din Babar, Bartolomeo Della Ventura, Raffaele Velotta, Vincenzo Iannotti. Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications. RSC Advances 2022, 12 (30) , 19590-19610. https://doi.org/10.1039/D2RA02985E
    73. Dongjie Yang, Xin Liu, Yun Tian. Suppressed MoO3/FeMoO4 formation in molybdenum dialkyl-dithiocarbamate-derived tribofilms on nitrogen-incorporated Al-Mg-Ti-B coatings. Tribology International 2022, 167 , 107374. https://doi.org/10.1016/j.triboint.2021.107374
    74. Zhenzi Li, Shijie Wang, Jiaxing Wu, Wei Zhou. Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renewable and Sustainable Energy Reviews 2022, 156 , 111980. https://doi.org/10.1016/j.rser.2021.111980
    75. Jessica Kräuter, Evanie Franz, Fabian Waidhas, Olaf Brummel, Jörg Libuda, Katharina Al-Shamery. The role of defects in the photoconversion of 2-propanol on rutile titania: Operando spectroscopy combined with elementary studies. Journal of Catalysis 2022, 406 , 134-144. https://doi.org/10.1016/j.jcat.2021.12.025
    76. M.B. Tahir, Amber Batool. Recent development in sustainable technologies for clean hydrogen evolution: Current scenario and future perspectives. 2022, 97-130. https://doi.org/10.1016/B978-0-12-822838-8.00008-9
    77. Thi Kim Thoa Huynh, Youngjae Lee, Shankara S. Kalanur, Hyungtak Seo. Defect tuned SnO2 nanolayer coated TiO2 1-D core-shell structure for enhanced overall solar water splitting. Ceramics International 2022, 48 (1) , 1013-1023. https://doi.org/10.1016/j.ceramint.2021.09.186
    78. Ziyang Chen, Long Liang, Huan Yuan, Huan Liu, Peng Wu, Mingli Fu, Junliang Wu, Peirong Chen, Yongcai Qiu, Daiqi Ye, Limin Chen. Reciprocal regulation between support defects and strong metal-support interactions for highly efficient reverse water gas shift reaction over Pt/TiO2 nanosheets catalysts. Applied Catalysis B: Environmental 2021, 298 , 120507. https://doi.org/10.1016/j.apcatb.2021.120507
    79. Dingxin Xu, Yuhao Ma, Jing Wang, Weirui Chen, Yiming Tang, Xukai Li, Laisheng Li. Interfacial engineering of 2D/2D MXene heterostructures: face-to-face contact for augmented photodegradation of amoxicillin. Chemical Engineering Journal 2021, 426 , 131246. https://doi.org/10.1016/j.cej.2021.131246
    80. Daijun Xie, Yingjie Wang, Han Yu, Xinran Yang, Shining Geng, Xiangfu Meng. Molten-salt defect engineering of TiO2(B) nanobelts for enhanced photocatalytic hydrogen evolution. JCIS Open 2021, 4 , 100031. https://doi.org/10.1016/j.jciso.2021.100031
    81. Joel Y. Y. Loh, Geetu Sharma, Nazir P. Kherani, Geoffrey A. Ozin. Post‐Illumination Photoconductivity Enables Extension of Photo‐Catalysis after Sunset. Advanced Energy Materials 2021, 11 (41) https://doi.org/10.1002/aenm.202101566
    82. Jessica Kräuter, Katharina Al-Shamery. Bulk defect-dependent initial steps of acetone oxidation on rutile TiO 2 (110). Molecular Physics 2021, 119 (17-18) https://doi.org/10.1080/00268976.2021.1963870
    83. Stephen Rhatigan, Michael Nolan. Insights into Photocatalysis from Computational Chemistry. 2021, 127-154. https://doi.org/10.1002/9783527815296.ch6
    84. Kazi Hasibur Rahman, Asit Kumar Kar. Oxygen Vacancy and Adsorbed Superoxides Dependent Photocatalytic Activity of TiO 2 Quantum Dot Thin Films for Degradation of Methylene Blue with Variation of Precursor Concentration. ECS Journal of Solid State Science and Technology 2021, 10 (8) , 081011. https://doi.org/10.1149/2162-8777/ac1d25
    85. Arturo Sanz-Marco, José L. Hueso, Víctor Sebastian, David Nielsen, Susanne Mossin, Juan P. Holgado, Carlos J. Bueno-Alejo, Francisco Balas, Jesus Santamaria. LED-driven controlled deposition of Ni onto TiO 2 for visible-light expanded conversion of carbon dioxide into C 1 –C 2 alkanes. Nanoscale Advances 2021, 3 (13) , 3788-3798. https://doi.org/10.1039/D1NA00021G
    86. Lars Mohrhusen, Katharina Al-Shamery. Conversion of methanol on rutile TiO 2 (110) and tungsten oxide clusters: 1. population of defect-dependent thermal reaction pathways. Physical Chemistry Chemical Physics 2021, 23 (21) , 12137-12147. https://doi.org/10.1039/D1CP01175H
    87. Lars Mohrhusen, Jessica Kräuter, Katharina Al-Shamery. Conversion of methanol on rutile TiO 2 (110) and tungsten oxide clusters: 2. The role of defects and electron transfer in bifunctional oxidic photocatalysts. Physical Chemistry Chemical Physics 2021, 23 (21) , 12148-12157. https://doi.org/10.1039/D1CP01176F
    88. Joel Y. Y. Loh, Nazir P. Kherani, Geoffrey A. Ozin. Persistent CO2 photocatalysis for solar fuels in the dark. Nature Sustainability 2021, 4 (6) , 466-473. https://doi.org/10.1038/s41893-021-00681-y
    89. Chandran Balamurugan, Hyeonjeong Jo, Dongwan Yoo, Jaewhan Cho, Ki Min Nam, Junhyeok Seo. Electrochemical and photoelectrochemical oxygen evolution reactions by Group X hetero-metal oxides. Applied Surface Science 2021, 541 , 148523. https://doi.org/10.1016/j.apsusc.2020.148523
    90. Abhinandan Kumar, Pankaj Raizada, Ahmad Hosseini-Bandegharaei, Vijay Kumar Thakur, Van-Huy Nguyen, Pardeep Singh. C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. Journal of Materials Chemistry A 2021, 9 (1) , 111-153. https://doi.org/10.1039/D0TA08384D
    91. Yanjie Wang, Tao He. Recent advances in and comprehensive consideration of the oxidation half reaction in photocatalytic CO 2 conversion. Journal of Materials Chemistry A 2021, 9 (1) , 87-110. https://doi.org/10.1039/D0TA09011E
    92. Francesco Parrino, Francesca Rita Pomilla, Giovanni Camera-Roda, Vittorio Loddo, Leonardo Palmisano. Properties of titanium dioxide. 2021, 13-66. https://doi.org/10.1016/B978-0-12-819960-2.00001-8
    93. T. Kiran, H.M. Parveez Ahmed, Noor Shahina Begum, K.G. Manjunatha. Sun light driven photocatalytic performance of Ag decorated TiO2 nanocomposite thin films by sol gel method. Materials Today: Proceedings 2021, 46 , 5948-5952. https://doi.org/10.1016/j.matpr.2020.11.385
    94. Kalim Deshmukh, Tomáš Kovářík, S.K. Khadheer Pasha. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coordination Chemistry Reviews 2020, 424 , 213514. https://doi.org/10.1016/j.ccr.2020.213514
    95. Houmei Dai, Xin Li, Xiaolin Cai, Ran Wei. The magnetism of titanium-defected undoped rutile TiO 2 : first-principles calculations. Physical Chemistry Chemical Physics 2020, 22 (44) , 25930-25935. https://doi.org/10.1039/D0CP04282J
    96. Xichao Zhang, Wen-Fan Chen, Ghazaleh Bahmanrokh, Vishesh Kumar, Naomi Ho, Pramod Koshy, Charles Christopher Sorrell. Synthesis of V- and Mo-doped/codoped TiO2 powders for photocatalytic degradation of methylene blue. Nano-Structures & Nano-Objects 2020, 24 , 100557. https://doi.org/10.1016/j.nanoso.2020.100557
    97. Kun Lan, Ruicong Wang, Qiulong Wei, Yanxiang Wang, Anh Hong, Pingyun Feng, Dongyuan Zhao. Stable Ti 3+ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. Angewandte Chemie 2020, 132 (40) , 17829-17836. https://doi.org/10.1002/ange.202007859
    98. Kun Lan, Ruicong Wang, Qiulong Wei, Yanxiang Wang, Anh Hong, Pingyun Feng, Dongyuan Zhao. Stable Ti 3+ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. Angewandte Chemie International Edition 2020, 59 (40) , 17676-17683. https://doi.org/10.1002/anie.202007859
    99. Wanchao Yu, Fengjie Chen, Yarui Wang, Lixia Zhao. Rapid evaluation of oxygen vacancies-enhanced photogeneration of the superoxide radical in nano-TiO 2 suspensions. RSC Advances 2020, 10 (49) , 29082-29089. https://doi.org/10.1039/D0RA06299E
    100. Igor Sokolović, Michele Reticcioli, Martin Čalkovský, Margareta Wagner, Michael Schmid, Cesare Franchini, Ulrike Diebold, Martin Setvín. Resolving the adsorption of molecular O 2 on the rutile TiO 2 (110) surface by noncontact atomic force microscopy. Proceedings of the National Academy of Sciences 2020, 117 (26) , 14827-14837. https://doi.org/10.1073/pnas.1922452117
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect