ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Pentacoordinate Boron-Containing π-Electron System with Cl–B–Cl Three-Center Four-Electron Bonds

View Author Information
Institute of Transformative Bio-Molecules (WPI-ITbM), Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
Cite this: J. Am. Chem. Soc. 2013, 135, 25, 9346–9349
Publication Date (Web):June 10, 2013
https://doi.org/10.1021/ja404724f
Copyright © 2013 American Chemical Society

    Article Views

    4201

    Altmetric

    -

    Citations

    48
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Tricoordinate boron-containing π-electron systems are an attractive class of compounds with intense fluorescence and strong electron-accepting properties. However, the impact of pentacoordination of the boron atoms on their properties has not been determined. We now disclose a B,B′-bis(1,8-dichloro-9-anthryl)-substituted 9,10-dihydro-9,10-diboraanthracene as a new pentacoordinate organoboron compound. In this skeleton, with the aid of the orthogonal arrangement of the anthryl substituent, the B and Cl atoms can form a three-center four-electron (3c–4e) Cl–B–Cl bond. The pentacoordination of the boron atom significantly perturbs the electronic structure and thereby the photophysical and electrochemical properties.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures, crystallographic data (CIF) for 4Cl and 5, photophysical properties, theoretical calculations, and complete ref 16 (as ref S4). This material is available free of charge via the Internet at http://pubs.acs.org. The supplementary crystallographic data for 4Cl (CCDC-924601) and 5 (CCDC-924602) have also been deposited with the Cambridge Crystallographic Data Centre.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 48 publications.

    1. Nora Lis G. Fernández, Roxana E. Medina, Margarita M. Vallejos. Ability of Boron to Act as a Nucleophile and an Electrophile in Boryl Shift Reactions Unveiled by Electron Density Distribution Analysis. The Journal of Organic Chemistry 2022, 87 (7) , 4680-4691. https://doi.org/10.1021/acs.joc.1c03119
    2. Zhipeng Li, Guoliang Song, Zhen Hua Li. Theoretical Design of Stable Pentacoordinate Boron Compounds. ACS Omega 2022, 7 (2) , 2391-2397. https://doi.org/10.1021/acsomega.1c06415
    3. Yizhen Liu, Bo Su, Weishi Dong, Zhen Hua Li, Huadong Wang. Structural Characterization of a Boron(III) η2-σ-Silane-Complex. Journal of the American Chemical Society 2019, 141 (20) , 8358-8363. https://doi.org/10.1021/jacs.9b03213
    4. Vladimir Ya. Lee, Haruka Sugasawa, Olga A. Gapurenko, Ruslan M. Minyaev, Vladimir I. Minkin, Heinz Gornitzka, Akira Sekiguchi. From Borapyramidane to Borole Dianion. Journal of the American Chemical Society 2018, 140 (19) , 6053-6056. https://doi.org/10.1021/jacs.8b03473
    5. Kai Schickedanz, Julian Radtke, Michael Bolte, Hans-Wolfram Lerner, and Matthias Wagner . Facile Route to Quadruply Annulated Borepins. Journal of the American Chemical Society 2017, 139 (7) , 2842-2851. https://doi.org/10.1021/jacs.7b00268
    6. Mariusz Tasior and Daniel T. Gryko . Synthesis and Properties of Ladder-Type BN-Heteroacenes and Diazabenzoindoles Built on a Pyrrolopyrrole Scaffold. The Journal of Organic Chemistry 2016, 81 (15) , 6580-6586. https://doi.org/10.1021/acs.joc.6b01209
    7. Christopher J. Berger, Gang He, Christian Merten, Robert McDonald, Michael J. Ferguson, and Eric Rivard . Synthesis and Luminescent Properties of Lewis Base-Appended Borafluorenes. Inorganic Chemistry 2014, 53 (3) , 1475-1486. https://doi.org/10.1021/ic402408t
    8. Soo-Byung Ko, Jia-Sheng Lu, and Suning Wang . Chelation-Assisted Photoelimination of B,N-Heterocycles. Organic Letters 2014, 16 (2) , 616-619. https://doi.org/10.1021/ol403550b
    9. Ravi Kumar, Toshifumi Dohi, Viktor V. Zhdankin. Organohypervalent heterocycles. Chemical Society Reviews 2024, 221 https://doi.org/10.1039/D2CS01055K
    10. Changan Ji, Jie Yang, Siyi Hu, John Mack, Yongbo Zhang, Hua Lu, Lizhi Gai. Pyrrole hemithioindigo-derived organoboron complexes: Synthesis, photophysical properties and its bioimaging applications. Dyes and Pigments 2023, 220 , 111707. https://doi.org/10.1016/j.dyepig.2023.111707
    11. Wenting Sun, Yue Yang, Xinyu Tian, Liuzhong Yuan, Yue Wang, Chuandong Dou. A Combination of B‐ and N‐Doped π‐Systems Enabling Systematic Tuning of Electronic Structures and Properties. Chemistry – A European Journal 2023, 29 (65) https://doi.org/10.1002/chem.202302459
    12. Yujia Liu, Liuzhong Yuan, Jiaxiang Guo, Wenting Sun, Yue Wang, Chuandong Dou. Photonic Modulation Enabled by Controlling the Edge Structures of Boron‐Doped Molecular Carbons. Angewandte Chemie 2023, 135 (32) https://doi.org/10.1002/ange.202306911
    13. Yujia Liu, Liuzhong Yuan, Jiaxiang Guo, Wenting Sun, Yue Wang, Chuandong Dou. Photonic Modulation Enabled by Controlling the Edge Structures of Boron‐Doped Molecular Carbons. Angewandte Chemie International Edition 2023, 62 (32) https://doi.org/10.1002/anie.202306911
    14. Wenting Sun, Jiaxiang Guo, Zengming Fan, Liuzhong Yuan, Kaiqi Ye, Chuandong Dou, Yue Wang. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angewandte Chemie 2022, 134 (40) https://doi.org/10.1002/ange.202209271
    15. Wenting Sun, Jiaxiang Guo, Zengming Fan, Liuzhong Yuan, Kaiqi Ye, Chuandong Dou, Yue Wang. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angewandte Chemie International Edition 2022, 61 (40) https://doi.org/10.1002/anie.202209271
    16. Junhui Miao, Yinghui Wang, Jun Liu, Lixiang Wang. Organoboron molecules and polymers for organic solar cell applications. Chemical Society Reviews 2022, 51 (1) , 153-187. https://doi.org/10.1039/D1CS00974E
    17. Vadim D. Romanenko, Jean-Marc Sotiropoulos. Six-Membered Rings With Two or More Heteroatoms With at Least One Boron. 2022, 806-845. https://doi.org/10.1016/B978-0-12-818655-8.00098-6
    18. Jordan W. Taylor, W. Hill Harman. H 2 evolution from H 2 O via O–H oxidative addition across a 9,10-diboraanthracene. Chemical Communications 2020, 56 (89) , 13804-13807. https://doi.org/10.1039/D0CC05261B
    19. Zhu Wu, Jörn Nitsch, Julia Schuster, Alexandra Friedrich, Katharina Edkins, Marcel Loebnitz, Fabian Dinkelbach, Vladimir Stepanenko, Frank Würthner, Christel M. Marian, Lei Ji, Todd B. Marder. Persistent Room Temperature Phosphorescence from Triarylboranes: A Combined Experimental and Theoretical Study. Angewandte Chemie 2020, 132 (39) , 17285-17292. https://doi.org/10.1002/ange.202007610
    20. Zhu Wu, Jörn Nitsch, Julia Schuster, Alexandra Friedrich, Katharina Edkins, Marcel Loebnitz, Fabian Dinkelbach, Vladimir Stepanenko, Frank Würthner, Christel M. Marian, Lei Ji, Todd B. Marder. Persistent Room Temperature Phosphorescence from Triarylboranes: A Combined Experimental and Theoretical Study. Angewandte Chemie International Edition 2020, 59 (39) , 17137-17144. https://doi.org/10.1002/anie.202007610
    21. Ashim Nandi, Adam Sucher, Anat Tyomkin, Sebastian Kozuch. Ping-pong tunneling reactions, part 2: boron and carbon bell-clapper rearrangement. Pure and Applied Chemistry 2020, 92 (1) , 39-47. https://doi.org/10.1515/pac-2019-0401
    22. Antonio Abad García, Alexey Rayevsky, E. Andrade-Jorge, José G. Trujillo-Ferrara. Structural and Biological Overview of Boron-containing Amino Acids in the Medicinal Chemistry Field. Current Medicinal Chemistry 2019, 26 (26) , 5077-5089. https://doi.org/10.2174/0929867325666180926150403
    23. Julian Radtke, Kai Schickedanz, Marcel Bamberg, Luigi Menduti, Dieter Schollmeyer, Michael Bolte, Hans-Wolfram Lerner, Matthias Wagner. Selective access to either a doubly boron-doped tetrabenzopentacene or an oxadiborepin from the same precursor. Chemical Science 2019, 10 (39) , 9017-9027. https://doi.org/10.1039/C9SC03115D
    24. Esther von Grotthuss, Alexandra John, Thomas Kaese, Matthias Wagner. Doping Polycyclic Aromatics with Boron for Superior Performance in Materials Science and Catalysis. Asian Journal of Organic Chemistry 2018, 7 (1) , 37-53. https://doi.org/10.1002/ajoc.201700495
    25. Guillaume Bélanger‐Chabot, Holger Braunschweig, Dipak Kumar Roy. Recent Developments in Azaborinine Chemistry. European Journal of Inorganic Chemistry 2017, 2017 (38-39) , 4353-4368. https://doi.org/10.1002/ejic.201700562
    26. Hao Zhang, Chun Liu. Synthesis and properties of furan/thiophene substituted difluoroboron β-diketonate derivatives bearing a triphenylamine moiety. Dyes and Pigments 2017, 143 , 143-150. https://doi.org/10.1016/j.dyepig.2017.04.022
    27. Sven Kirschner, Jan‐Michael Mewes, Michael Bolte, Hans‐Wolfram Lerner, Andreas Dreuw, Matthias Wagner. How Boron Doping Shapes the Optoelectronic Properties of Canonical and Phenylene‐Containing Oligoacenes: A Combined Experimental and Theoretical Investigation. Chemistry – A European Journal 2017, 23 (21) , 5104-5116. https://doi.org/10.1002/chem.201700056
    28. Chuandong Dou, Jun Liu, Lixiang Wang. Conjugated polymers containing B←N unit as electron acceptors for all-polymer solar cells. Science China Chemistry 2017, 60 (4) , 450-459. https://doi.org/10.1007/s11426-016-0503-x
    29. Lei Ji, Stefanie Griesbeck, Todd B. Marder. Recent developments in and perspectives on three-coordinate boron materials: a bright future. Chemical Science 2017, 8 (2) , 846-863. https://doi.org/10.1039/C6SC04245G
    30. Rajarshi Dasgupta, Atanu Panda, Shiv Pal, Puthan Veetil Muhasina, Susmita De, Pattiyil Parameswaran, Shabana Khan. Catalyst free boron carbon bond cleavage and facile formation of five-membered PNBCC heterocycles. Dalton Transactions 2017, 46 (44) , 15190-15194. https://doi.org/10.1039/C7DT03565A
    31. Xiaojing Long, Zicheng Ding, Chuandong Dou, Jidong Zhang, Jun Liu, Lixiang Wang. Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High‐Efficiency All‐Polymer Solar Cells. Advanced Materials 2016, 28 (30) , 6504-6508. https://doi.org/10.1002/adma.201601205
    32. Ruyan Zhao, Chuandong Dou, Zhiyuan Xie, Jun Liu, Lixiang Wang. Polymer Acceptor Based on B←N Units with Enhanced Electron Mobility for Efficient All‐Polymer Solar Cells. Angewandte Chemie 2016, 128 (17) , 5399-5403. https://doi.org/10.1002/ange.201601305
    33. Ruyan Zhao, Chuandong Dou, Zhiyuan Xie, Jun Liu, Lixiang Wang. Polymer Acceptor Based on B←N Units with Enhanced Electron Mobility for Efficient All‐Polymer Solar Cells. Angewandte Chemie International Edition 2016, 55 (17) , 5313-5317. https://doi.org/10.1002/anie.201601305
    34. Shinichiro Osumi, Shohei Saito, Chuandong Dou, Kyohei Matsuo, Keita Kume, Hirofumi Yoshikawa, Kunio Awaga, Shigehiro Yamaguchi. Boron-doped nanographene: Lewis acidity, redox properties, and battery electrode performance. Chemical Science 2016, 7 (1) , 219-227. https://doi.org/10.1039/C5SC02246K
    35. Malcolm L. H. Green, Gerard Parkin. The classification and representation of main group element compounds that feature three-center four-electron interactions. Dalton Transactions 2016, 45 (47) , 18784-18795. https://doi.org/10.1039/C6DT03570A
    36. Takuya Matsumoto, Hirofumi Takamine, Kazuo Tanaka, Yoshiki Chujo. Synthesis and Characterization of Heterofluorenes with Five-coordinated Group 13 Elements. Chemistry Letters 2015, 44 (12) , 1658-1660. https://doi.org/10.1246/cl.150795
    37. Alessandro Del Grosso, Josue Ayuso Carrillo, Michael J. Ingleson. Regioselective electrophilic borylation of haloarenes. Chemical Communications 2015, 51 (14) , 2878-2881. https://doi.org/10.1039/C4CC10153G
    38. Krzysztof Durka, Ireneusz Głowacki, Sergiusz Luliński, Beata Łuszczyńska, Jaromir Smętek, Paweł Szczepanik, Janusz Serwatowski, Urszula E. Wawrzyniak, Grzegorz Wesela-Bauman, Ewelina Witkowska, Gabriela Wiosna-Sałyga, Krzysztof Woźniak. Efficient 8-oxyquinolinato emitters based on a 9,10-dihydro-9,10-diboraanthracene scaffold for applications in optoelectronic devices. Journal of Materials Chemistry C 2015, 3 (6) , 1354-1364. https://doi.org/10.1039/C4TC02350A
    39. Aude Escande, Michael J. Ingleson. Fused polycyclic aromatics incorporating boron in the core: fundamentals and applications. Chemical Communications 2015, 51 (29) , 6257-6274. https://doi.org/10.1039/C5CC00175G
    40. Zhenyu Zhang, Zuolun Zhang, Kaiqi Ye, Jingying Zhang, Hongyu Zhang, Yue Wang. Diboron complexes with bis-spiro structures as high-performance blue emitters for OLEDs. Dalton Transactions 2015, 44 (32) , 14436-14443. https://doi.org/10.1039/C5DT02093J
    41. Xiaodong Yin, Jiawei Chen, Roger A. Lalancette, Todd B. Marder, Frieder Jäkle. Highly Electron‐Deficient and Air‐Stable Conjugated Thienylboranes. Angewandte Chemie 2014, 126 (37) , 9919-9923. https://doi.org/10.1002/ange.201403700
    42. Xiaodong Yin, Jiawei Chen, Roger A. Lalancette, Todd B. Marder, Frieder Jäkle. Highly Electron‐Deficient and Air‐Stable Conjugated Thienylboranes. Angewandte Chemie International Edition 2014, 53 (37) , 9761-9765. https://doi.org/10.1002/anie.201403700
    43. Holger Braunschweig, Christian Hörl, Lisa Mailänder, Krzysztof Radacki, Johannes Wahler. Antiaromaticity to Aromaticity: From Boroles to 1,2‐Azaborinines by Ring Expansion with Azides. Chemistry – A European Journal 2014, 20 (32) , 9858-9861. https://doi.org/10.1002/chem.201403101
    44. Fabian Holzmeier, Melanie Lang, Patrick Hemberger, Andras Bodi, Marius Schäfer, Rian D. Dewhurst, Holger Braunschweig, Ingo Fischer. Photoionization and Pyrolysis of a 1,4‐Azaborinine: Retro‐Hydroboration in the Cation and Identification of Novel Organoboron Ring Systems. Chemistry – A European Journal 2014, 20 (31) , 9683-9692. https://doi.org/10.1002/chem.201402884
    45. Xiao Shen, Qinghe Liu, Tao Luo, Jinbo Hu. Nucleophilic Difluoromethylation of Epoxides with PhSO(NTBS)CF 2 H by a Preorganization Strategy. Chemistry – A European Journal 2014, 20 (22) , 6795-6800. https://doi.org/10.1002/chem.201402506
    46. . Anorganische Chemie 2013. Nachrichten aus der Chemie 2014, 219-236. https://doi.org/10.1002/nadc.201490083
    47. László Könczöl, Gábor Turczel, Tamás Szpisjak, Dénes Szieberth. The stability of η 2 -H 2 borane complexes – a theoretical investigation. Dalton Trans. 2014, 43 (36) , 13571-13577. https://doi.org/10.1039/C4DT00019F
    48. Naixun Gao, Chi Cheng, Changjiang Yu, Erhong Hao, Shengyuan Wang, Jun Wang, Yun Wei, Xiaolong Mu, Lijuan Jiao. Facile synthesis of highly fluorescent BF 2 complexes bearing isoindolin-1-one ligand. Dalton Trans. 2014, 43 (19) , 7121-7127. https://doi.org/10.1039/C4DT00138A

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect