ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Measurement and Manipulation of the Charge State of an Adsorbed Oxygen Adatom on the Rutile TiO2(110)-1×1 Surface by nc-AFM and KPFM

  • Quanzhen Zhang
    Quanzhen Zhang
    Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
    More by Quanzhen Zhang
  • Yan Jun Li*
    Yan Jun Li
    Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
    *[email protected]
    More by Yan Jun Li
  • Huan Fei Wen
    Huan Fei Wen
    Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
    More by Huan Fei Wen
  • Yuuki Adachi
    Yuuki Adachi
    Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
    More by Yuuki Adachi
  • Masato Miyazaki
    Masato Miyazaki
    Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
    More by Masato Miyazaki
  • Yasuhiro Sugawara
    Yasuhiro Sugawara
    Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
  • Rui Xu
    Rui Xu
    CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
    More by Rui Xu
  • Zhi Hai Cheng
    Zhi Hai Cheng
    CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
    More by Zhi Hai Cheng
  • Ján Brndiar
    Ján Brndiar
    Center for Computational Materials Science, Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
    More by Ján Brndiar
  • Lev Kantorovich
    Lev Kantorovich
    Department of Physics, King’s College London, The Strand, London, WC2R 2LS, United Kingdom
    More by Lev Kantorovich
  • , and 
  • Ivan Štich
    Ivan Štich
    Center for Computational Materials Science, Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
    Institute of Informatics, Slovak Academy of Sciences, 84507 Bratislava, Slovakia
    More by Ivan Štich
Cite this: J. Am. Chem. Soc. 2018, 140, 46, 15668–15674
Publication Date (Web):October 16, 2018
https://doi.org/10.1021/jacs.8b07745
Copyright © 2018 American Chemical Society

    Article Views

    2489

    Altmetric

    -

    Citations

    48
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    For the first time, the charge states of adsorbed oxygen adatoms on the rutile TiO2(110)-1×1 surface are successfully measured and deliberately manipulated by a combination of noncontact atomic force microscopy and Kelvin probe force microscopy at 78 K under ultrahigh vacuum and interpreted by extensive density functional theory modeling. Several kinds of single and double oxygen adatom species are clearly distinguished and assigned to three different charge states: Oad/2Oad, Oad2–/2Oad2–, and Oad–Oad2–, i.e., formal charges of either one or two electrons per atom. Because of the strong atomic-scale image contrast, these states are clearly resolved. The observations are supported by measurements of the short-range force and local contact potential difference as a function of the tip–sample distance as well as simulations. Comparison with the simulations suggests subatomic resolution by allowing us to resolve the rotated oxygen p orbitals. In addition, we manage to reversibly switch the charge states of the oxygen adatoms between the Oad and Oad2– states, both individually and next to another oxygen, by modulating the frequency shift at constant positive voltage during both charging and discharging processes, i.e., by the tip-induced electric field of one orientation. This work provides a novel route for the investigation of the charge state of the adsorbates and opens up novel prospects for studying transition-metal-oxide-based catalytic reactions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b07745.

    • Experimental details and schematic circuits of FM-KPFM with bias voltage feedback; typical AFM image and corresponding ball model of the rutile TiO2(110)-1 × 1 surface in the hole mode; ball models of the two proposed adsorption and dissociation types of oxygen adatoms on the rutile TiO2(110) surface; stable 2Oad, 2Oad2– species after spectral measurement; charging the adsorbed oxygen species by increasing the bias voltage; further simulation details, such as the geometry, including that of the polarons, the preparation of desired oxygen charge states in the simulations, subatomic resolution, Bader analysis of computed charges on the oxygen species, and the effect of the electric field on the key electronic states and charge distributions corresponding to different charging (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 48 publications.

    1. Qiang Zhu, Yuuki Adachi, Huanfei Wen, Rui Xu, Zhihai Cheng, Yasuhiro Sugawara, Yanjun Li. Charge State of Au Atoms on an Oxidized Rutile TiO2(110) Surface by AFM/KPFM at 78 K. Langmuir 2024, 40 (2) , 1358-1363. https://doi.org/10.1021/acs.langmuir.3c02999
    2. Fangliang Li, Binli Wang, Xiao Chen, Yuemiao Lai, Tao Wang, Hongjun Fan, Xueming Yang, Qing Guo. Photocatalytic Oxidative Dehydrogenation of Propane for Selective Propene Production with TiO2. JACS Au 2022, 2 (11) , 2607-2616. https://doi.org/10.1021/jacsau.2c00512
    3. Qiang Zhu, Yuuki Adachi, Yasuhiro Sugawara, Yanjun Li. Tip-Induced Dynamic Behaviors of a Water Molecule and Hydroxyl on the Rutile TiO2(110) Surface. The Journal of Physical Chemistry C 2022, 126 (31) , 13062-13068. https://doi.org/10.1021/acs.jpcc.1c08935
    4. Yuuki Adachi, Huan Fei Wen, Quanzhen Zhang, Masato Miyazaki, Yasuhiro Sugawara, Ján Brndiar, Lev Kantorovich, Ivan Štich, Yan Jun Li. Charge State Tristability of Oxygen Adatom on a Rutile TiO2(110)–(1 × 1) Surface Controlled by Atomic Force Microscopy. The Journal of Physical Chemistry C 2022, 126 (10) , 5064-5069. https://doi.org/10.1021/acs.jpcc.2c00347
    5. Quanzhen Zhang, Ján Brndiar, Martin Konôpka, Huan Fei Wen, Yuuki Adachi, Masato Miyazaki, Robert Turanský, Rui Xu, Zhi Hai Cheng, Yasuhiro Sugawara, Ivan Štich, Yan Jun Li. Unraveling the Charge States of Au Nanoclusters on an Oxygen-Rich Rutile TiO2(110) Surface and Their Triboelectrification Overturn by nc-AFM and KPFM. The Journal of Physical Chemistry C 2021, 125 (50) , 27607-27614. https://doi.org/10.1021/acs.jpcc.1c07997
    6. Quanzhen Zhang, Ján Brndiar, Yuuki Adachi, Martin Konôpka, Huan Fei Wen, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Hongqian Sang, Yan Jun Li, Lev Kantorovich, Ivan Štich. Voltage- and Redox State-Triggered Oxygen Adatom Conductance Switch. The Journal of Physical Chemistry C 2021, 125 (48) , 26801-26807. https://doi.org/10.1021/acs.jpcc.1c07568
    7. Masato Miyazaki, Yasuhiro Sugawara, Yan Jun Li. Charge Behavior of Terminal Hydroxyl on Rutile TiO2(110). Langmuir 2021, 37 (35) , 10588-10593. https://doi.org/10.1021/acs.langmuir.1c01845
    8. Shanrong Zou, Yasuhiro Sugawara, Yan Jun Li. Oxygen-Adsorption-Induced Charge State Change of a Pd Nanocluster on the Al2O3/NiAl(110) Surface. The Journal of Physical Chemistry C 2021, 125 (1) , 446-451. https://doi.org/10.1021/acs.jpcc.0c08743
    9. Quanzhen Zhang, Huan Fei Wen, Rui Xu, Zhi Hai Cheng, Yasuhiro Sugawara, Yan Jun Li. Electrically Induced Manipulation of the Au Nanoclusters on the Oxidized Rutile TiO2(110) Surface by Atomic Force Microscopy at 78 K. The Journal of Physical Chemistry C 2020, 124 (52) , 28562-28568. https://doi.org/10.1021/acs.jpcc.0c08843
    10. Shanrong Zou, Hirotaka Yokoyama, Yasuhiro Sugawara, Yan Jun Li. Size Dependence of Charge State of Pd Nanoparticles on the Al2O3/NiAl(110) Surface by Kelvin Probe Force Microscopy. The Journal of Physical Chemistry C 2020, 124 (39) , 21641-21645. https://doi.org/10.1021/acs.jpcc.0c07488
    11. Yuuki Adachi, Yasuhiro Sugawara, Yan Jun Li. Atomic Scale Three-Dimensional Au Nanocluster on a Rutile TiO2 (110) Surface Resolved by Atomic Force Microscopy. The Journal of Physical Chemistry Letters 2020, 11 (17) , 7153-7158. https://doi.org/10.1021/acs.jpclett.0c02042
    12. Yuuki Adachi, Yasuhiro Sugawara, Yan Jun Li. Remotely Controlling the Charge State of Oxygen Adatoms on a Rutile TiO2(110) Surface Using Atomic Force Microscopy. The Journal of Physical Chemistry C 2020, 124 (22) , 12010-12015. https://doi.org/10.1021/acs.jpcc.0c03117
    13. Quanzhen Zhang, Huan Fei Wen, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Yan Jun Li. Electrical Engineering of the Oxygen Adatom and Vacancy on Rutile TiO2(110) by Atomic Force Microscopy at 78 K. The Journal of Physical Chemistry C 2019, 123 (47) , 28852-28858. https://doi.org/10.1021/acs.jpcc.9b10304
    14. Faramarz Hossein-Babaei, Ali Hooshyar Zare, Mohsen Gharesi. Quantitative Assessment of Vapor Molecule Adsorption to Solid Surfaces by Flow Rate Monitoring in Microfluidic Channels. Analytical Chemistry 2019, 91 (20) , 12827-12834. https://doi.org/10.1021/acs.analchem.9b02543
    15. Quanzhen Zhang, Huan Fei Wen, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Rui Xu, Zhi Hai Cheng, Yan Jun Li. Characterization and Reversible Migration of Subsurface Hydrogen on Rutile TiO2(110) by Atomic Force Microscopy at 78 K. The Journal of Physical Chemistry C 2019, 123 (36) , 22595-22602. https://doi.org/10.1021/acs.jpcc.9b05744
    16. Yang Bao, Peng Song, Yanpeng Liu, Zhihui Chen, Menglong Zhu, Ibrahim Abdelwahab, Jie Su, Wei Fu, Xiao Chi, Wei Yu, Wei Liu, Xiaoxu Zhao, Qing-Hua Xu, Ming Yang, Kian Ping Loh. Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. Nano Letters 2019, 19 (8) , 5109-5117. https://doi.org/10.1021/acs.nanolett.9b01419
    17. Yuuki Adachi, Huan Fei Wen, Quanzhen Zhang, Masato Miyazaki, Yasuhiro Sugawara, Hongqian Sang, Ján Brndiar, Lev Kantorovich, Ivan Štich, Yan Jun Li. Tip-Induced Control of Charge and Molecular Bonding of Oxygen Atoms on the Rutile TiO2 (110) Surface with Atomic Force Microscopy. ACS Nano 2019, 13 (6) , 6917-6924. https://doi.org/10.1021/acsnano.9b01792
    18. Yuuki Adachi, Robert Turanský, Ján Brndiar, Kamil Tokár, Qiang Zhu, Huan Fei Wen, Yasuhiro Sugawara, Ivan Štich, Yan Jun Li. Mechanocatalysis of CO to CO2 on TiO2 surface controlled at atomic scale. Nano Research 2024, 1 https://doi.org/10.1007/s12274-024-6539-z
    19. Fangliang Li, Yuemiao Lai, Yi Zeng, Xiao Chen, Tao Wang, Xueming Yang, Qing Guo. Photocatalytic ethane conversion on rutile TiO 2 (110): identifying the role of the ethyl radical. Chemical Science 2023, 15 (1) , 307-316. https://doi.org/10.1039/D3SC05623F
    20. Jiuyan Wei, Sota Odani, Yasuhiro Sugawara, Yan Jun Li. Charge state of steps on anatase TiO2(1 0 1) at 78 K by AFM/KPFM. Applied Surface Science 2023, 640 , 158352. https://doi.org/10.1016/j.apsusc.2023.158352
    21. Samuel Berman, Ainur Zhussupbekova, Jos E. Boschker, Jutta Schwarzkopf, David D. O'Regan, Igor V. Shvets, Kuanysh Zhussupbekov. Reconciling the theoretical and experimental electronic structure of NbO 2 . Physical Review B 2023, 108 (15) https://doi.org/10.1103/PhysRevB.108.155141
    22. Yuuki Adachi, Ján Brndiar, Martin Konôpka, Robert Turanský, Qiang Zhu, Huan Fei Wen, Yasuhiro Sugawara, Lev Kantorovich, Ivan Štich, Yan Jun Li. Tip-activated single-atom catalysis: CO oxidation on Au adatom on oxidized rutile TiO 2 surface. Science Advances 2023, 9 (39) https://doi.org/10.1126/sciadv.adi4799
    23. Shanrong Zou, Jiuyan Wei, Qiang Zhu, Hongqian Sang, Yasuhiro Sugawara, Yan Jun Li. Study of CO molecules on Pd/Al2O3/NiAl(110) surface by atomic force microscopy and Kelvin probe force microscopy. Journal of Nanoparticle Research 2023, 25 (7) https://doi.org/10.1007/s11051-023-05781-8
    24. Zhang Qu, Yasuhiro Sugawara, Yanjun Li. Investigation of semiconductor properties of Co/Si(111)-7 × 7 by AFM/KPFS. Journal of Physics: Condensed Matter 2023, 35 (18) , 185001. https://doi.org/10.1088/1361-648X/acbf93
    25. Hua Zhu, Yue Wang, Xin Wang, Zi-Wen Fan, Hui-Fang Wang, Zheng Niu, Jian-Ping Lang. Design of a MOF-based nano-trap for the efficient separation of propane from propylene. Chemical Communications 2023, 59 (38) , 5757-5760. https://doi.org/10.1039/D3CC01296D
    26. Qiang Zhu, Yasuhiro Sugawara, Yanjun Li. Exploration of CO movement characteristics on rutile TiO2(110) surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 656 , 130402. https://doi.org/10.1016/j.colsurfa.2022.130402
    27. Zhang Qu, Jiuyan Wei, Xiaopeng Liu, Yasuhiro Sugawara, Yanjun Li. Atomic structure and electron distribution of Co atoms adsorbed on Si(111) surface by NC-AFM/KPFM at 78 K. Surface Science 2022, 724 , 122130. https://doi.org/10.1016/j.susc.2022.122130
    28. Junsuke Yamanishi, Yan Jun Li, Yoshitaka Naitoh, Yasuhiro Sugawara. Nanoscale optical imaging with photoinduced force microscopy in heterodyne amplitude modulation and heterodyne frequency modulation modes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2022, 52 , 100532. https://doi.org/10.1016/j.jphotochemrev.2022.100532
    29. Beibei Jia, Jun Zhou, Yuqing Chen, Zepeng Lv, Haomin Guo, Zixuan Zhang, Zihe Zhu, Haoyu Yu, Yang Wang, Kai Wu. Local charge transport at different interfaces in epoxy composites. Nanotechnology 2022, 33 (34) , 345709. https://doi.org/10.1088/1361-6528/ac705f
    30. Ryo Izumi, Yan Jun Li, Yoshitaka Naitoh, Yasuhiro Sugawara. Study of high–low KPFM on a pn-patterned Si surface. Microscopy 2022, 71 (2) , 98-103. https://doi.org/10.1093/jmicro/dfab055
    31. Yuuki Adachi, Yasuhiro Sugawara, Yan Jun Li. Probing CO on a rutile TiO2(110) surface using atomic force microscopy and Kelvin probe force microscopy. Nano Research 2022, 15 (3) , 1909-1915. https://doi.org/10.1007/s12274-021-3809-x
    32. Yuuki Adachi, Hongqian Sang, Yasuhiro Sugawara, Yan Jun Li. Single hydrogen atom manipulation for reversible deprotonation of water on a rutile TiO2 (110) surface. Communications Chemistry 2021, 4 (1) https://doi.org/10.1038/s42004-020-00444-4
    33. Yuuki Adachi, Ján Brndiar, Huan Fei Wen, Quanzhen Zhang, Masato Miyazaki, Sourbh Thakur, Yasuhiro Sugawara, Hongqian Sang, YanJun Li, Ivan Štich, Lev Kantorovich. Electron dynamics of tip-tunable oxygen species on TiO2 surface. Communications Materials 2021, 2 (1) https://doi.org/10.1038/s43246-021-00176-5
    34. Tao He, Matthias Stolte, Yan Wang, Rebecca Renner, P. Paul Ruden, Frank Würthner, C. Daniel Frisbie. Site-specific chemical doping reveals electron atmospheres at the surfaces of organic semiconductor crystals. Nature Materials 2021, 20 (11) , 1532-1538. https://doi.org/10.1038/s41563-021-01079-z
    35. Cesare Franchini, Michele Reticcioli, Martin Setvin, Ulrike Diebold. Polarons in materials. Nature Reviews Materials 2021, 6 (7) , 560-586. https://doi.org/10.1038/s41578-021-00289-w
    36. Wutao Yang, Mingxia Li, Kai Pan, Liping Guo, Jiaxing Wu, Zhijun Li, Fan Yang, Kuo Lin, Wei Zhou. Surface engineering of mesoporous anatase titanium dioxide nanotubes for rapid spatial charge separation on horizontal-vertical dimensions and efficient solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science 2021, 586 , 75-83. https://doi.org/10.1016/j.jcis.2020.10.071
    37. Marta Kowalkińska, Szymon Dudziak, Jakub Karczewski, Jacek Ryl, Grzegorz Trykowski, Anna Zielińska-Jurek. Facet effect of TiO2 nanostructures from TiOF2 and their photocatalytic activity. Chemical Engineering Journal 2021, 404 , 126493. https://doi.org/10.1016/j.cej.2020.126493
    38. Huan Fei Wen, Hongqian Sang, Yasuhiro Sugawara, Yan Jun Li. Imaging oxygen molecular adsorption and dissociation on the Ti site of rutile TiO 2 (110) surface with real configuration at 78 K by atomic force microscopy. Physical Chemistry Chemical Physics 2020, 22 (35) , 19795-19801. https://doi.org/10.1039/D0CP03549A
    39. Huan Fei Wen, Yasuhiro Sugawara, Yan Jun Li. Multi-Channel Exploration of O Adatom on TiO2(110) Surface by Scanning Probe Microscopy. Nanomaterials 2020, 10 (8) , 1506. https://doi.org/10.3390/nano10081506
    40. Yasuhiro Sugawara, Masato Miyazaki, Yan Jun Li. Surface potential measurement by heterodyne frequency modulation Kelvin probe force microscopy in MHz range. Journal of Physics Communications 2020, 4 (7) , 075015. https://doi.org/10.1088/2399-6528/aba477
    41. Igor Sokolović, Michele Reticcioli, Martin Čalkovský, Margareta Wagner, Michael Schmid, Cesare Franchini, Ulrike Diebold, Martin Setvín. Resolving the adsorption of molecular O 2 on the rutile TiO 2 (110) surface by noncontact atomic force microscopy. Proceedings of the National Academy of Sciences 2020, 117 (26) , 14827-14837. https://doi.org/10.1073/pnas.1922452117
    42. Yuuki Adachi, Huan Fei Wen, Quanzhen Zhang, Masato Miyazaki, Yasuhiro Sugawara, Yan Jun Li. Elucidating the charge state of an Au nanocluster on the oxidized/reduced rutile TiO 2 (110) surface using non-contact atomic force microscopy and Kelvin probe force microscopy. Nanoscale Advances 2020, 2 (6) , 2371-2375. https://doi.org/10.1039/C9NA00776H
    43. Huan Fei Wen, Quanzhen Zhang, Yuuki Adachi, Masato Miyazaki, Yasuhiro Sugawara, Yan Jun Li. Contrast inversion of O adatom on rutile TiO2(1 1 0)-(1 × 1) surface by atomic force microscopy imaging. Applied Surface Science 2020, 505 , 144623. https://doi.org/10.1016/j.apsusc.2019.144623
    44. Huan-Fei Wen, Sugawara Yasuhiro, Yan-Jun Li, , . Effects of subsurface charge on surface defect and adsorbate of rutile TiO<sub>2 </sub>(110). Acta Physica Sinica 2020, 69 (21) , 210701. https://doi.org/10.7498/aps.69.20200773
    45. Constantin A Walenta, Martin Tschurl, Ueli Heiz. Introducing catalysis in photocatalysis: What can be understood from surface science studies of alcohol photoreforming on TiO 2. Journal of Physics: Condensed Matter 2019, 31 (47) , 473002. https://doi.org/10.1088/1361-648X/ab351a
    46. Dongqi Li, Zhaohua Jiang, Qixing Xia, Zhongping Yao. Pre- or post-TiCl4 treated TiO2 nano-array photoanode for QDSSC: Ti3+ self-doping, flat-band level and electron diffusion length. Applied Surface Science 2019, 491 , 319-327. https://doi.org/10.1016/j.apsusc.2019.06.166
    47. Haoze Li, Bojing Sun, Fan Yang, Zhen Wang, Yachao Xu, Guohui Tian, Kai Pan, Baojiang Jiang, Wei Zhou. Homojunction and defect synergy-mediated electron–hole separation for solar-driven mesoporous rutile/anatase TiO 2 microsphere photocatalysts. RSC Advances 2019, 9 (14) , 7870-7877. https://doi.org/10.1039/C9RA00633H
    48. Masato Miyazaki, Huan Fei Wen, Quanzhen Zhang, Yuuki Adachi, Jan Brndiar, Ivan Štich, Yan Jun Li, Yasuhiro Sugawara. Imaging the surface potential at the steps on the rutile TiO 2 (110) surface by Kelvin probe force microscopy. Beilstein Journal of Nanotechnology 2019, 10 , 1228-1236. https://doi.org/10.3762/bjnano.10.122

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect