ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Permafrost-Associated Gas Hydrate: Is It Really Approximately 1 % of the Global System?

View Author Information
U.S. Geological Survey, Woods Hole, Massachusetts 02543, United States
*Tel.: +1 508-457-2339; E-mail: [email protected]
Cite this: J. Chem. Eng. Data 2015, 60, 2, 429–436
Publication Date (Web):October 29, 2014
https://doi.org/10.1021/je500770m
Copyright © This article not subject to U.S. Copyright. Published 2014 by the American Chemical Society

    Article Views

    995

    Altmetric

    -

    Citations

    81
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Permafrost-associated gas hydrates are often assumed to contain ∼1 % of the global gas-in-place in gas hydrates based on a study26 published over three decades ago. As knowledge of permafrost-associated gas hydrates has grown, it has become clear that many permafrost-associated gas hydrates are inextricably linked to an associated conventional petroleum system, and that their formation history (trapping of migrated gas in situ during Pleistocene cooling) is consistent with having been sourced at least partially in nearby thermogenic gas deposits. Using modern data sets that constrain the distribution of continuous permafrost onshore5 and subsea permafrost on circum-Arctic Ocean continental shelves offshore and that estimate undiscovered conventional gas within arctic assessment units,16 the analysis done here reveals where permafrost-associated gas hydrates are most likely to occur, concluding that Arctic Alaska and the West Siberian Basin are the best prospects. A conservative estimate is that 20 Gt C (2.7·1013 kg CH4) may be sequestered in permafrost-associated gas hydrates if methane were the only hydrate-former. This value is slightly more than 1 % of modern estimates (corresponding to 1600 Gt C to 1800 Gt C2,22) for global gas-in-place in methane hydrates and about double the absolute estimate (11.2 Gt C) made in 1981.26

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 81 publications.

    1. Evgeny Chuvilin, Valentina Ekimova, Dinara Davletshina, Boris Bukhanov, Ekaterina Krivokhat. Migration of Salt Ions in Frozen Hydrate-Saturated Sand: Effect of Silt and Clay Particles. Energy & Fuels 2023, 37 (7) , 5331-5340. https://doi.org/10.1021/acs.energyfuels.3c00274
    2. Boris Bukhanov, Evgeny Chuvilin, Aliya Mukhametdinova, Natalia Sokolova, Mikhail Afonin, Vladimir Istomin. Estimation of Residual Pore Water Content in Hydrate-Bearing Sediments at Temperatures below and above 0 °C by NMR. Energy & Fuels 2022, 36 (24) , 14789-14801. https://doi.org/10.1021/acs.energyfuels.2c03089
    3. Evgeny Chuvilin, Valentina Ekimova, Dinara Davletshina, Ekaterina Krivokhat, Vladimir Shilenkov, Boris Bukhanov. Pressure Influence on Salt Migration in Frozen Hydrate-Saturated Sediments: Experimental Modeling. Energy & Fuels 2022, 36 (18) , 10519-10528. https://doi.org/10.1021/acs.energyfuels.2c01282
    4. Chenyang Bai, Hongbin Wang, Qing Li, Yu Zhang, Xiaolei Xu. Controls on Deep and Shallow Gas Hydrate Reservoirs in the Dongsha Area, South China Sea: Evidence from Sediment Properties. Journal of Marine Science and Engineering 2024, 12 (5) , 696. https://doi.org/10.3390/jmse12050696
    5. Xinxin Cao, Jiaxin Sun, Yuhang Gu, Fanfan Qin, Yanlong Li, Yanjiang Yu, Fulong Ning. Revised inflow performance relationship for productivity prediction from marine sandy hydrate reservoirs in Nankai Trough. Geoenergy Science and Engineering 2024, 68 , 212845. https://doi.org/10.1016/j.geoen.2024.212845
    6. Minghang Mao, Kefeng Yan, Xiaosen Li, Zhaoyang Chen, Yi Wang, Jingchun Feng, Chang Chen. Review of Heat Transfer Characteristics of Natural Gas Hydrate. Energies 2024, 17 (3) , 717. https://doi.org/10.3390/en17030717
    7. Kehua You. Biodegradation of Ancient Organic Carbon Fuels Seabed Methane Emission at the Arctic Continental Shelves. Global Biogeochemical Cycles 2024, 38 (2) https://doi.org/10.1029/2023GB007999
    8. Emile Jules Beckwée, Maarten Houlleberghs, Radu-George Ciocarlan, C. Vinod Chandran, Sambhu Radhakrishnan, Lucas Hanssens, Pegie Cool, Johan Martens, Eric Breynaert, Gino V. Baron, Joeri F.M. Denayer. Structure I methane hydrate confined in C8-grafted SBA-15: A highly efficient storage system enabling ultrafast methane loading and unloading. Applied Energy 2024, 353 , 122120. https://doi.org/10.1016/j.apenergy.2023.122120
    9. F. Miesner, P. P. Overduin, G. Grosse, J. Strauss, M. Langer, S. Westermann, T. Schneider von Deimling, V. Brovkin, S. Arndt. Subsea permafrost organic carbon stocks are large and of dominantly low reactivity. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-36471-z
    10. T. V. Matveeva, A. O. Chazov, Yu. Yu. Smirnov. The Geological Characteristics of a Subpermafrost Gas Hydrate Reservoir on the Taimyr Shelf of the Kara Sea (Eastern Arctic). Geotectonics 2023, 57 (S1) , S153-S173. https://doi.org/10.1134/S0016852123070099
    11. Magdalena Diak, Michael Ernst Böttcher, Cátia Milene Ehlert von Ahn, Wei-Li Hong, Monika Kędra, Lech Kotwicki, Katarzyna Koziorowska-Makuch, Karol Kuliński, Aivo Lepland, Przemysław Makuch, Arunima Sen, Aleksandra Winogradow, Marc Jürgen Silberberger, Beata Szymczycha. Permafrost and groundwater interaction: current state and future perspective. Frontiers in Earth Science 2023, 11 https://doi.org/10.3389/feart.2023.1254309
    12. Livio Ruffine, Anh Minh Tang, Nick O'Neill, Laurent Toffin, Jean-Daniel Paris, Jinhai Yang, Valentin Georgiev, Peer Fietzek, Michela Giustiniani, Umberta Tinivella. Environmental challenges related to methane hydrate decomposition from climate change scenario and anthropic activities: State of the art, potential consequences and monitoring solutions. Earth-Science Reviews 2023, 246 , 104578. https://doi.org/10.1016/j.earscirev.2023.104578
    13. Evgeny Chuvilin, Dinara Davletshina, Boris Bukhanov, Sergey Grebenkin, Elena Pankratova. Thermal Conductivity Variations in Frozen Hydrate-Bearing Sand upon Heating and Dissociation of Pore Gas Hydrate. Geosciences 2023, 13 (10) , 316. https://doi.org/10.3390/geosciences13100316
    14. Rui Wang, Jiecheng Zhang, Tianju Wang, Hailong Lu. Numerical Simulation of Improved Gas Production from Oceanic Gas Hydrate Accumulation by Permeability Enhancement Associated with Geomechanical Response. Journal of Marine Science and Engineering 2023, 11 (7) , 1468. https://doi.org/10.3390/jmse11071468
    15. Emile Jules Beckwée, Geert Watson, Maarten Houlleberghs, Daniel Arenas Esteban, Sara Bals, Pascal Van Der Voort, Eric Breynaert, Johan Martens, Gino V. Baron, Joeri F.M. Denayer. Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes. Heliyon 2023, 9 (7) , e17662. https://doi.org/10.1016/j.heliyon.2023.e17662
    16. Bao-jiang Sun, Xue-feng Li, Zhi-yuan Wang, Bao-jin Ma, Hai-kang He. Laboratory investigation of the effect of the pore pressure on argillaceous siltstone permeability. Engineering Geology 2023, 317 , 107067. https://doi.org/10.1016/j.enggeo.2023.107067
    17. Zachary F. M. Burton, Laura N. Dafov. Salt Diapir‐Driven Recycling of Gas Hydrate. Geochemistry, Geophysics, Geosystems 2023, 24 (5) https://doi.org/10.1029/2022GC010704
    18. H. Grob, M. Riedel, M. J. Duchesne, S. Krastel, J. Bustamante, G. Fabien‐Ouellet, Y. K. Jin, J. K. Hong. Revealing the Extent of Submarine Permafrost and Gas Hydrates in the Canadian Arctic Beaufort Sea Using Seismic Reflection Indicators. Geochemistry, Geophysics, Geosystems 2023, 24 (5) https://doi.org/10.1029/2023GC010884
    19. Zhichao Xu, Yunshan Chen, Wei Shan, Yuexing Wu. Analysis of spatiotemporal distribution of methane column concentration and emission source in permafrost area of Northeast China based on AIRS data. International Journal of Energy 2023, 2 (1) , 24-32. https://doi.org/10.54097/ije.v2i1.5379
    20. Clément Narbaud, Jean-Daniel Paris, Sophie Wittig, Antoine Berchet, Marielle Saunois, Philippe Nédélec, Boris D. Belan, Mikhail Y. Arshinov, Sergei B. Belan, Denis Davydov, Alexander Fofonov, Artem Kozlov. Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements. Atmospheric Chemistry and Physics 2023, 23 (3) , 2293-2314. https://doi.org/10.5194/acp-23-2293-2023
    21. Martha Jimenez-Castaneda, Rattan Lal. Permafrost. 2023, 163-169. https://doi.org/10.1007/978-3-031-25910-4_26
    22. Vladimir Cheverda, Denis Bratchikov, Kirill Gadylshin, Elena Golubeva, Valentina Malakhova, Galina Reshetova. Subsea Methane Hydrates: Origin and Monitoring the Impacts of Global Warming. Applied Sciences 2022, 12 (23) , 11929. https://doi.org/10.3390/app122311929
    23. Yeonjin Choi, Seung-Goo Kang, Young Keun Jin, Jong Kuk Hong, Sung-Ryul Shin, Sookwan Kim, Youngil Choi. Estimation of the gas hydrate saturation from multichannel seismic data on the western continental margin of the Chukchi Rise in the Arctic Ocean. Frontiers in Earth Science 2022, 10 https://doi.org/10.3389/feart.2022.1025110
    24. Zhen Li, Erik Spangenberg, Judith M. Schicks, Thomas Kempka. Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic. Energies 2022, 15 (14) , 4986. https://doi.org/10.3390/en15144986
    25. Evgeny Chuvilin, Valentina Ekimova, Dinara Davletshina, Boris Bukhanov, Ekaterina Krivokhat, Vladimir Shilenkov. Temperature Variation during Salt Migration in Frozen Hydrate-Bearing Sediments: Experimental Modeling. Geosciences 2022, 12 (7) , 261. https://doi.org/10.3390/geosciences12070261
    26. Vanessa Monteleone, Héctor Marín-Moreno, Gaye Bayrakci, Angus Best, Farhana Shaon, Mohammad Moinul Hossain, Ahmad Al Karim, Md Khurshed Alam. Seismic characterization and modelling of the gas hydrate system in the northern Bay of Bengal, offshore Bangladesh. Marine and Petroleum Geology 2022, 141 , 105690. https://doi.org/10.1016/j.marpetgeo.2022.105690
    27. V V Malakhova. Numerical modeling of methane hydrates dissociation in the submarine permafrost. IOP Conference Series: Earth and Environmental Science 2022, 1040 (1) , 012022. https://doi.org/10.1088/1755-1315/1040/1/012022
    28. M. Riedel, M. Scherwath, M. Römer, C. K. Paull, E. M. Lundsten, D. Caress, P. G. Brewer, J. W. Pohlman, L. L. Lapham, N. R. Chapman, M. J. Whiticar, G. D. Spence, R. J. Enkin, K. Douglas. Barkley Canyon Gas Hydrates: A Synthesis Based on Two Decades of Seafloor Observation and Remote Sensing. Frontiers in Earth Science 2022, 10 https://doi.org/10.3389/feart.2022.852853
    29. Janusz Lipkowski, Andrey Yu Manakov. Clathrate Hydrates. 2022, 210-221. https://doi.org/10.4018/978-1-7998-7356-3.ch009
    30. Anju K Joshi, Maheswar Ojha. Estimation of porosity and gas hydrate saturation by inverting 2D seismic data using very fast simulated Annealing in the Krishna Godavari offshore basin, India. Geophysical Prospecting 2022, 70 (2) , 388-399. https://doi.org/10.1111/1365-2478.13167
    31. Valentina Malakhova, Elena Golubeva. Model Study of the Effects of Climate Change on the Methane Emissions on the Arctic Shelves. Atmosphere 2022, 13 (2) , 274. https://doi.org/10.3390/atmos13020274
    32. Mingjun Yang, Guojun Zhao, Huiru Sun, Bingbing Chen, Xiaoqi Li, Yongchen Song. In-situ investigation on methane hydrate decomposition characteristics under variational seawater flow process. Fuel 2022, 310 , 122123. https://doi.org/10.1016/j.fuel.2021.122123
    33. Carolyn D. Ruppel, Patrick E. Hart. Gas Hydrates on Alaskan Marine Margins. 2022, 209-223. https://doi.org/10.1007/978-3-030-81186-0_17
    34. Baojiang Sun, Xuefeng Li, Baojin Ma, Fei Peng, Zhiyuan Wang, Haikang He. Prospects of Horizontal Well Drilling in Marine Gas Hydrate Reservoir. 2022, 32-46. https://doi.org/10.1007/978-981-19-0960-3_4
    35. Jasper Knight, Stephan Harrison. Climate Sensitivity and Cryospheric Systems. 2022, 616-628. https://doi.org/10.1016/B978-0-12-818234-5.00111-5
    36. Ann E. Cook, Alexey Portnov. Natural Gas Hydrate Systems. 2022, 17-32. https://doi.org/10.1016/B978-0-12-818562-9.00006-6
    37. T.P. Adamova, A.Yu. Manakov, D.S. Elistratov, A.A. Pil’nik, A.A. Chernov. Experimental study of methane hydrate formation in aqueous foam stabilized by surfactants. International Journal of Heat and Mass Transfer 2021, 180 , 121775. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121775
    38. Yi-Song Yu, Xianwei Zhang, Jian-Wu Liu, Yohan Lee, Xiao-Sen Li. Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges. Energy & Environmental Science 2021, 14 (11) , 5611-5668. https://doi.org/10.1039/D1EE02093E
    39. Huijun Jin, Qiang Ma. Impacts of Permafrost Degradation on Carbon Stocks and Emissions under a Warming Climate: A Review. Atmosphere 2021, 12 (11) , 1425. https://doi.org/10.3390/atmos12111425
    40. Michael Angelopoulos, Pier P. Overduin, Maren Jenrich, Ingmar Nitze, Frank Günther, Jens Strauss, Sebastian Westermann, Lutz Schirrmeister, Alexander Kholodov, Michael Krautblatter, Mikhail N. Grigoriev, Guido Grosse. Onshore Thermokarst Primes Subsea Permafrost Degradation. Geophysical Research Letters 2021, 48 (20) https://doi.org/10.1029/2021GL093881
    41. Nikolaus Froitzheim, Jaroslaw Majka, Dmitry Zastrozhnov. Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave. Proceedings of the National Academy of Sciences 2021, 118 (32) https://doi.org/10.1073/pnas.2107632118
    42. Hemin Yuan, Yun Wang, Xiangchun Wang. Seismic Methods for Exploration and Exploitation of Gas Hydrate. Journal of Earth Science 2021, 32 (4) , 839-849. https://doi.org/10.1007/s12583-021-1502-3
    43. A. Yu. Manakov, O. M. Khlystov, A. K. Sagidullin, T. P. Adamova, A. Khabuev, T. V. Rodionova, A. S. Yunoshev. STRUCTURE, MORPHOLOGY, AND COMPOSITION OF NATURAL GAS HYDRATES SAMPLED IN THE KEDR-1 MUD VOLCANO (LAKE BAIKAL). Journal of Structural Chemistry 2021, 62 (6) , 889-896. https://doi.org/10.1134/S0022476621060081
    44. Andrey Yu. Manakov, Andrey S. Stoporev. Physical chemistry and technological applications of gas hydrates: topical aspects. Russian Chemical Reviews 2021, 90 (5) , 566-600. https://doi.org/10.1070/RCR4986
    45. Mehrdad Vasheghani Farahani, Aliakbar Hassanpouryouzband, Jinhai Yang, Bahman Tohidi. Insights into the climate-driven evolution of gas hydrate-bearing permafrost sediments: implications for prediction of environmental impacts and security of energy in cold regions. RSC Advances 2021, 11 (24) , 14334-14346. https://doi.org/10.1039/D1RA01518D
    46. William K. Eymold, Jennifer M. Frederick, Michael Nole, Benjamin J. Phrampus, Warren T. Wood. Prediction of Gas Hydrate Formation at Blake Ridge Using Machine Learning and Probabilistic Reservoir Simulation. Geochemistry, Geophysics, Geosystems 2021, 22 (4) https://doi.org/10.1029/2020GC009574
    47. Yulia Zaripova, Vladimir Yarkovoi, Mikhail Varfolomeev, Rail Kadyrov, Andrey Stoporev. Influence of Water Saturation, Grain Size of Quartz Sand and Hydrate-Former on the Gas Hydrate Formation. Energies 2021, 14 (5) , 1272. https://doi.org/10.3390/en14051272
    48. Mirian E. Casco, Sven Grätz, Dirk Wallacher, Nico Grimm, Daniel M. Többens, Malina Bilo, Natascha Speil, Michael Fröba, Lars Borchardt. Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas. Chemical Engineering Journal 2021, 405 , 126955. https://doi.org/10.1016/j.cej.2020.126955
    49. Bhajan Lal. Methane Carbon Sink Distribution and Stability in Permafrost and Deep Marine Soils. 2021, 277-305. https://doi.org/10.1007/978-981-33-6765-4_8
    50. Wei Shan, Zhichao Xu, Ying Guo, Chengcheng Zhang, Zhaoguang Hu, Yuzhuo Wang. Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-78170-z
    51. V V Malakhova. The response of the Arctic Ocean gas hydrate associated with subsea permafrost to natural and anthropogenic climate changes. IOP Conference Series: Earth and Environmental Science 2020, 606 (1) , 012035. https://doi.org/10.1088/1755-1315/606/1/012035
    52. C. D. Ruppel, W. F. Waite. Timescales and Processes of Methane Hydrate Formation and Breakdown, With Application to Geologic Systems. Journal of Geophysical Research: Solid Earth 2020, 125 (8) https://doi.org/10.1029/2018JB016459
    53. Michael Angelopoulos, Pier P. Overduin, Frederieke Miesner, Mikhail N. Grigoriev, Alexander A. Vasiliev. Recent advances in the study of Arctic submarine permafrost. Permafrost and Periglacial Processes 2020, 31 (3) , 442-453. https://doi.org/10.1002/ppp.2061
    54. Yan Xie, Tao Zheng, Jin-Rong Zhong, Yu-Jie Zhu, Yun-Fei Wang, Yu Zhang, Rui Li, Qing Yuan, Chang-Yu Sun, Guang-Jin Chen. Experimental research on self-preservation effect of methane hydrate in porous sediments. Applied Energy 2020, 268 , 115008. https://doi.org/10.1016/j.apenergy.2020.115008
    55. Zachary F. M. Burton, Karsten F. Kroeger, Allegra Hosford Scheirer, Yongkoo Seol, Blair Burgreen‐Chan, Stephan A. Graham. Tectonic Uplift Destabilizes Subsea Gas Hydrate: A Model Example From Hikurangi Margin, New Zealand. Geophysical Research Letters 2020, 47 (7) https://doi.org/10.1029/2020GL087150
    56. Bénédicte Ferré, Pär G. Jansson, Manuel Moser, Pavel Serov, Alexey Portnov, Carolyn A. Graves, Giuliana Panieri, Friederike Gründger, Christian Berndt, Moritz F. Lehmann, Helge Niemann. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nature Geoscience 2020, 13 (2) , 144-148. https://doi.org/10.1038/s41561-019-0515-3
    57. Oanh Thi Ngoc Bui, Sohiko Kameyama, Yusuke Kawaguchi, Shigeto Nishino, Urumu Tsunogai, Hisayuki Yoshikawa-Inoue. Influence of warm-core eddy on dissolved methane distributions in the southwestern Canada basin during late summer/early fall 2015. Polar Science 2019, 22 , 100481. https://doi.org/10.1016/j.polar.2019.100481
    58. R. Lu, L. A. Stern, W. L. Du Frane, J. C. Pinkston, J. J. Roberts, S. Constable. The Effect of Brine on the Electrical Properties of Methane Hydrate. Journal of Geophysical Research: Solid Earth 2019, 124 (11) , 10877-10892. https://doi.org/10.1029/2019JB018364
    59. W.F. Waite, C.D. Ruppel, T.S. Collett, P. Schultheiss, M. Holland, K.M. Shukla, P. Kumar. Multi-measurement approach for establishing the base of gas hydrate occurrence in the Krishna-Godavari Basin for sites cored during expedition NGHP-02 in the offshore of India. Marine and Petroleum Geology 2019, 108 , 296-320. https://doi.org/10.1016/j.marpetgeo.2018.07.026
    60. C. D. Ruppel, J. Y. Lee, I. Pecher. Introduction to Special Issue on Gas Hydrate in Porous Media: Linking Laboratory and Field‐Scale Phenomena. Journal of Geophysical Research: Solid Earth 2019, 124 (8) , 7525-7537. https://doi.org/10.1029/2019JB018186
    61. Tinivella, Giustiniani, Marín-Moreno. A Quick-Look Method for Initial Evaluation of Gas Hydrate Stability below Subaqueous Permafrost. Geosciences 2019, 9 (8) , 329. https://doi.org/10.3390/geosciences9080329
    62. P. P. Overduin, T. Schneider von Deimling, F. Miesner, M. N. Grigoriev, C. Ruppel, A. Vasiliev, H. Lantuit, B. Juhls, S. Westermann. Submarine Permafrost Map in the Arctic Modeled Using 1‐D Transient Heat Flux (SuPerMAP). Journal of Geophysical Research: Oceans 2019, 124 (6) , 3490-3507. https://doi.org/10.1029/2018JC014675
    63. Natalia Shakhova, Igor Semiletov, Evgeny Chuvilin. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geosciences 2019, 9 (6) , 251. https://doi.org/10.3390/geosciences9060251
    64. P. Betlem, K. Senger, A. Hodson. 3D thermobaric modelling of the gas hydrate stability zone onshore central Spitsbergen, Arctic Norway. Marine and Petroleum Geology 2019, 100 , 246-262. https://doi.org/10.1016/j.marpetgeo.2018.10.050
    65. Evgeny Chuvilin, Boris Bukhanov. Thermal Conductivity of Frozen Sediments Containing Self-Preserved Pore Gas Hydrates at Atmospheric Pressure: An Experimental Study. Geosciences 2019, 9 (2) , 65. https://doi.org/10.3390/geosciences9020065
    66. Thibaud Thonat, Marielle Saunois, Isabelle Pison, Antoine Berchet, Thomas Hocking, Brett F. Thornton, Patrick M. Crill, Philippe Bousquet. Assessment of the theoretical limit in instrumental detectability of northern high-latitude methane sources using δ13CCH4 atmospheric signals. Atmospheric Chemistry and Physics 2019, 19 (19) , 12141-12161. https://doi.org/10.5194/acp-19-12141-2019
    67. Alexey Portnov, Jürgen Mienert, Monica Winsborrow, Karin Andreassen, Sunil Vadakkepuliyambatta, Peter Semenov, Valery Gataullin. Shallow carbon storage in ancient buried thermokarst in the South Kara Sea. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-32826-z
    68. Evgeny Chuvilin, Boris Bukhanov, Dinara Davletshina, Sergey Grebenkin, Vladimir Istomin. Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences 2018, 8 (12) , 431. https://doi.org/10.3390/geosciences8120431
    69. Joshua F. Dean, Jack J. Middelburg, Thomas Röckmann, Rien Aerts, Luke G. Blauw, Matthias Egger, Mike S. M. Jetten, Anniek E. E. de Jong, Ove H. Meisel, Olivia Rasigraf, Caroline P. Slomp, Michiel H. in't Zandt, A. J. Dolman. Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics 2018, 56 (1) , 207-250. https://doi.org/10.1002/2017RG000559
    70. Thomas Mestdagh, Jeffrey Poort, Marc De Batist. The sensitivity of gas hydrate reservoirs to climate change: Perspectives from a new combined model for permafrost-related and marine settings. Earth-Science Reviews 2017, 169 , 104-131. https://doi.org/10.1016/j.earscirev.2017.04.013
    71. Carolyn D. Ruppel, John D. Kessler. The interaction of climate change and methane hydrates. Reviews of Geophysics 2017, 55 (1) , 126-168. https://doi.org/10.1002/2016RG000534
    72. Claude-Michel Nzotungicimpaye, Kirsten Zickfeld. The Contribution from Methane to the Permafrost Carbon Feedback. Current Climate Change Reports 2017, 3 (1) , 58-68. https://doi.org/10.1007/s40641-017-0054-1
    73. Lindsay Fenwick, David Capelle, Ellen Damm, Sarah Zimmermann, William J. Williams, Svein Vagle, Philippe D. Tortell. Methane and nitrous oxide distributions across the North American Arctic Ocean during summer, 2015. Journal of Geophysical Research: Oceans 2017, 122 (1) , 390-412. https://doi.org/10.1002/2016JC012493
    74. Célia J. Sapart, Natalia Shakhova, Igor Semiletov, Joachim Jansen, Sönke Szidat, Denis Kosmach, Oleg Dudarev, Carina van der Veen, Matthias Egger, Valentine Sergienko, Anatoly Salyuk, Vladimir Tumskoy, Jean-Louis Tison, Thomas Röckmann. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences 2017, 14 (9) , 2283-2292. https://doi.org/10.5194/bg-14-2283-2017
    75. Laura L. Brothers, Bruce M. Herman, Patrick E. Hart, Carolyn D. Ruppel. Subsea ice‐bearing permafrost on the U . S . B eaufort M argin: 1. Minimum seaward extent defined from multichannel seismic reflection data. Geochemistry, Geophysics, Geosystems 2016, 17 (11) , 4354-4365. https://doi.org/10.1002/2016GC006584
    76. Şükrü Merey. Drilling of gas hydrate reservoirs. Journal of Natural Gas Science and Engineering 2016, 35 , 1167-1179. https://doi.org/10.1016/j.jngse.2016.09.058
    77. Satoshi Takeya, Sanehiro Muromachi, Yoshitaka Yamamoto, Hiroki Umeda, Seiji Matsuo. Preservation of CO2 hydrate under different atmospheric conditions. Fluid Phase Equilibria 2016, 413 , 137-141. https://doi.org/10.1016/j.fluid.2015.10.036
    78. Jennifer M. Frederick, Bruce A. Buffett. Submarine groundwater discharge as a possible formation mechanism for permafrost‐associated gas hydrate on the circum‐Arctic continental shelf. Journal of Geophysical Research: Solid Earth 2016, 121 (3) , 1383-1404. https://doi.org/10.1002/2015JB012627
    79. Antoine Berchet, Philippe Bousquet, Isabelle Pison, Robin Locatelli, Frédéric Chevallier, Jean-Daniel Paris, Ed J. Dlugokencky, Tuomas Laurila, Juha Hatakka, Yrjo Viisanen, Doug E. J. Worthy, Euan Nisbet, Rebecca Fisher, James France, David Lowry, Viktor Ivakhov, Ove Hermansen. Atmospheric constraints on the methane emissions from the East Siberian Shelf. Atmospheric Chemistry and Physics 2016, 16 (6) , 4147-4157. https://doi.org/10.5194/acp-16-4147-2016
    80. Brett F. Thornton, Patrick Crill. Microbial lid on subsea methane. Nature Climate Change 2015, 5 (8) , 723-724. https://doi.org/10.1038/nclimate2740
    81. Pier Paul Overduin, Susanne Liebner, Christian Knoblauch, Frank Günther, Sebastian Wetterich, Lutz Schirrmeister, Hans-Wolfgang Hubberten, Mikhail N. Grigoriev. Methane oxidation following submarine permafrost degradation: Measurements from a central Laptev Sea shelf borehole. Journal of Geophysical Research: Biogeosciences 2015, 120 (5) , 965-978. https://doi.org/10.1002/2014JG002862

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect