ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Structure and Activity of (2,8)-Dicarba-(3,12)-cystino α-ImI, an α-Conotoxin Containing a Nonreducible Cystine Analogue

View Author Information
The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Victoria, Australia, School of Chemistry, Monash University, Clayton 3800, Victoria, Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville 3010, Australia, Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
†Assigned chemical shifts, experimental restraints and structures have been deposited with the BioMagResBank database with accession number 20033.
* To whom correspondence should be addressed. Phone: +61 3 9345 2306. Fax: +61 3 9345 2686. E-mail: [email protected]
‡The Walter & Eliza Hall Institute of Medical Research.
§Monash University.
∥University of Melbourne.
⊥University of Sydney.
Cite this: J. Med. Chem. 2009, 52, 3, 755–762
Publication Date (Web):January 6, 2009
https://doi.org/10.1021/jm8011504
Copyright © 2009 American Chemical Society

    Article Views

    1244

    Altmetric

    -

    Citations

    75
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The α-conotoxins are potent and selective antagonists of nicotinic acetylcholine receptors (nAChR). Exploitation of these and other peptides in research and clinical settings has been hampered by the lability of the disulfide bridges that are essential for toxin structure and activity. One solution to this problem is replacement of cystine bridges with nonreducible dicarba linkages. We explore this approach by determining the solution structure and functional characteristics of a dicarba analogue of the α-conotoxin α-ImI, (2,8)-dicarba-(3,12)-cystino α-ImI. The structure of the dicarba analogue was similar to that of native α-ImI, with differences attributable to the different covalent geometry of the disulfide and dicarba bridges. Dicarba-α-ImI maintained inhibitory activity of nAChR comparable to that of native α-ImI in two in vitro assays. These findings confirm the potential of the dicarba linkage to improve stability while maintaining α-conotoxin function.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Two tables containing assigned chemical shifts and amide temperature coefficients for dicarba-ImI, and seven figures showing the dose response of α-ImI and dicarba-ImI on nicotine-evoked adrenaline release from bovine adrenal chromaffin cells, 1H NMR spectra of dicarba α-ImI isomer I and II, a NOESY spectrum showing exchange-derived cross peaks involving alternate conformational states of isomer II, 1H 1D and DQF-COSY spectra of isomer II showing strong 3JHγ−Hγ coupling across the dicarba bridge, representative NOESY and TOCSY spectra of isomer I and the ensemble of 20 structures determined for dicarba α-ImI. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 75 publications.

    1. Nan Zheng, Sean B. Christensen, Cheryl Dowell, Landa Purushottam, Jack J. Skalicky, J. Michael McIntosh, Danny Hung-Chieh Chou. Discovery of Methylene Thioacetal-Incorporated α-RgIA Analogues as Potent and Stable Antagonists of the Human α9α10 Nicotinic Acetylcholine Receptor for the Treatment of Neuropathic Pain. Journal of Medicinal Chemistry 2021, 64 (13) , 9513-9524. https://doi.org/10.1021/acs.jmedchem.1c00802
    2. Alessia Belgi, James V. Burnley, Christopher A. MacRaild, Sandeep Chhabra, Khaled A. Elnahriry, Samuel D. Robinson, Simon G. Gooding, Han-Shen Tae, Peter Bartels, Mahsa Sadeghi, Fei-Yue Zhao, Haifeng Wei, David Spanswick, David J. Adams, Raymond S. Norton, Andrea J. Robinson. Alkyne-Bridged α-Conotoxin Vc1.1 Potently Reverses Mechanical Allodynia in Neuropathic Pain Models. Journal of Medicinal Chemistry 2021, 64 (6) , 3222-3233. https://doi.org/10.1021/acs.jmedchem.0c02151
    3. Nan Zheng, Sean B. Christensen, Alan Blakely, Cheryl Dowell, Landa Purushottam, J. Michael McIntosh, Danny Hung-Chieh Chou. Development of Conformationally Constrained α-RgIA Analogues as Stable Peptide Antagonists of Human α9α10 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry 2020, 63 (15) , 8380-8387. https://doi.org/10.1021/acs.jmedchem.0c00613
    4. Pan Xu, Quentin Kaas, Yong Wu, Xiaopeng Zhu, Xincan Li, Peta J. Harvey, Dongting Zhangsun, David J. Craik, Sulan Luo. Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA. Journal of Medicinal Chemistry 2020, 63 (4) , 1564-1575. https://doi.org/10.1021/acs.jmedchem.9b01409
    5. Zoë V. F. Wright, Stephen McCarthy, Rachael Dickman, Francis E. Reyes, Silvia Sanchez-Martinez, Adam Cryar, Ian Kilford, Adrian Hall, Andrew K. Takle, Maya Topf, Tamir Gonen, Konstantinos Thalassinos, and Alethea B. Tabor . The Role of Disulfide Bond Replacements in Analogues of the Tarantula Toxin ProTx-II and Their Effects on Inhibition of the Voltage-Gated Sodium Ion Channel Nav1.7. Journal of the American Chemical Society 2017, 139 (37) , 13063-13075. https://doi.org/10.1021/jacs.7b06506
    6. Nargis Tabassum, Han-Shen Tae, Xinying Jia, Quentin Kaas, Tao Jiang, David J. Adams, and Rilei Yu . Role of CysI–CysIII Disulfide Bond on the Structure and Activity of α-Conotoxins at Human Neuronal Nicotinic Acetylcholine Receptors. ACS Omega 2017, 2 (8) , 4621-4631. https://doi.org/10.1021/acsomega.7b00639
    7. Sandeep Chhabra, Alessia Belgi, Peter Bartels, Bianca J. van Lierop, Samuel D. Robinson, Shiva N. Kompella, Andrew Hung, Brid P. Callaghan, David J. Adams, Andrea J. Robinson, and Raymond S. Norton . Dicarba Analogues of α-Conotoxin RgIA. Structure, Stability, and Activity at Potential Pain Targets. Journal of Medicinal Chemistry 2014, 57 (23) , 9933-9944. https://doi.org/10.1021/jm501126u
    8. Kalyana B. Akondi, Markus Muttenthaler, Sébastien Dutertre, Quentin Kaas, David J. Craik, Richard J. Lewis, and Paul F. Alewood . Discovery, Synthesis, and Structure–Activity Relationships of Conotoxins. Chemical Reviews 2014, 114 (11) , 5815-5847. https://doi.org/10.1021/cr400401e
    9. Bianca J. van Lierop, Samuel D. Robinson, Shiva N. Kompella, Alessia Belgi, Jeffrey R. McArthur, Andrew Hung, Christopher A. MacRaild, David J. Adams, Raymond S. Norton, and Andrea J. Robinson . Dicarba α-Conotoxin Vc1.1 Analogues with Differential Selectivity for Nicotinic Acetylcholine and GABAB Receptors. ACS Chemical Biology 2013, 8 (8) , 1815-1821. https://doi.org/10.1021/cb4002393
    10. Keith K. Khoo, Kallol Gupta, Brad R. Green, Min-Min Zhang, Maren Watkins, Baldomero M. Olivera, Padmanabhan Balaram, Doju Yoshikami, Grzegorz Bulaj, and Raymond S. Norton . Distinct Disulfide Isomers of μ-Conotoxins KIIIA and KIIIB Block Voltage-Gated Sodium Channels. Biochemistry 2012, 51 (49) , 9826-9835. https://doi.org/10.1021/bi301256s
    11. Zoltan Dekan, Irina Vetter, Norelle L. Daly, David J. Craik, Richard J. Lewis, and Paul F. Alewood . α-Conotoxin ImI Incorporating Stable Cystathionine Bridges Maintains Full Potency and Identical Three-Dimensional Structure. Journal of the American Chemical Society 2011, 133 (40) , 15866-15869. https://doi.org/10.1021/ja206408q
    12. Markus Muttenthaler, Asa Andersson, Aline D. de Araujo, Zoltan Dekan, Richard J. Lewis, and Paul F. Alewood . Modulating Oxytocin Activity and Plasma Stability by Disulfide Bond Engineering. Journal of Medicinal Chemistry 2010, 53 (24) , 8585-8596. https://doi.org/10.1021/jm100989w
    13. Francesca Nuti, Maud Larregola, Agnieszka Staśkiewicz, Bernhard Retzl, Nataša Tomašević, Lorenzo Macchia, Maria E. Street, Michał Jewgiński, Olivier Lequin, Rafal Latajka, Paolo Rovero, Christian W. Gruber, Michael Chorev, Anna Maria Papini. Design, synthesis, conformational analysis, and biological activity of Cα 1 -to-Cα 6 1,4- and 4,1-disubstituted 1 H -[1,2,3]triazol-1-yl-bridged oxytocin analogues. Journal of Enzyme Inhibition and Medicinal Chemistry 2023, 38 (1) https://doi.org/10.1080/14756366.2023.2254019
    14. Xiao-Xiong Wei, Ji-Bin Cui, Rui Zhao, Jie Luo, Yi-Ming Li, Donald Bierer, Jing Shi. Synthesis of disulfide surrogate peptides incorporating an ethylene glycol bridge. New Journal of Chemistry 2023, 47 (9) , 4213-4217. https://doi.org/10.1039/D2NJ05290C
    15. Shengnan Yin, Shuang Mei, Zhiqin Li, Zhen Xu, Yuting Wu, Xiujuan Chen, Dongmei Liu, Miao-Miao Niu, Jindong Li. Non-covalent cyclic peptides simultaneously targeting Mpro and NRP1 are highly effective against Omicron BA.2.75. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.1037993
    16. Zhen Xu, Yunting Zou, Xi Gao, Miao-Miao Niu, Jindong Li, Lu Xue, Su Jiang. Dual-targeting cyclic peptides of receptor-binding domain (RBD) and main protease (Mpro) as potential drug leads for the treatment of SARS-CoV-2 infection. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.1041331
    17. Ji-Bin Cui, Xiao-Xiong Wei, Rui Zhao, Huixia Zhu, Jing Shi, Donald Bierer, Yi-Ming Li. Chemical synthesis of disulfide surrogate peptides by using beta-carbon dimethyl modified diaminodiacids. Organic & Biomolecular Chemistry 2021, 19 (41) , 9021-9025. https://doi.org/10.1039/D1OB01715B
    18. Xiao Li, Han-Shen Tae, Yanyan Chu, Tao Jiang, David J. Adams, Rilei Yu. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacology & Therapeutics 2021, 222 , 107792. https://doi.org/10.1016/j.pharmthera.2020.107792
    19. Baojian Zhang, Maomao Ren, Yang Xiong, Haonan Li, Yong Wu, Ying Fu, Dongting Zhangsun, Shuai Dong, Sulan Luo. Cysteine [2,4] Disulfide Bond as a New Modifiable Site of α-Conotoxin TxIB. Marine Drugs 2021, 19 (2) , 119. https://doi.org/10.3390/md19020119
    20. Shane Dennis Hellyer. Marine-derived nicotinic receptor antagonist toxins: Pinnatoxins and alpha conotoxins. 2021, 105-191. https://doi.org/10.1016/bs.ant.2021.03.004
    21. Ashlin Turner, Quentin Kaas, David J. Craik. Hormone-like conopeptides – new tools for pharmaceutical design. RSC Medicinal Chemistry 2020, 11 (11) , 1235-1251. https://doi.org/10.1039/D0MD00173B
    22. Yun‐Kun Qi, Qian Qu, Donald Bierer, Lei Liu. A Diaminodiacid (DADA) Strategy for the Development of Disulfide Surrogate Peptides. Chemistry – An Asian Journal 2020, 15 (18) , 2793-2802. https://doi.org/10.1002/asia.202000609
    23. Rui Zhao, Pan Shi, Junyou Chen, Shuaishuai Sun, Jingnan Chen, Jibin Cui, Fangming Wu, Gemin Fang, Changlin Tian, Jing Shi, Donald Bierer, Lei Liu, Yi-Ming Li. Chemical synthesis and biological activity of peptides incorporating an ether bridge as a surrogate for a disulfide bond. Chemical Science 2020, 11 (30) , 7927-7932. https://doi.org/10.1039/D0SC02374D
    24. Adam C. Kennedy, Alessia Belgi, Benjamin W. Husselbee, David Spanswick, Raymond S. Norton, Andrea J. Robinson. α-Conotoxin Peptidomimetics: Probing the Minimal Binding Motif for Effective Analgesia. Toxins 2020, 12 (8) , 505. https://doi.org/10.3390/toxins12080505
    25. Christoph Wiedemann, Amit Kumar, Andras Lang, Oliver Ohlenschläger. Cysteines and Disulfide Bonds as Structure-Forming Units: Insights From Different Domains of Life and the Potential for Characterization by NMR. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00280
    26. Qian Qu, Shuai Gao, Fangming Wu, Meng‐Ge Zhang, Ying Li, Long‐Hua Zhang, Donald Bierer, Chang‐Lin Tian, Ji‐Shen Zheng, Lei Liu. Synthesis of Disulfide Surrogate Peptides Incorporating Large‐Span Surrogate Bridges Through a Native‐Chemical‐Ligation‐Assisted Diaminodiacid Strategy. Angewandte Chemie 2020, 132 (15) , 6093-6101. https://doi.org/10.1002/ange.201915358
    27. Qian Qu, Shuai Gao, Fangming Wu, Meng‐Ge Zhang, Ying Li, Long‐Hua Zhang, Donald Bierer, Chang‐Lin Tian, Ji‐Shen Zheng, Lei Liu. Synthesis of Disulfide Surrogate Peptides Incorporating Large‐Span Surrogate Bridges Through a Native‐Chemical‐Ligation‐Assisted Diaminodiacid Strategy. Angewandte Chemie International Edition 2020, 59 (15) , 6037-6045. https://doi.org/10.1002/anie.201915358
    28. Patrick Brendan Timmons, Donal O’Flynn, J. Michael Conlon, Chandralal M. Hewage. Insights into conformation and membrane interactions of the acyclic and dicarba-bridged brevinin-1BYa antimicrobial peptides. European Biophysics Journal 2019, 48 (8) , 701-710. https://doi.org/10.1007/s00249-019-01395-y
    29. Jan‐Patrick Fischer, Ria Schönauer, Sylvia Els‐Heindl, Donald Bierer, Johannes Koebberling, Bernd Riedl, Annette G. Beck‐Sickinger. Adrenomedullin disulfide bond mimetics uncover structural requirements for AM 1 receptor activation. Journal of Peptide Science 2019, 25 (3) https://doi.org/10.1002/psc.3147
    30. Nikita Abraham, Richard Lewis. Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Marine Drugs 2018, 16 (6) , 208. https://doi.org/10.3390/md16060208
    31. Varsha J. Thombare, Craig A. Hutton. Bridged bicyclic peptides: Structure and function. Peptide Science 2018, 110 (3) https://doi.org/10.1002/pep2.24057
    32. Alessandro Pratesi, Samuele Stazzoni, Marco Lumini, Giuseppina Sabatino, Alfonso Carotenuto, Diego Brancaccio, Ettore Novellino, Marco Chinol, Paolo Rovero, Mauro Ginanneschi, Anna Maria Papini. Synthesis of dicarba-cyclooctapeptide Somatostatin analogs by conventional and MW-assisted RCM: A study about the impact of the configuration at C α of selected amino acids. Chemical Engineering and Processing: Process Intensification 2017, 122 , 365-372. https://doi.org/10.1016/j.cep.2017.02.005
    33. Sébastien Dutertre, Annette Nicke, Victor I. Tsetlin. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017, 127 , 196-223. https://doi.org/10.1016/j.neuropharm.2017.06.011
    34. Alessandro Gori, Paola Gagni, Silvia Rinaldi. Disulfide Bond Mimetics: Strategies and Challenges. Chemistry – A European Journal 2017, 23 (60) , 14987-14995. https://doi.org/10.1002/chem.201703199
    35. Raymond S. Norton. Enhancing the therapeutic potential of peptide toxins. Expert Opinion on Drug Discovery 2017, 12 (6) , 611-623. https://doi.org/10.1080/17460441.2017.1317243
    36. Yang Xu, Tao Wang, Chao-Jian Guan, Yi-Ming Li, Lei Liu, Jing Shi, Donald Bierer. Dmab/ivDde protected diaminodiacids for solid-phase synthesis of peptide disulfide-bond mimics. Tetrahedron Letters 2017, 58 (17) , 1677-1680. https://doi.org/10.1016/j.tetlet.2017.03.024
    37. Kotaro Sakamoto, Yusuke Kamada, Tomoya Sameshima, Masahiro Yaguchi, Ayumu Niida, Shigekazu Sasaki, Masanori Miwa, Shoichi Ohkubo, Jun-ichi Sakamoto, Masahiro Kamaura, Nobuo Cho, Akiyoshi Tani. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology. Biochemical and Biophysical Research Communications 2017, 484 (3) , 605-611. https://doi.org/10.1016/j.bbrc.2017.01.147
    38. James T. Daniel, Richard J. Clark. Molecular Engineering of Conus Peptides as Therapeutic Leads. 2017, 229-254. https://doi.org/10.1007/978-3-319-66095-0_10
    39. Ye Guo, Chao Liu, Hui Song, Feng-Liang Wang, Yan Zou, Qiu-Ye Wu, Hong-Gang Hu. Diaminodiacid-based synthesis of macrocyclic peptides using 1,2,3-triazole bridges as disulfide bond mimetics. RSC Advances 2017, 7 (4) , 2110-2114. https://doi.org/10.1039/C6RA26617G
    40. Ellen C. Gleeson, W. Roy Jackson, Andrea J. Robinson. Ring-closing metathesis in peptides. Tetrahedron Letters 2016, 57 (39) , 4325-4333. https://doi.org/10.1016/j.tetlet.2016.08.032
    41. Beow Keat Yap, Jitendra R. Harjani, Eleanor W. W. Leung, Sandra E. Nicholson, Martin J. Scanlon, David K. Chalmers, Philip E. Thompson, Jonathan B. Baell, Raymond S. Norton. Redox‐stable cyclic peptide inhibitors of the SPSB2–iNOS interaction. FEBS Letters 2016, 590 (6) , 696-704. https://doi.org/10.1002/1873-3468.12115
    42. Ellen C. Gleeson, Zhen J. Wang, Samuel D. Robinson, Sandeep Chhabra, Christopher A. MacRaild, W. Roy Jackson, Raymond S. Norton, Andrea J. Robinson. Stereoselective synthesis and structural elucidation of dicarba peptides. Chemical Communications 2016, 52 (24) , 4446-4449. https://doi.org/10.1039/C5CC10540D
    43. Ye Guo, De‐Meng Sun, Feng‐Liang Wang, Yao He, Lei Liu, Chang‐Lin Tian. Diaminodiacid Bridges to Improve Folding and Tune the Bioactivity of Disulfide‐Rich Peptides. Angewandte Chemie International Edition 2015, 54 (48) , 14276-14281. https://doi.org/10.1002/anie.201500699
    44. Ye Guo, De‐Meng Sun, Feng‐Liang Wang, Yao He, Lei Liu, Chang‐Lin Tian. Diaminodiacid Bridges to Improve Folding and Tune the Bioactivity of Disulfide‐Rich Peptides. Angewandte Chemie 2015, 127 (48) , 14484-14489. https://doi.org/10.1002/ange.201500699
    45. Muharrem Akcan, Richard J. Clark, Norelle L. Daly, Anne C. Conibear, Andrew de Faoite, Mari D. Heghinian, Talwar Sahil, David J. Adams, Frank Marí, David J. Craik. Transforming conotoxins into cyclotides: Backbone cyclization of P‐superfamily conotoxins. Peptide Science 2015, 104 (6) , 682-692. https://doi.org/10.1002/bip.22699
    46. Rilei Yu, Victoria A. L. Seymour, Géza Berecki, Xinying Jia, Muharrem Akcan, David J. Adams, Quentin Kaas, David J. Craik. Less is More: Design of a Highly Stable Disulfide-Deleted Mutant of Analgesic Cyclic α-Conotoxin Vc1.1. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep13264
    47. Changyou Zhan, Chong Li, Xiaoli Wei, Wuyuan Lu, Weiyue Lu. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Advanced Drug Delivery Reviews 2015, 90 , 101-118. https://doi.org/10.1016/j.addr.2015.04.025
    48. Karolina Pulka-Ziach, Valeria Pavet, Neila Chekkat, Karine Estieu-Gionnet, Roman Rohac, Marie-Charlotte Lechner, Cristian R. Smulski, Gabrielle Zeder-Lutz, Danièle Altschuh, Hinrich Gronemeyer, Sylvie Fournel, Benoit Odaert, Gilles Guichard. Thioether Analogues of Disulfide-Bridged Cyclic Peptides Targeting Death Receptor 5: Conformational Analysis, Dimerisation and Consequences for Receptor Activation. ChemBioChem 2015, 16 (2) , 293-301. https://doi.org/10.1002/cbic.201402485
    49. Alessandro Gori, Ching‐I A. Wang, Peta J. Harvey, K. Johan Rosengren, Rebecca F. Bhola, Maria L. Gelmi, Renato Longhi, Macdonald J. Christie, Richard J. Lewis, Paul F. Alewood, Andreas Brust. Stabilization of the Cysteine‐Rich Conotoxin MrIA by Using a 1,2,3‐Triazole as a Disulfide Bond Mimetic. Angewandte Chemie International Edition 2015, 54 (4) , 1361-1364. https://doi.org/10.1002/anie.201409678
    50. Alessandro Gori, Ching‐I A. Wang, Peta J. Harvey, K. Johan Rosengren, Rebecca F. Bhola, Maria L. Gelmi, Renato Longhi, Macdonald J. Christie, Richard J. Lewis, Paul F. Alewood, Andreas Brust. Stabilisierung eines cysteinreichen Kegelschneckentoxins, MrIA, in Form eines 1,2,3‐Triazol‐Disulfidbrückenmimetikums. Angewandte Chemie 2015, 127 (4) , 1378-1381. https://doi.org/10.1002/ange.201409678
    51. Mohammed Akhter Hossain, Linda M. Haugaard-Kedström, K. Johan Rosengren, Ross A. D. Bathgate, John D. Wade. Chemically synthesized dicarba H2 relaxin analogues retain strong RXFP1 receptor activity but show an unexpected loss of in vitro serum stability. Organic & Biomolecular Chemistry 2015, 13 (44) , 10895-10903. https://doi.org/10.1039/C5OB01539A
    52. Kazuhiro Aoki, Miki Maeda, Takashi Nakae, Yohei Okada, Keiichi Ohya, Kazuhiro Chiba. A disulfide bond replacement strategy enables the efficient design of artificial therapeutic peptides. Tetrahedron 2014, 70 (42) , 7774-7779. https://doi.org/10.1016/j.tet.2014.05.079
    53. Parashar Thapa, Michael J. Espiritu, Chino C. Cabalteja, Jon-Paul Bingham. Conotoxins and their regulatory considerations. Regulatory Toxicology and Pharmacology 2014, 70 (1) , 197-202. https://doi.org/10.1016/j.yrtph.2014.06.027
    54. Brad R Green, Grzegorz Bulaj, Raymond S Norton. Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity. Future Medicinal Chemistry 2014, 6 (15) , 1677-1698. https://doi.org/10.4155/fmc.14.107
    55. Jutty Rajan Prashanth, Andreas Brust, Ai-Hua Jin, Paul F Alewood, Sébastien Dutertre, Richard J Lewis. Cone snail venomics: from novel biology to novel therapeutics. Future Medicinal Chemistry 2014, 6 (15) , 1659-1675. https://doi.org/10.4155/fmc.14.99
    56. Michael J. Espiritu, Chino C. Cabalteja, Christopher K. Sugai, Jon-Paul Bingham. Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides. Amino Acids 2014, 46 (1) , 125-151. https://doi.org/10.1007/s00726-013-1606-x
    57. John Karas, Fazel Shabanpoor, Mohammed Akhter Hossain, James Gardiner, Frances Separovic, John D. Wade, Denis B. Scanlon. Total Chemical Synthesis of a Heterodimeric Interchain Bis-Lactam-Linked Peptide: Application to an Analogue of Human Insulin-Like Peptide 3. International Journal of Peptides 2013, 2013 , 1-8. https://doi.org/10.1155/2013/504260
    58. S.N. Kompella, B.J. van Lierop, S.D. Robinson, A. Belgi, B. Callaghan, A. Hung, C.A. MacRaild, R.S. Norton, A.J. Robinson, D.J. Adams. Dicarba modification of α-conotoxin RgIA conferring selectivity towards α9α10 nicotinic acetylcholine receptors. Biochemical Pharmacology 2013, 86 (8) , 1230. https://doi.org/10.1016/j.bcp.2013.08.043
    59. Basker Sundararaju, Tailor Sridhar, Mathieu Achard, Gangavaram V. M. Sharma, Christian Bruneau. Ring Closing and Macrocyclization of β‐Dipeptides by Olefin Metathesis. European Journal of Organic Chemistry 2013, 2013 (28) , 6433-6442. https://doi.org/10.1002/ejoc.201300608
    60. Hong‐Kui Cui, Ye Guo, Yao He, Feng‐Liang Wang, Hao‐Nan Chang, Yu‐Jia Wang, Fang‐Ming Wu, Chang‐Lin Tian, Lei Liu. Diaminodiacid‐Based Solid‐Phase Synthesis of Peptide Disulfide Bond Mimics. Angewandte Chemie International Edition 2013, 52 (36) , 9558-9562. https://doi.org/10.1002/anie.201302197
    61. Hong‐Kui Cui, Ye Guo, Yao He, Feng‐Liang Wang, Hao‐Nan Chang, Yu‐Jia Wang, Fang‐Ming Wu, Chang‐Lin Tian, Lei Liu. Diaminodiacid‐Based Solid‐Phase Synthesis of Peptide Disulfide Bond Mimics. Angewandte Chemie 2013, 125 (36) , 9737-9741. https://doi.org/10.1002/ange.201302197
    62. Ryan Brady, Jonathan Baell, Raymond Norton. Strategies for the Development of Conotoxins as New Therapeutic Leads. Marine Drugs 2013, 11 (7) , 2293-2313. https://doi.org/10.3390/md11072293
    63. Shingo Kitada, Shuji Fujita, Yohei Okada, Shokaku Kim, Kazuhiro Chiba. Total synthesis of α-conotoxin MII using a soluble-tag-assisted method. Tetrahedron 2013, 69 (12) , 2555-2559. https://doi.org/10.1016/j.tet.2013.01.068
    64. Jayati Banerjee, Reena Gyanda, Yi-Pin Chang, Christopher J. Armishaw. The Chemical Synthesis of α-Conotoxins and Structurally Modified Analogs with Enhanced Biological Stability. 2013, 13-34. https://doi.org/10.1007/978-1-62703-652-8_2
    65. Jon-Paul Bingham, Elizabeth A. Andrews, Shaun M. Kiyabu, Chino C. Cabalteja. Drugs from Slugs. Part II – Conopeptide bioengineering. Chemico-Biological Interactions 2012, 200 (2-3) , 92-113. https://doi.org/10.1016/j.cbi.2012.09.021
    66. Renata Kowalczyk, Paul W.R. Harris, Margaret A. Brimble, Karen E. Callon, Maureen Watson, Jillian Cornish. Synthesis and evaluation of disulfide bond mimetics of amylin-(1–8) as agents to treat osteoporosis. Bioorganic & Medicinal Chemistry 2012, 20 (8) , 2661-2668. https://doi.org/10.1016/j.bmc.2012.02.030
    67. Keith K. Khoo, Raymond S. Norton. Role of Disulfide Bonds in Peptide and Protein Conformation. 2011, 395-417. https://doi.org/10.1002/9783527631841.ch11
    68. Rob M. J. Liskamp, Dirk T. S. Rijkers, John A. W. Kruijtzer, Johan Kemmink. Peptides and Proteins as a Continuing Exciting Source of Inspiration for Peptidomimetics. ChemBioChem 2011, 12 (11) , 1626-1653. https://doi.org/10.1002/cbic.201000717
    69. Mohammed Akhter Hossain, Laure Guilhaudis, Agnes Sonnevend, Samir Attoub, Bianca J. van Lierop, Andrea J. Robinson, John D. Wade, J. Michael Conlon. Synthesis, conformational analysis and biological properties of a dicarba derivative of the antimicrobial peptide, brevinin-1BYa. European Biophysics Journal 2011, 40 (4) , 555-564. https://doi.org/10.1007/s00249-011-0679-2
    70. John W. Blunt, Brent R. Copp, Murray H. G. Munro, Peter T. Northcote, Michèle R. Prinsep. Marine natural products. Nat. Prod. Rep. 2011, 28 (2) , 196-268. https://doi.org/10.1039/C005001F
    71. Bianca J. van Lierop, Amanda N. Whelan, Sofianos Andrikopoulos, Roger J. Mulder, W. Roy Jackson, Andrea J. Robinson. Methods for Enhancing Ring Closing Metathesis Yield in Peptides: Synthesis of a Dicarba Human Growth Hormone Fragment. International Journal of Peptide Research and Therapeutics 2010, 16 (3) , 133-144. https://doi.org/10.1007/s10989-010-9215-y
    72. Christopher J. Armishaw. Synthetic α-Conotoxin Mutants as Probes for Studying Nicotinic Acetylcholine Receptors and in the Development of Novel Drug Leads. Toxins 2010, 2 (6) , 1471-1499. https://doi.org/10.3390/toxins2061471
    73. Raymond S. Norton. µ-Conotoxins as Leads in the Development of New Analgesics. Molecules 2010, 15 (4) , 2825-2844. https://doi.org/10.3390/molecules15042825
    74. Layla Azam, J Michael McIntosh. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors. Acta Pharmacologica Sinica 2009, 30 (6) , 771-783. https://doi.org/10.1038/aps.2009.47
    75. Andrea J. Robinson, Bianca J. van Lierop, Rebecca D. Garland, Euneace Teoh, Jomana Elaridi, Jayamini P. Illesinghe, W. Roy Jackson. Regioselective formation of interlocked dicarba bridges in naturally occurring cyclic peptide toxins using olefin metathesis. Chemical Communications 2009, 14 (28) , 4293. https://doi.org/10.1039/b909056h

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect