ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Highly Efficient Biocompatible Single Silicon Nanowire Electrodes with Functional Biological Pore Channels

View Author Information
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, Department of Chemical Engineering, University of California, Davis, Davis, California 95616, Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California 94720, and School of Natural Sciences, University of California, Merced, Merced, California 95344
* Corresponding author, [email protected]
†Equal contribution.
‡Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory.
§Department of Chemical Engineering, University of California, Davis.
∥Department of Mechanical Engineering, University of California, Berkeley.
⊥School of Natural Sciences, University of California, Merced.
Cite this: Nano Lett. 2009, 9, 3, 1121–1126
Publication Date (Web):February 9, 2009
https://doi.org/10.1021/nl8036504
Copyright © 2009 American Chemical Society

    Article Views

    2749

    Altmetric

    -

    Citations

    44
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Nanoscale electrodes based on one-dimensional inorganic conductors could possess significant advantages for electrochemical measurements over their macroscopic counterparts in a variety of electrochemical applications. We show that the efficiency of the electrodes constructed of individual highly doped silicon nanowires greatly exceeds the efficiency of flat Si electrodes. Modification of the surfaces of the nanowire electrodes with phospholipid bilayers produces an efficient biocompatible barrier to transport of the solution redox species to the nanoelectrode surface. Incorporating functional α-hemolysin protein pores in the lipid bilayer results in a partial recovery of the Faradic current due to the specific transport through the protein pore. These assemblies represent a robust and versatile platform for building a new generation of highly specific biosensors and nano/bioelectronic devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Descriptions of materials and methods and electrochemical characterization of the flat silicon electrodes. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 44 publications.

    1. Kailu Wei, Fei Gong, Jie Wu, Wei Tang, Fan Liao, Zhihui Han, Zifan Pei, Huali Lei, Li Wang, Mingwang Shao, Zhuang Liu, Liang Cheng. Orally Administered Silicon Hydrogen Nanomaterials as Target Therapy to Treat Intestinal Diseases. ACS Nano 2023, 17 (21) , 21539-21552. https://doi.org/10.1021/acsnano.3c06551
    2. Keith L. Willes, Sydney A. McFarland, Trent E. Johnson, Daniel R. Hart, Walter F. Paxton. Modulating and Modeling the Surface ζ Potential of Hybrid Lipid/Polymer Nanovesicles: Implications for Surface Modification and Drug Delivery. ACS Applied Nano Materials 2022, 5 (10) , 13820-13828. https://doi.org/10.1021/acsanm.2c01407
    3. Lili Yao, Wenjian Weng, Kui Cheng, Liming Wang, Lingqing Dong, Jun Lin, Kuang Sheng. Novel Platform for Surface-Mediated Gene Delivery Assisted with Visible-Light Illumination. ACS Applied Materials & Interfaces 2020, 12 (15) , 17290-17301. https://doi.org/10.1021/acsami.0c00511
    4. Benno M. Blaschke, Philip Böhm, Simon Drieschner, Bert Nickel, Jose A. Garrido. Lipid Monolayer Formation and Lipid Exchange Monitored by a Graphene Field-Effect Transistor. Langmuir 2018, 34 (14) , 4224-4233. https://doi.org/10.1021/acs.langmuir.8b00162
    5. Xiaozhao Wang, Cai Yao, Wenjian Weng, Kui Cheng, and Qi Wang . Visible-Light-Responsive Surfaces for Efficient, Noninvasive Cell Sheet Harvesting. ACS Applied Materials & Interfaces 2017, 9 (34) , 28250-28259. https://doi.org/10.1021/acsami.7b08868
    6. Weiwei Zhou and Peter J. Burke . Versatile Bottom-Up Synthesis of Tethered Bilayer Lipid Membranes on Nanoelectronic Biosensor Devices. ACS Applied Materials & Interfaces 2017, 9 (17) , 14618-14632. https://doi.org/10.1021/acsami.7b00268
    7. Koushik Bhowmik, Arnab Mukherjee, Manish Kr Mishra, and Goutam De . Stable Ni Nanoparticle–Reduced Graphene Oxide Composites for the Reduction of Highly Toxic Aqueous Cr(VI) at Room Temperature. Langmuir 2014, 30 (11) , 3209-3216. https://doi.org/10.1021/la500156e
    8. Dhammanand J. Shirale, Mangesh A. Bangar, Miso Park, Marylynn V. Yates, Wilfred Chen, Nosang V. Myung, and Ashok Mulchandani . Label-Free Chemiresistive Immunosensors for Viruses. Environmental Science & Technology 2010, 44 (23) , 9030-9035. https://doi.org/10.1021/es102129d
    9. Guoting Qin, Catherine Santos, Wen Zhang, Yan Li, Amit Kumar, Uriel J. Erasquin, Kai Liu, Pavel Muradov, Barbara Wells Trautner, and Chengzhi Cai. Biofunctionalization on Alkylated Silicon Substrate Surfaces via “Click” Chemistry. Journal of the American Chemical Society 2010, 132 (46) , 16432-16441. https://doi.org/10.1021/ja1025497
    10. Shih-Chieh J. Huang, Alexander B. Artyukhin, Nipun Misra, Julio A. Martinez, Pieter A. Stroeve, Costas P. Grigoropoulos, Jiann-Wen W. Ju and Aleksandr Noy . Carbon Nanotube Transistor Controlled by a Biological Ion Pump Gate. Nano Letters 2010, 10 (5) , 1812-1816. https://doi.org/10.1021/nl100499x
    11. Serge G. Lemay. Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano 2009, 3 (4) , 775-779. https://doi.org/10.1021/nn900336j
    12. , Vega Pradana Rachim, Sung-Min Park. Review of 3D-printing technologies for wearable and implantable bio-integrated sensors. Essays in Biochemistry 2021, 65 (3) , 491-502. https://doi.org/10.1042/EBC20200131
    13. Keith L. Willes, Jasmyn R. Genchev, Walter F. Paxton. Hybrid Lipid-Polymer Bilayers: pH-Mediated Interactions between Hybrid Vesicles and Glass. Polymers 2020, 12 (4) , 745. https://doi.org/10.3390/polym12040745
    14. Joshua A. Hammons, Helgi I. Ingólfsson, Jonathan R. I. Lee, Tim S. Carpenter, Jeremy Sanborn, Ramya Tunuguntla, Yun-Chiao Yao, Thomas M. Weiss, Aleksandr Noy, Tony Van Buuren. Decoupling copolymer, lipid and carbon nanotube interactions in hybrid, biomimetic vesicles. Nanoscale 2020, 12 (11) , 6545-6555. https://doi.org/10.1039/C9NR09973E
    15. Walter F. Paxton, Patrick T. McAninch, Sun Hae Ra Shin, Michael T. Brumbach. Adsorption and fusion of hybrid lipid/polymer vesicles onto 2D and 3D surfaces. Soft Matter 2018, 14 (40) , 8112-8118. https://doi.org/10.1039/C8SM00343B
    16. Raja Ram Pandey, Hussain S. Alshahrani, Sergiy Krylyuk, Elissa H. Williams, Albert V. Davydov, Charles C. Chusuei. Electrochemical Detection of Acetaminophen with Silicon Nanowires. Electroanalysis 2018, 30 (5) , 886-891. https://doi.org/10.1002/elan.201700806
    17. Ludmila Krejcova, Lukas Richtera, David Hynek, Jan Labuda, Vojtech Adam. Current trends in electrochemical sensing and biosensing of DNA methylation. Biosensors and Bioelectronics 2017, 97 , 384-399. https://doi.org/10.1016/j.bios.2017.06.004
    18. Walter F. Paxton, Patrick T. McAninch, Komandoor E. Achyuthan, Sun Hae Ra Shin, Haley L. Monteith. Monitoring and modulating ion traffic in hybrid lipid/polymer vesicles. Colloids and Surfaces B: Biointerfaces 2017, 159 , 268-276. https://doi.org/10.1016/j.colsurfb.2017.07.091
    19. Fereshteh Rabbani, Saeid Gowdini, Afshin Namiranian. Electrical Conductance of a Zig Zag Carbon Nanotube in the Presence of a Few Vacancies Using Recursive Green's Function Method. ECS Journal of Solid State Science and Technology 2017, 6 (8) , M92-M96. https://doi.org/10.1149/2.0121708jss
    20. Jungkil Kim, Shin-Young Park, Sung Kim, Dae Hun Lee, Ju Hwan Kim, Jong Min Kim, Hee Kang, Joong-Soo Han, Jun Woo Park, Hosun Lee, Suk-Ho Choi. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep31984
    21. Jasper van Weerd, Marcel Karperien, Pascal Jonkheijm. Supported Lipid Bilayers for the Generation of Dynamic Cell–Material Interfaces. Advanced Healthcare Materials 2015, 4 (18) , 2743-2779. https://doi.org/10.1002/adhm.201500398
    22. Weiwei Zhou, Yung Yu Wang, Tae-Sun Lim, Ted Pham, Dheeraj Jain, Peter J. Burke. Detection of single ion channel activity with carbon nanotubes. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep09208
    23. Elissa H. Williams, Jong-Yoon Ha, Melanie Juba, Barney Bishop, Sergiy Krylyuk, Abhishek Motayed, Mulpuri V. Rao, John A. Schreifels, Albert V. Davydov. Real-time electrical detection of the formation and destruction of lipid bilayers on silicon nanowire devices. Sensing and Bio-Sensing Research 2015, 4 , 103-108. https://doi.org/10.1016/j.sbsr.2015.04.005
    24. Jonathan R. I. Lee, Michael Bagge-Hansen, Ramya Tunuguntla, Kyunghoon Kim, Mangesh Bangar, Trevor M. Willey, Ich C. Tran, David A. Kilcoyne, Aleksandr Noy, Tony van Buuren. Ordering in bio-inorganic hybrid nanomaterials probed by in situ scanning transmission X-ray microscopy. Nanoscale 2015, 7 (21) , 9477-9486. https://doi.org/10.1039/C5NR00622H
    25. Karen Dawson, Alan O'Riordan. Electroanalysis at the Nanoscale. Annual Review of Analytical Chemistry 2014, 7 (1) , 163-181. https://doi.org/10.1146/annurev-anchem-071213-020133
    26. Tao Li, Huanli Dong, Xiaolong Fu, Meng He, Yongfang Li, Wenping Hu. Microelectrode Electrochemistry with Semiconducting Microelectrode Chips. Small 2014, 10 (5) , 878-883. https://doi.org/10.1002/smll.201300656
    27. Bor-Ran Li, Chiao-Chen Chen, U. Rajesh Kumar, Yit-Tsong Chen. Advances in nanowire transistors for biological analysis and cellular investigation. The Analyst 2014, 139 (7) , 1589. https://doi.org/10.1039/c3an01861j
    28. Young Kwang Lee, Hyojin Lee, Jwa-Min Nam. Lipid-nanostructure hybrids and their applications in nanobiotechnology. NPG Asia Materials 2013, 5 (5) , e48-e48. https://doi.org/10.1038/am.2013.13
    29. Jaebeom Lee, Fangfang Sun, Jaewook Lee. Fabrication of large area flexible and highly transparent film by a simple Ag nanowire alignment. Journal of Experimental Nanoscience 2013, 8 (2) , 130-137. https://doi.org/10.1080/17458080.2011.561449
    30. Hui Wang, Xuemei Han, Xuemei Ou, Chun-Sing Lee, Xiaohong Zhang, Shuit-Tong Lee. Silicon nanowire based single-molecule SERS sensor. Nanoscale 2013, 5 (17) , 8172. https://doi.org/10.1039/c3nr01879b
    31. Young Kwang Lee, Jwa‐Min Nam. Electrofluidic Lipid Membrane Biosensor. Small 2012, 8 (6) , 832-837. https://doi.org/10.1002/smll.201102093
    32. Jun Wang, Xin-Bo Zhang, Zhong-Li Wang, Li-Min Wang, Yu Zhang. Rhodium–nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy & Environmental Science 2012, 5 (5) , 6885. https://doi.org/10.1039/c2ee03344e
    33. Yu-Shiun Chen, Ning Hung, Li-Jen Chou, Jin-Chern Chiou, Meng-Yen Hong, G Steven Huang. Self-assembly of an antireflective moth-like structure using antibody-functionalized nanowires and nanopore arrays. Nanotechnology 2011, 22 (47) , 475601. https://doi.org/10.1088/0957-4484/22/47/475601
    34. Miles F. Beaux, Jamie Hass, Nathan Bridges, Nam Hoon Kwon, David N. McIlroy. Reynolds number manipulation of mean nanowire lengths and nanowire suspension quantification. Journal of Applied Physics 2011, 110 (2) https://doi.org/10.1063/1.3611423
    35. Aleksandr Noy. Bionanoelectronics. Advanced Materials 2011, 23 (7) , 807-820. https://doi.org/10.1002/adma.201003751
    36. Xianying Wang, Yinmin Wang, Daniel Åberg, Paul Erhart, Nipun Misra, Aleksandr Noy, Alex V. Hamza, Junhe Yang. Batteryless Chemical Detection with Semiconductor Nanowires. Advanced Materials 2011, 23 (1) , 117-121. https://doi.org/10.1002/adma.201003221
    37. Ramón Martínez-Máñez, Félix Sancenón, Mustafa Biyikal, Mandy Hecht, Knut Rurack. Mimicking tricks from nature with sensory organic–inorganic hybrid materials. Journal of Materials Chemistry 2011, 21 (34) , 12588. https://doi.org/10.1039/c1jm11210d
    38. Aleksandr Noy, Alexander B. Artyukhin, Shih-Chieh Huang, Julio A. Martinez, Nipun Misra. Functional Integration of Membrane Proteins with Nanotube and Nanowire Transistor Devices. 2011, 533-552. https://doi.org/10.1007/978-1-61779-151-2_33
    39. Sheereen Majd, Erik C Yusko, Yazan N Billeh, Michael X Macrae, Jerry Yang, Michael Mayer. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Current Opinion in Biotechnology 2010, 21 (4) , 439-476. https://doi.org/10.1016/j.copbio.2010.05.002
    40. Ramses V Martínez, Javier Martínez, Ricardo Garcia. Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 2010, 21 (24) , 245301. https://doi.org/10.1088/0957-4484/21/24/245301
    41. Ian Y. Wong, Benjamin D. Almquist, Nicholas A. Melosh. Dynamic actuation using nano-bio interfaces. Materials Today 2010, 13 (6) , 14-22. https://doi.org/10.1016/S1369-7021(10)70105-X
    42. P R Bandaru, P Pichanusakorn. An outline of the synthesis and properties of silicon nanowires. Semiconductor Science and Technology 2010, 25 (2) , 024003. https://doi.org/10.1088/0268-1242/25/2/024003
    43. Aleksandr Noy, Alexander B. Artyukhin, Nipun Misra. Bionanoelectronics with 1D materials. Materials Today 2009, 12 (9) , 22-31. https://doi.org/10.1016/S1369-7021(09)70248-2
    44. Nipun Misra, Julio A. Martinez, Shih-Chieh J. Huang, Yinmin Wang, Pieter Stroeve, Costas P. Grigoropoulos, Aleksandr Noy. Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences 2009, 106 (33) , 13780-13784. https://doi.org/10.1073/pnas.0904850106

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect