Skip to main content
Review

Effect of pomegranate fruit supplementation on performance and various markers in athletes and active subjects: A systematic review

Published Online:https://doi.org/10.1024/0300-9831/a000601

Abstract. The aim of the study was to review recent findings on the use of POM supplements in athletes of various disciplines and physically active participants. Eleven articles published between 2010 and 2018 were included, where the total number of investigated subjects was 176. Male participants constituted the majority of the group (n = 155), as compared to females (n = 21). 45% of research described was conducted on athletes, whereas the remaining studies were based on highly active participants. Randomised, crossover, double-blind study designs constituted the majority of the experimental designs used. POM supplementation varied in terms of form (pills/juice), dosage (50 ml–500 ml) and time of intervention (7 days–2 months) between studies. Among the reviewed articles, POM supplementation had an effect on the improvement of the following: whole body strength; feeling of vitality; acute and delayed muscle fatigue and soreness; increase in vessel diameter; blood flow and serum level of TAC; reduction in the rate of increase for HR, SBP, CK and LDH; support in the recovery of post-training CK, LDH, CRP and ASAT to their baseline levels; reduction of MMP2, MMP9, hsCRP and MDA; and increased activity of antioxidant enzymes (glutathione peroxidase and superoxide dismutase). In the majority of reviewed articles POM supplementation had a positive effect on a variety of parameters studied and the authors recommended it as a supplement for athletes and physically active bodies.

References

  • 1 Kelawala N.S., & Ananthanarayan L. (2004) Antioxidant activity of selected foodstuffs. Int J Food Sci Nutr. 55, 511–516. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Afaq F., Malik A., Syed D., Maes D., Matsui M.S., & Mukhtar H. (2005) Pomegranate Fruit Extract Modulates UV-B–mediated Phosphorylation of Mitogen-activated Protein Kinases and Activation of Nuclear Factor Kappa B in Normal Human Epidermal Keratinocytes. Photochem Photobiol. 81, 38–45. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Adams L.S., Zhang Y., Seeram N.P., Heber D., & Chen S. (2010) Pomegranate ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in breast cancer cells In vitro. Cancer Prev Res. 3, 108–113. First citation in articleCrossrefGoogle Scholar

  • 4 Afaq F., Saleem M., Krueger C.G., Reed J.D., & Mukhtar H. (2005) Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-κB pathways and inhibits skin tumorigenesis in CD-1 mice. Int J Cancer. 113, 423–433. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Aviram M., Dornfeld L., & Kaplan M., et al. (2002) Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans. Drugs Exp Clin Res. 28, 49–62. First citation in articleMedlineGoogle Scholar

  • 6 Huang T.H.W., Yang Q., & Harada M., et al. (2005) Pomegranate flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats: Modulation of cardiac endothelin-1 and nuclear factor-kappa B pathways. J Cardiovasc Pharmacol. 46, 856–862. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Sumner M.D., Elliott-Eller M., & Weidner G., et al. (2005) Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am J Cardiol. 96, 810–814. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Aviram M., Rosenblat M., & Gaitini D., et al. (2004) Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin Nutr. 23, 423–433. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Du C.T., Wang P.L., & Francis F.J. (1975) Anthocyanins of pomegranate, Punicagranatum. J Food Sci. 40, 417–418. First citation in articleCrossrefGoogle Scholar

  • 10 Gómez-Caravaca A.M., Verardo V., Toselli M., Segura-Carretero A., Fernández-Gutiérrez A., & Caboni M.F. (2013) Determination of the major phenolic compounds in pomegranate juices by HPLC-DAD-ESI-MS. J Agric Food Chem. 61, 5328–5337. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Amakura Y., Okada M., Tsuji S., & Tonogai Y. (2000) Determination of phenolic acids in fruit juices by isocratic column liquid chromatography. J Chromatogr A. 891, 183–188. First citation in articleCrossref MedlineGoogle Scholar

  • 12 de Pascual-Teresa S., Santos-Buelga C., & Rivas-Gonzalo J.G. (2000) Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J Agric Food Chem. 48, 5331–5337. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Waheed S., Siddique N., Rahman A., Zaidi J.H., & Ahmad S. (2004) INAA for dietary assessment of essential and other trace elements in fourteen fruits harvested and consumed in Pakistan. J Radioanal Nucl Chem. 260, 523–531. First citation in articleCrossrefGoogle Scholar

  • 14 Lansky E.P., & Newman R.A. (2007) Punicagranatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 109, 177–206. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Sumaiya K., Jahurul M.H.A., & Zzaman W. (2018) Evaluation of biochemical and bioactive properties of native and imported pomegranate (Punicagranatum l.) cultivars found in Bangladesh. Int Food Res J. 25, 737–746. First citation in articleGoogle Scholar

  • 16 Seeram N.P., Aviram M., & Zhang Y., et al. (2008) Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem. 56, 1415–1422. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Seeram N.P., Lee R., & Heber D. (2004) Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punicagranatum L.) juice. Clin Chim Acta. 348, 63–68. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Roelofs E.J., Smith-Ryan A.E., Trexler E.T., Hirsch K.R., & Mock M.G. (2017) Effects of pomegranate extract on blood flow and vessel diameter after high-intensity exercise in young, healthy adults. Eur J Sport Sci. 17, 317–325. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Labonté K., Couillard C., Motard-Bélanger A., Paradis M.-E., Couture P., & Lamarche B. (2013) Acute Effects of Polyphenols from Cranberries and Grape Seeds on Endothelial Function and Performance in Elite Athletes. Sports. 1, 55–68. First citation in articleCrossrefGoogle Scholar

  • 20 Crum E.M., Che Muhamed A.M., Barnes M., & Stannard S.R. (2017) The effect of acute pomegranate extract supplementation on oxygen uptake in highly trained cyclists during high-intensity exercise in a high-altitude environment. J Int Soc Sports Nutr. 14, 14. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Lundberg J.O.N., Weitzberg E., Lundberg J.M., & Alving K. (1994) Intragastric nitric oxide production in humans: Measurements in expelled air. Gut. 35, 1543–1546. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Peri L., Pietraforte D., Scorza G., Napolitano A., Fogliano V., & Minetti M. (2005) Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: A new biological function for polyphenols with a catechol group? Free Radic Biol Med. 39, 668–681. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Gago B., Lundberg J.O., Barbosa R.M., & Laranjinha J. (2007) Red wine-dependent reduction of nitrite to nitric oxide in the stomach. Free Radic Biol Med. 43, 1233–1242. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Ignarro L.J., Byrns R.E., Sumi D., de Nigris F., & Napoli C. (2006) Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide. Nitric Oxide – Biol Chem. 15, 93–102. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Trexler E.T., Smith-Ryan A.E., Melvin M.N., Roelofs E.J., & Wingfield H.L. (2014) Effects of pomegranate extract on blood flow and running time to exhaustion. Appl Physiol Nutr Metab. 39, 1038–1042. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Urbaniak A., Basta P., & Ast K., et al. (2018) The impact of supplementation with pomegranate fruit (Punicagranatum L.) juice on selected antioxidant parameters and markers of iron metabolism in rowers. J Int Soc Sports Nutr. 15, 35. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Shukla M., Gupta K., Rasheed Z., Khan K.A., & Haqqi T.M. (2008) Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition. 24, 733–743. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Polagruto J.A., Schramm D.D., Wang-Polagruto J.F., Lee L., & Keen C.L. (2004) Effects of Flavonoid-Rich Beverages on Prostacyclin Synthesis in Humans and Human Aortic Endothelial Cells: Association with Ex Vivo Platelet Function. J Med Food. 6, 301–308. First citation in articleCrossrefGoogle Scholar

  • 29 Ammar A., Bailey S.J., & Chtourou H., et al. (2018) Effects of pomegranate supplementation on exercise performance and post-exercise recovery in healthy adults: a systematic review. Br J Nutr. 120, 1201–1216. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Pautasso M. (2013) Ten Simple Rules for Writing a Literature Review. PLoS Comput Biol. 9, e1003149. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Trombold J.R., Barnes J.N., Critchley L., & Coyle E.F. (2010) Ellagitannin consumption improves strength recovery 2–3 d after eccentric exercise. Med Sci Sports Exerc. 42, 493–498. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Trombold J.R., Reinfeld A.S., Casler J.R., & Coyle E.F. (2011) The effect of pomegranate juice supplementation on strength and soreness after eccentric exercise. J Strength Cond Res. 25, 1782–1788. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Trinity J.D., Pahnke M.D., Trombold J.R., & Coyle E.F. (2014) Impact of polyphenol antioxidants on cycling performance and cardiovascular function. Nutrients. 6, 1273–1292. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Ammar A., Turki M., & Chtourou H., et al. (2016) Pomegranate supplementation accelerates recovery of muscle damage and soreness and inflammatory markers after a weightlifting training session. PLoS One. 11, e0160305. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Fuster-Muñoz E., Roche E., Funes L., Martínez-Peinado P., Sempere J.M., & Vicente-Salar N. (2016) Effects of pomegranate juice in circulating parameters, cytokines, and oxidative stress markers in endurance-based athletes: A randomized controlled trial. Nutrition. 32, 539–545. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Mazani M., Fard A.S., Baghi A.N., Nemati A., & Mogadam R.A. (2014) Effect of pomegranate juice supplementation on matrix metalloproteinases 2 and 9 following exhaustive exercise in young healthy males. J Pak Med Assoc. 64, 785–790. First citation in articleMedlineGoogle Scholar

  • 37 Ammar A., Turki M., & Hammouda O., et al. (2017) Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients. 9, E819. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Connolly D.A.J., McHugh M.P., & Padilla-Zakour O.I. (2006) Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 40, 679–683. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Heber D., Seeram N.P., & Wyatt H., et al. (2007) Safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size. J Agric Food Chem. 55, 10050–10054. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Davis J.M., Murphy E.A., Carmichael M.D., & Davis B. (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J PhysiolIntegr Comp Physiol. 296, R1071–R1077. First citation in articleCrossref MedlineGoogle Scholar

  • 41 MacRae H.S.H., & Mefferd K.M. (2006) Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. Int J Sport Nutr Exerc Metab. 16, 405–419. First citation in articleCrossref MedlineGoogle Scholar

  • 42 McKenna M.J., Bangsbo J., & Renaud J.-M. (2007) Muscle K+, Na+, and Cl disturbances and Na+ -K+ pump inactivation: implications for fatigue. J Appl Physiol. 104, 288–295. First citation in articleCrossref MedlineGoogle Scholar

  • 43 McKenna M.J., Medved I., & Goodman C.A., et al. (2006) N-acetylcysteine attenuates the decline in muscle Na+, K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol. 576, 279–288. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Medved I., Brown M.J., & Bjorksten A.R., et al. (2004) N -acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J Appl Physiol. 97, 1477–1485. First citation in articleCrossref MedlineGoogle Scholar

  • 45 Medved I., Brown M.J., Bjorksten A.R., & McKenna M.J. (2004) Effects of intravenous N-acetylcysteine infusion on time to fatigue and potassium regulation during prolonged cycling exercise. J Appl Physiol. 96, 211–217. First citation in articleCrossref MedlineGoogle Scholar

  • 46 McKenna M.J., & Hargreaves M. (2007) Resolving fatigue mechanisms determining exercise performance: integrative physiology at its finest!. J Appl Physiol. 104, 286–287. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Cheuvront S.N., Ely B.R., & Kenefick R.W., et al. (2008) No effect of nutritional adenosine receptor antagonists on exercise performance in the heat. Am J Physiol Integr Comp Physiol. 296, R394–401. First citation in articleCrossref MedlineGoogle Scholar

  • 48 Nieman D.C., Henson D.A., & Maxwell K.R., et al. (2009) Effects of quercetin and ECGC on mitochondrial biogenesis and immunity. Med Sci Sports Exerc. 41, 1467–1475. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Utter A.C., Nieman D.C., & Kang J., et al. (2009) Quercetin does not affect rating of perceived exertion in athletes during the Western States endurance run. Res Sport Med. 17, 71–83. First citation in articleCrossref MedlineGoogle Scholar

  • 50 Gomez-Cabrera M.C., Domenech E., & Romagnoli M., et al. (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 87, 142–149. First citation in articleCrossref MedlineGoogle Scholar

  • 51 McConell G.K., Bradley S.J., Stephens T.J., Canny B.J., Kingwell B.A., & Lee-Young R.S. (2007) Skeletal muscle nNOS mu protein content is increased by exercise training in humans. Am J Physiol Integr Comp Physiol. 293, R821–828. First citation in articleCrossref MedlineGoogle Scholar

  • 52 Vassalle C., Lubrano V., Domenici C., & L’Abbate A. (2003) Influence of chronic aerobic exercise on microcirculatory flow and nitric oxide in humans. Int J Sports Med. 24, 30–35. First citation in articleCrossref MedlineGoogle Scholar

  • 53 Jensen L., Bangsbo J., & Hellsten Y. (2004) Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol. 557, 571–582. First citation in articleCrossref MedlineGoogle Scholar

  • 54 Wilkerson D.P., Hayward G.M., Bailey S.J., Vanhatalo A., Blackwell J.R., & Jones A.M. (2012) Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur J Appl Physiol. 112, 4127–4134. First citation in articleCrossref MedlineGoogle Scholar

  • 55 Ferguson S.K., Hirai D.M., Copp S.W., Holdsworth C.T., Allen J.D., & Jones A.M., et al. (2013) Effects of nitrate supplementation via beetroot juice on contracting rat skeletal muscle microvascular oxygen pressure dynamics. Respir Physiol Neurobiol. 187, 250–255. First citation in articleCrossref MedlineGoogle Scholar

  • 56 Holloszy J.O., & Coyle E.F. (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 56, 831–838. First citation in articleCrossref MedlineGoogle Scholar

  • 57 Bowtell J., & Kelly V. (2019) Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sport. Med. 49, 3–23. First citation in articleCrossref MedlineGoogle Scholar

  • 58 Skarpańska-Stejnborn A., Basta P., Trzeciak J., Michalska A., Kafkas M.E., & Woitas-Ślubowska D. (2017) Effects of cranberry (Vaccinum macrocarpon) supplementation on iron status and inflammatory markers in rowers. J Int Soc Sports Nutr. 14, 7. First citation in articleCrossref MedlineGoogle Scholar

  • 59 Skarpańska-Stejnborn A., Basta P., Pilaczyńska-Szczesniak Ł., & Horoszkiewicz-Hassan M. (2010) Black grape extract supplementation attenuates blood oxidative stress in response to acute exercise. Biol Sport. 27, 41–46. First citation in articleCrossrefGoogle Scholar

  • 60 Skarpańska-Stejnborn A., Basta P., Sadowska J., & Pilaczyńska-Szcześniak Ł. (2014) Effect of supplementation with chokeberry juice on the inflammatory status and markers of iron metabolism in rowers. J Int Soc Sports Nutr. 11, 48. First citation in articleCrossref MedlineGoogle Scholar

  • 61 Skarpańska-Stejnborn A., Basta P., & Pilaczyńska-Szcześniak Ł. (2006) Theinfluence ofsupplementationwith the black currant (Ribes nigrum) extract on selected prooxidative-antioxidative balance parameters in rowers. Stud Phys Cult Tour. 13, 51–58. First citation in articleGoogle Scholar

  • 62 Cook M.D., Myers S.D., Blacker S.D., & Willems M.E.T. (2015) New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur J Appl Physiol. 115, 2357–2365. First citation in articleCrossref MedlineGoogle Scholar

  • 63 Perkins I.C., Vine S.A., Blacker S.D., & Willems M.E.T. (2015) New Zealand blackcurrant extract improves high-intensity intermittent running. Int J Sport Nutr Exerc Metab. 25, 487–493. First citation in articleCrossref MedlineGoogle Scholar

  • 64 Willems M., Cousins L., Williams D., & Blacker S. (2016) Beneficial Effects of New Zealand Blackcurrant Extract on Maximal Sprint Speed during the Loughborough Intermittent Shuttle Test. Sports. 4, E42. First citation in articleCrossrefGoogle Scholar

  • 65 Godwin C., Cook M., & Willems M.E.T. (2017) Effect of New Zealand Blackcurrant Extract on Performance during the Running Based Anaerobic Sprint Test in Trained Youth and Recreationally Active Male Football Players. Sports. 5, E69. First citation in articleCrossrefGoogle Scholar

  • 66 Murphy C., Cook M., & Willems M.E.T. (2017) Effect of New Zealand Blackcurrant Extract on Repeated Cycling Time Trial Performance. Sports. 5, E25. First citation in articleCrossrefGoogle Scholar

  • 67 Kang S.W., Hahn S., Kim J.-K., Yang S.-M., Park B.-J., & Chul Lee S. (2011) Oligomerized lychee fruit extract (OLFE) and a mixture of vitamin C and vitamin E for endurance capacity in a double blind randomized controlled trial. J Clin Biochem Nutr. 50, 106–113. First citation in articleCrossref MedlineGoogle Scholar

  • 68 Sadowska-Krępa E., Kłapcińska B., Kimsa E., & Karpiński R. (2008) Effects of Supplementation With Red Grape Skin Polyphenolic Extract and Interval Swimming Test on the Blood Antioxidant Status in Healthy Men. Med Sport. 12, 1–7. First citation in articleCrossrefGoogle Scholar