Volume 103, Issue B8 p. 18003-18023
Papers on Geodesy and Gravity Tectonophysics
Free Access

Volcanic spreading at Kilauea, 1976–1996

First published: 10 August 1998
Citations: 89

Abstract

The rift system traversing about 80 km of the subaerial surface of Kilauea volcano has extended continuously since the M 7.2 flank earthquake of November 1975. Widening across the summit has amounted to more than 250 cm, decelerating after 1975 from about 25 to 4 cm yr−1 since 1983. Concurrently, the summit has subsided more than 200 cm, even as the adjacent south flank has risen more than 50 cm. The axes of the upper zones, about 10 km from the summit, subsided before 1983 at average rates of 9 and 4 cm yr−1, respectively, and at rates of 4 and 3 cm yr−1 since. The middle southwest rift zone is also subsiding and, at the other end of Kilauea's subaerial rift system, subsidence along the lower east rift zone has averaged 1–2 cm yr−1. Deformation of Kilauea's south flank has been continuous, although subject as well to displacements caused by major rift zone seismic swarms. Whereas horizontal strains across the subaerial south flank seem to have been generally compressive after 1975, they have been extensional since about 1980 or 1981, interrupted only by the east rift zone dike intrusion of 1983. Because the magnitudes of these contractions and extensions are much less than the extension across the rift system, the subaerial south flank is apparently sliding seaward on its basal decollement more than it is accumulating horizontal strains within the overlying volcanic pile. Kilauea suffers from gravitational spreading made even more unstable by accumulation of magma along the rift system at depths in excess of about 4–5 km in the presence hot rock incapable of withstanding deviatoric stresses. This seismicly quiescent zone decouples the south flank from the rest of Hawaii's volcanic edifice; the rift zones at lesser depths exhibit a more brittle and, therefore, sporadic extensional behavior. Judging from the modern extension record of the summit, which both predates the M 7.2 earthquake of 1975 and has outlived its 10-year period of aftershocks, Kilauea will continue to spread along its rift system as its south flank slips seaward to accommodate the accretion of magma and its relatively dense olivine-rich differentiate.