Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases

Abstract

The plasma membrane ATPase of plants and fungi is a hydrogen ion pump1. The proton gradient generated by the enzyme drives the active transport of nutrients by H+-symport. In addition, the external acidification in plants and the internal alkalinization in fungi, both resulting from activation of the H+ pump, have been proposed to mediate growth responses. This ATPase has a relative molecular mass (Mr) similar to those of the Na+-, K+- and Ca2+-ATPases of animal cells and, like these proteins, forms an aspartylphosphate intermediate. We have cloned, mapped and sequenced the gene encoding the yeast plasma membrane ATPase (PMA1) and report here that it maps to chromosome VII adjacent to LEU1. The strong homology between the ammo-acid sequence encoded by PMA1 and those of (Na+ + K+), Na+-, K+- and Ca2+-ATPases is consistent with the notion that the family of cation pumps which form a phosphorylated intermediate evolved from a common ancestral ATPase. The function of the PMA1 gene is essential because a null mutation is lethal in haploid cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Serrano, R. Curr. Topics cell. Regul. 23, 87–126 (1984).

    Article  CAS  Google Scholar 

  2. Young, R. A. & Davis, R. W. in Genetic Engineering: Principles and Methods Vol. 7 (eds Setlow, J. K. & Hollaender, A.) 29–41 (Plenum, New York, 1985).

    Book  Google Scholar 

  3. Melpartida, F. & Serrano, R. Eur. J. Biochem. 116, 413–417 (1981).

    Article  Google Scholar 

  4. Mihara, K. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 77, 4160–4164 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Drescher, D. G. & Lee, K. S. Analyt. Biochem. 84, 559–569 (1978).

    Article  CAS  Google Scholar 

  6. Thomas, R. E., Korzeniowski, D., Ryan, D. & Levin, W. Archs Biochem. Biophys. 192, 524–532 (1979).

    Article  CAS  Google Scholar 

  7. Burnette, W. N. Analyt. Biochem. 112, 195–203 (1981).

    Article  CAS  Google Scholar 

  8. Rott, R. & Nelson, N. J. biol. Chem. 256, 9224–9228 (1981).

    CAS  PubMed  Google Scholar 

  9. Huynh, T. V., Young, R. A. & Davis, R. W. in DNA Cloning Techniques: A Practical Approach (ed. Glover, D.) (IRL, Oxford, in the press).

  10. Norrander, J., Kempe, T. & Messing, J. Gene 26, 101–106 (1983).

    Article  CAS  Google Scholar 

  11. Pikielny, G. W., Teem, J. L. & Rosbash, M. Cell 34, 395–403 (1983).

    Article  CAS  Google Scholar 

  12. Hesse, J. E. et al. Proc. natn. Acad. Sci. U.S.A. 81, 4746–4750 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Shull, G. E., Schwartz, A. & Lingrel, J. B. Nature 316, 691–695 (1985).

    Article  ADS  CAS  Google Scholar 

  14. MacLennan, D. H., Brandl, C., Korczak, B., & Green, N. M. Nature 316, 696–700 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Walderhaug, M. O., Post, R. L., Saccomani, G., Leonard, R. T. & Briskin, D. P. J. biol. Chem. 260, 3852–3859 (1985).

    CAS  Google Scholar 

  16. Farley, R. A. & Faller, L. D. J. biol. Chem. 260, 3899–3901 (1985).

    CAS  PubMed  Google Scholar 

  17. Dame, J. B. & Scarborough, G. A. J. biol. Chem. 256, 10727–10730 (1981).

    Google Scholar 

  18. Berry, E. A. & Hinkle, P. C. J. biol. Chem. 258, 1474–1486 (1983).

    CAS  PubMed  Google Scholar 

  19. Ovchinnikov, Y. A., Abdulaev, N. G. & Modyanov, N. N. A. Rev. Biophys. Bioengng 11, 445–463 (1982).

    Article  CAS  Google Scholar 

  20. Schwartz, D. C. & Cantor, C. R. Cell 37, 67–75 (1984).

    Article  CAS  Google Scholar 

  21. Carle, G. F. & Olson, M. V. Nucleic Acids Res. 12, 5647–5664 (1984).

    Article  CAS  Google Scholar 

  22. Hsu, Y. P. & Schimmel, P. J. biol. Chem. 259, 3714–3719 (1984).

    CAS  PubMed  Google Scholar 

  23. Downie, J. A., Gibson, F. & Cox, G. B. A. Rev. Biochem. 48, 103–131 (1979).

    Article  CAS  Google Scholar 

  24. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Proc. natn. Acad. Sci. U.S.A. 78, 6354–6358 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  26. Bencini, D. A., O'Donovan, G. A. & Wild, J. R. Biotechniques 2, 1–70 (1984).

    Google Scholar 

  27. Heffron, F., So, M. & McCarthy, B. J. Proc. natn. Acad. Sci. U.S.A. 75, 6012–6016 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Staden, R. Nucleic Acids Res. 10, 2951–2961 (1982).

    Article  CAS  Google Scholar 

  29. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  30. Eisenberg, D. A. Rev. Biochem. 53, 595–623 (1984).

    Article  CAS  Google Scholar 

  31. Serrano, R. FEBS Lett. 156, 11–14 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, R., Kielland-Brandt, M. & Fink, G. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature 319, 689–693 (1986). https://doi.org/10.1038/319689a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319689a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing