Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator

Abstract

We examined changes in intranuclear chromosome positioning induced by a transcriptional activator in a simple experimental system. Targeting the VP16 acidic activation domain (AAD) to an engineered chromosome site resulted in its transcriptional activation and redistribution from a predominantly peripheral to a more interior nuclear localization. Direct visualization in vivo revealed that the chromosome site normally moves into the nuclear interior transiently in early G1 and again in early S phase. In contrast, VP16 AAD targeting induced this site's permanent interior localization in early G1. A single transcriptional activator therefore can modify the cell-cycle-dependent programme of intranuclear positioning of chromosome loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of chromosome insertion in the C6-14 cell line.
Figure 2: Characterization of 3-D nuclear location of chromosome insertion in C6-14 cells by using nuclear pore staining.
Figure 3: Labelled chromosome site preferentially located at the nuclear periphery changes location upon VP16 targeting.
Figure 4: Nuclear distribution of chromosome site is cell-cycle-dependent.
Figure 5: Peripheral versus interior nuclear localization patterns are established in the G1 phase of the cell cycle.

Similar content being viewed by others

References

  1. Marshall, W. F., Fung, J. C. & Sedat, J. W. Deconstructing the nucleus: global architecture from local interactions. Curr. Biol. 7, 259–263 (1997).

    Article  CAS  Google Scholar 

  2. Manuelidis, L. & Borden, J. Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma 96, 397–410 (1988).

    Article  CAS  Google Scholar 

  3. Spector, D. L. Macromolecular domains within the cell nucleus. Annu. Rev. Cell Biol. 9, 265–315 (1993).

    Article  CAS  Google Scholar 

  4. Ward, W. S. & Zalensky, A. O. The unique, complex organization of the transcriptionally silent sperm chromatin. Crit. Rev. Eukaryot. Gene Expr. 6, 139–147 (1996).

    Article  CAS  Google Scholar 

  5. Sadoni, N. et al. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J. Cell Biol. 146, 1211–1226 (1999).

    Article  CAS  Google Scholar 

  6. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998).

    Article  CAS  Google Scholar 

  7. Xing, Y. et al. Higher level organization of individual gene transcription and RNA splicing. Science 259, 1326–1330 (1993).

    Article  CAS  Google Scholar 

  8. Xing, Y., Johnson, C. V., Moen, P. T. Jr, McNeil, J. A. & Lawrence, J. Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J. Cell Biol. 131, 1635–1647 (1995).

    Article  CAS  Google Scholar 

  9. Carter, K. C., Taneja, K. L. & Lawrence, J. B. Discrete nuclear domains of poly(A) RNA and their relationship to the functional organization of the nucleus. J. Cell Biol. 115, 1191–1202 (1991).

    Article  CAS  Google Scholar 

  10. Andrulis, E. D., Neiman, A. M., Zappulla, D. C. & Sternglanz, R. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998).

    Article  CAS  Google Scholar 

  11. Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  Google Scholar 

  12. Francastel, C., Walters, M. C., Groudine, M. & Martin, D. I. A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell 99, 259–269 (1999).

    Article  CAS  Google Scholar 

  13. Csink, A. K. & Henikoff, S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381, 529–531 (1996).

    Article  CAS  Google Scholar 

  14. Dernburg, A. F. et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85, 745–759 (1996).

    Article  CAS  Google Scholar 

  15. Eils, R. et al. Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J. Cell Biol. 135, 1427–1440 (1996).

    Article  CAS  Google Scholar 

  16. Kurz, A. et al. Active and inactive genes localize preferentially in the periphery of chromosome territories. J. Cell Biol. 135, 1195–1205 (1996).

    Article  CAS  Google Scholar 

  17. Abney, J. R., Cutler, B., Fillbach, M. L., Axelrod, D. & Scalettar, B. A. Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J. Cell Biol. 137, 1459–1468 (1997).

    Article  CAS  Google Scholar 

  18. Zink, D. et al. Structure and dynamics of human interphase chromosome territories in vivo. Hum. Genet. 102, 241–251 (1998).

    Article  CAS  Google Scholar 

  19. Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 1997, 930–939 (1997).

    Article  Google Scholar 

  20. Shelby, R. D., Hahn, K. M. & Sullivan, K. F. Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J. Cell Biol. 135, 545–557 (1996).

    Article  CAS  Google Scholar 

  21. Ferguson, M. & Ward, D. C. Cell cycle dependent chromosomal movement in pre-mitotic human T-lymphocyte nuclei. Chromosoma 101, 557–565 (1992).

    Article  CAS  Google Scholar 

  22. Tagawa, Y. et al. Differences in spatial localization and chomatin pattern during different phases of cell cycle between normal and cancer cells. Cytometry 27, 327–335 (1997).

    Article  CAS  Google Scholar 

  23. Vourc'h, C., Taruscio, D., Boyle, A. L. & Ward, D. C. Cell cycle-dependent distribution of telomeres, centromeres, and chromosome-specific subsatellite domains in the interphase nucleus of mouse lymphocytes. Exp. Cell Res. 205, 142–151 (1993).

    Article  CAS  Google Scholar 

  24. Barr, M. L. A. & Bertram, E. G. The behaviour of nuclear structures during depletion and restoration of Nissl material in motor neurons. J. Anat. 85, 171–181 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Borden, J. & Manuelidis, L. Movement of the X chromosome in epilepsy. Science 242, 1687–1691 (1988).

    Article  CAS  Google Scholar 

  26. Itoh, N. & Shimizu, N. DNA replication-dependent intranuclear relocation of double minute chromatin. J. Cell Sci. 111, 3275–3285 (1998).

    CAS  PubMed  Google Scholar 

  27. Li, G., Sudlow, G. & Belmont, A. S. Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning. J. Cell Biol. 140, 975–989 (1998).

    Article  CAS  Google Scholar 

  28. Brown, K. E., Baxter, J., Graf, D., Merkenschlager, M. & Fisher, A. G. Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol. Cell. 3, 207–217 (1999).

    Article  CAS  Google Scholar 

  29. Tumbar, T., Sudlow, G. & Belmont, A. S. Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J. Cell Biol. 145, 1341–1354 (1999).

    Article  CAS  Google Scholar 

  30. Belmont, A. S., Bignone, F. & Ts'o, P. O. The relative intranuclear positions of Barr bodies in XXX non-transformed human fibroblasts. Exp. Cell Res. 165, 165–179 (1986).

    Article  CAS  Google Scholar 

  31. O'Keefe, R. T., Henderson, S. C. & Spector, D. L. Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J. Cell Biol. 116, 1095–1110 (1992).

    Article  CAS  Google Scholar 

  32. Belmont, A. S. & Bruce, K. Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J. Cell Biol. 127, 287–302 (1994).

    Article  CAS  Google Scholar 

  33. Ferreira, J., Paolella, G., Ramos, C. & Lamond, A. I. Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J. Cell Biol. 139, 1597–1610 (1997).

    Article  CAS  Google Scholar 

  34. Bridger, J. M., Boyle, S., Kill, I. R. & Bickmore, W. A. Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr. Biol. 10, 149–152 (2000).

    Article  CAS  Google Scholar 

  35. Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an NIH grant (GM58460) to A.S.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew S. Belmont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tumbar, T., Belmont, A. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 3, 134–139 (2001). https://doi.org/10.1038/35055033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing