Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The dynamics of chromosome evolution in birds and mammals

Abstract

Comparative mapping, which compares the location of homologous genes in different species, is a powerful tool for studying genome evolution1. Comparative maps suggest that rates of chromosomal change in mammals can vary from one to ten rearrangements per million years1,2,3,4. On the basis of these rates we would expect 84 to 600 conserved segments in a chicken comparison with human or mouse. Here we build comparative maps between these species and estimate that numbers of conserved segments are in the lower part of this range. We conclude that the organization of the human genome is closer to that of the chicken than the mouse and by adding comparative mapping results from a range of vertebrates, we identify three possible phases of chromosome evolution. The relative stability of genomes such as those of the chicken and human will enable the reconstruction of maps of ancestral vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamics of chromosome evolution in birds and mammals.

Similar content being viewed by others

References

  1. Andersson,L. et al. The first international workshop on comparative genome organisation. Mamm. Genome 7, 717–734 (1997).

    Article  MathSciNet  Google Scholar 

  2. Davisson,M. T., Bradt,D. W., Merriam,J. J., Rockwood,S. F. & Eppig,J. T. The mouse gene map. Inst. Lab. Anim. Res. J. 39, 96–131 (1998).

    Article  Google Scholar 

  3. Nadeau,J. H. & Taylor,B. A. Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818 (1984).

    Article  ADS  CAS  Google Scholar 

  4. O'Brien,S. J., Wienberg,J. & Lyons,L. A. Comparative genomics: lessons from cats. Trends Genet. 13, 393–399 (1997).

    Article  CAS  Google Scholar 

  5. Waddington,D., Springbett,A. J. & Burt,D. W. A chromosome based model to estimate the number of conserved segments between pairs of species from comparative genetic maps. Genetics (in the press).

  6. Morizot,D. C. Reconstructing the gene map of the vertebrate ancestor. Anim. Biotech. 5, 113–122 (1994).

    Article  CAS  Google Scholar 

  7. Sarich,V. M. & Wilson,A. C. Immunological time scale for hominid evolution. Science 158, 1200–1203 (1994).

    Article  ADS  Google Scholar 

  8. Novacek,M. J. Mammalian phylogeny: shaking the tree. Nature 356, 121–125 (1992).

    Article  ADS  CAS  Google Scholar 

  9. de Jong,W. W. Molecules remodel the mammalian tree. Trends Ecol. Evol. 13, 270–275 (1998).

    Article  CAS  Google Scholar 

  10. Kumar,S. & Hedges,B. A molecular time-scale for vertebrate evolution. Nature 392, 917–920 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Watanabe,T. K. et al. A radiation hybrid map of the rat genome containing 5,255 markers. Nature Genet. 22, 27–36 (1999).

    Article  CAS  Google Scholar 

  12. Bush,G. L., Case,S. M., Wilson,A. C. & Patton,J. L. Rapid speciation and chromosomal evolution in mammals. Proc. Natl. Acad. Sci. USA 74, 3942–3946 (1977).

    Article  ADS  CAS  Google Scholar 

  13. O'Neill,R. J. W., O'Neill,M. J. & Graves,J. A. M. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Li,W.-H., Ellsworth,D. L., Krushkal,J., Chang,B. H.-J. & Hewett-Emmett,D. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol. Phylogenet. Evol. 5, 182–187 (1996).

    Article  CAS  Google Scholar 

  15. Ohta,T. An examination of the generation-time effect on molecular evolution. Proc. Natl. Acad. Sci. USA 90, 10676–10680 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Vogel,F., Kopun,M. & Rathenberg, R. in Molecular Anthropology (eds Goodman, M. & Tashian, R. E.) 13–33 (Plenum, New York, 1976).

    Book  Google Scholar 

  17. Burt,D. W. & Cheng,H. H. The chicken gene map. Inst. Lab. Anim. Res. J. 39, 229–236 (1998).

    Article  Google Scholar 

  18. Hastie,T. J. & Tibshirani,R. J. Generalised Additive Models (Chapman and Hall, London, 1990).

    MATH  Google Scholar 

  19. Hurvich,C. M., Simonoff,J. S. & Tsai,C.-L. Smoothing parameter selection in non-parametric regression using an improved Akaike information criterion. J. R. Statist. Soc. 60, 271–293 (1998).

    Article  Google Scholar 

  20. Kosambi,D. D. The estimation of map distance from recombination values. Ann. Eugen. 12, 172–175 (1944).

    Article  Google Scholar 

  21. Morton,N. E. Parameters of the human genome. Proc. Natl. Acad. Sci. USA 88, 7474–7476 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Wienberg,J. & Stanyon,R. Comparative chromosome painting of primate genomes. Inst. Lab. Anim. Res. J. 39, 77–91 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the EC ChickMAP project and H. Cheng for providing data prior to publication, and J. Burt for helpful comments. Genome research at the Roslin Institute is supported by the Ministry of Agriculture, Fisheries and Food, the Biotechnology and Biological Sciences Research Council and the Commission of the European Communities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Burt.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burt, D., Bruley, C., Dunn, I. et al. The dynamics of chromosome evolution in birds and mammals. Nature 402, 411–413 (1999). https://doi.org/10.1038/46555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46555

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing