Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Task difficulty and the specificity of perceptual learning

Abstract

Practising simple visual tasks leads to a dramatic improvement in performing them. This learning is specific to the stimuli used for training. We show here that the degree of specificity depends on the difficulty of the training conditions. We find that the pattern of specificities maps onto the pattern of receptive field selectivities along the visual pathway. With easy conditions, learning generalizes across orientation and retinal position, matching the spatial generalization of higher visual areas. As task difficulty increases, learning becomes more specific with respect to both orientation and position, matching the fine spatial retinotopy exhibited by lower areas. Consequently, we enjoy the benefits of learning generalization when possible, and of fine grain but specific training when necessary. The dynamics of learning show a corresponding feature. Improvement begins with easy cases (when the subject is allowed long processing times) and only subsequently proceeds to harder cases. This learning cascade implies that easy conditions guide the learning of hard ones. Taken together, the specificity and dynamics suggest that learning proceeds as a countercurrent along the cortical hierarchy. Improvement begins at higher generalizing levels, which, in turn, direct harder-condition learning to the subdomain of their lower-level inputs. As predicted by this reverse hierarchy model, learning can be effective using only difficult trials, but on condition that learning onset has previously been enabled. A single prolonged presentation suffices to initiate learning. We call this single-encounter enabling effect 'eureka'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in primate visual cortex. Cerebr. Cort. 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  2. Desimore, R. & Ungerleider, L. G. in Handbook of Neuropsychology (eds Boller, F. & Grafman, J.) Vol. 2 267–299 (Elsevier Science, Amsterdam, 1989).

    Google Scholar 

  3. Berardi, N. & Fiorentini, A. Interhemispheric transfer of visual information in humans: spatial characteristics. J. Physiol. 384, 633–647 (1987).

    Article  CAS  Google Scholar 

  4. Karni, A. & Sagi, D. Where practice makes perfect: Evidence for primary visual cortex plasticity. Proc. Natl Acad. Sci. USA 88, 4966–4970 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Schoups, A. A., Vogels, R. & Orban, G. Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J. Physiol. 483, 797–810 (1995).

    Article  CAS  Google Scholar 

  6. Poggio, T., Fahle, M. & Edelman, S. Fast perceptual learning in visual hyperacuity. Science 256, 1018–1021 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Treisman, A., Vieira, A. & Hayes, A. Automaticity and preattentive processing. Am. J. Psychol. 105, 341–362 (1992).

    Article  CAS  Google Scholar 

  8. Nazir, T. & O'Regan, J. K. Some results on translation invariance in the human visual system. Spatial Vision 5, 81–100 (1990).

    Article  CAS  Google Scholar 

  9. Ramachandran, V. S. & Braddick, O. Orientation specific learning in stereopsis. Perception 2, 371–376 (1973).

    Article  CAS  Google Scholar 

  10. Fiorentini, A. & Berardi, N. Learning in grating waveform discrimination: specificity for orientation and spatial frequency. Vision Res. 21, 1149–1158 (1981).

    Article  CAS  Google Scholar 

  11. Ahissar, M. & Hochstein, S. The role of attention in early perceptual learning. Proc. Natl Acad. Sci. USA 90, 5718–5722 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Fahle, M. & Edelman, S. Long term learning in vernier acuity: Effects of stimulus orientation, range and of feedback. Vision Res. 33, 397–412 (1993).

    Article  CAS  Google Scholar 

  13. Ahissar, M. & Hochstein, S. Learning pop-out detection: specificities to stimulus characteristics. Vision Res. 36, 3487–3500 (1996).

    Article  CAS  Google Scholar 

  14. Vogels, R. & Orban, G. A. The effect of practice on the oblique effect in line orientation judgments. Vision Res. 25, 1679–1687 (1985).

    Article  CAS  Google Scholar 

  15. Beard, B. L., Levi, D. M. & Reich, L. N. Perceptual learning in parafoveal vision. Vision Res. 35, 1679–1690 (1995).

    Article  CAS  Google Scholar 

  16. Ball, K. & Sekuler, R. A specific and enduring improvement in visual motion discrimination. Science 218, 697–698 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Liu, Z. Learning a visual skill that generalizes. NEC Tech. Rep. 95–177 (NEC, Princeton, 1995).

    Google Scholar 

  18. Schoups, A. & Orban, G. A. Interocular transfer in perceptual learning of a pop-out discrimination task. Proc. Natl Acad. Sci. USA 93, 7358–7362 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Treisman, A. & Gelade, G. A feature integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    Article  CAS  Google Scholar 

  20. Julesz, B. Textons, the elements of texture perception and their interactions. Nature 290, 91–97 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Karni, A. & Sagi, D. The time course of learning a visual skill. Nature 365, 250–252 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Dill, M. & Fahle, M. Limited translation invariance of human visual pattern recognition. Percept. Psychophys. (in the press).

  23. Miller, J. Components of location probability effect in visual search tasks. Exp. Psychol.: Hum. Percept. Perform. 14, 453–471 (1988).

    CAS  Google Scholar 

  24. Treisman, A. The binding problem. Cur. Opin. Neurobiol. 6, 171–178 (1996).

    Article  CAS  Google Scholar 

  25. Ullman, S. Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. Cerebral Cortex 5, 1–11 (1995).

    Article  CAS  Google Scholar 

  26. Nakayama, K. in Vision: coding and Efficiency (ed. Blakemore, C.) 411–442 (Cambridge Univ. Press, Cambridge, 1991).

    Book  Google Scholar 

  27. Tsotsos, J. K. Analyzing vision at the complexity level. Behav. Brain Sci. 13, 423–469 (1990).

    Article  Google Scholar 

  28. Rubin, N., Shapley, R. M., Nakayama, K. & Grossetete, A. Abrupt learning in illusory contour perception. Invest. Ophthalmol. Vis. Sci. 37, 859 (1996).

    Google Scholar 

  29. Ahissar, M. & Hochstein, S. Eureka: One shot viewing enables perceptual learning. Invest. Ophthalmol. Vis. Sci. 37, 3183 (1996).

    Google Scholar 

  30. Papathomas, T. V., Gorea, A. & Feher, A. Attending to attributes in double conjunction texture segregation: the role of color, luminance and orientation. Invest. Ophthalmol. Vis. Sci. 37, 2415 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahissar, M., Hochstein, S. Task difficulty and the specificity of perceptual learning. Nature 387, 401–406 (1997). https://doi.org/10.1038/387401a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387401a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing