Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Common swine models of cardiovascular disease for research and training

Abstract

Cardiovascular diseases are a major health concern and therefore an important topic in biomedical research. Large animal models allow researchers to assess the safety and efficacy of new cardiovascular procedures in systems that resemble human anatomy; additionally, they can be used to emulate scenarios for training purposes. Among the many biomedical models that are described in published literature, it is important that researchers understand and select those that are best suited to achieve the aims of their research, that facilitate the humane care and management of their research animals and that best promote the high ethical standards required of animal research. In this resource the authors describe some common swine models that can be easily incorporated into regular practices of research and training at biomedical institutions. These models use both native and altered vascular anatomy of swine to carry out research protocols, such as testing biological reactions to implanted materials, surgically creating aneurysms using autologous tissue and inducing myocardial infarction through closed-chest procedures. Such models can also be used for training, where native and altered vascular anatomy allow medical professionals to learn and practice challenging techniques in anatomy that closely simulates human systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Researchers can model carotid aneurysms and study the effects of aneurysm treatments by artificially creating an aneurysm using autologous tissue.
Figure 2: Researchers can model myocardial infarction without opening the chest by percutaneously placing and inflating an endovascular balloon to occlude select arteries and cause targeted ischemia.
Figure 3: Researchers can also model carotid aneurysms for the purpose of training aneurysm treatment techniques.
Figure 4: Researchers can model calcified and stenotic lesions at bifurcations within the coronary tree for the purpose of training coronary intervention techniques such as rotational atherectomy.

Similar content being viewed by others

References

  1. Thygesen, K., Alpert, J.S. & White, H.D. on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. J. Am. Coll. Cardiol. 50, 2173–2195 (2007).

    Article  Google Scholar 

  2. Roger, V.L. et al. Heart disease and stroke statistics—2011 update. Circulation 123, e18–e209 (2011).

    Article  Google Scholar 

  3. Monnet, E. & Chachques, J.C. Animal models of heart failure: what is new? Ann. Thorac. Surg. 79, 1445–1453 (2005).

    Article  Google Scholar 

  4. Sakaguchi, G. et al. A pig model of chronic heart failure by intracoronary embolization with gelatin sponge. Ann. Thorac. Surg. 75, 1942–1947 (2003).

    Article  Google Scholar 

  5. Suzuki, Y., Yeung, A.C. & Ikeno, F. The pre-clinical animal model in the translational research of interventional cardiology. J. Am. Coll. Cardiol. Intv. 2, 373–383 (2009).

    Article  Google Scholar 

  6. Ruiz-Meana, M., Martinson, E.A., Garcia-Dorado, D. & Piper, H.M. Animal ethics in cardiovascular research. Cardiovasc. Res. 93, 1–3 (2012).

    Article  CAS  Google Scholar 

  7. Hooijmans, C., de Vries, R., Leenaars, M. & Ritskes-Hoitinga, M. The Gold Standard Publication Checklist (GSPC) for improved design, reporting and scientific quality of animal studies GSPC versus ARRIVE guidelines. Lab. Anim. 45, 61 (2011).

    Article  CAS  Google Scholar 

  8. Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M. & Altman, D.G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  Google Scholar 

  9. Dixon, J.A. & Spinale, F.G. Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ. Heart Fail. 2, 262–271 (2009).

    Article  Google Scholar 

  10. Suzuki, Y., Yeung, A.C. & Ikeno, F. The representative porcine model for human cardiovascular disease. J. Biomed. Biotechnol. 2011, 195483 (2011).

    PubMed  Google Scholar 

  11. Suzuki, Y., Lyons, J.K., Yeung, A.C. & Ikeno, F. In vivo porcine model of reperfused myocardial infarction: In situ double staining to measure precise infarct area/area at risk. Catheter. Cardiovasc. Interv. 71, 100–107 (2008).

    Article  Google Scholar 

  12. Kuster, D. et al. Left ventricular remodeling in swine after myocardial infarction: a transcriptional genomics approach. Basic Res. Cardiol. 106, 1269–1281 (2011).

    Article  CAS  Google Scholar 

  13. Kraitchman, D.L. et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290–2293 (2003).

    Article  Google Scholar 

  14. Kelley, K.W., Curtis, S.E., Marzan, G.T., Karara, H.M. & Anderson, C.R. Body surface area of female swine. J. Anim. Sci. 36, 927–930 (1973).

    Article  CAS  Google Scholar 

  15. Swindle, M.M., Makin, A., Herron, A.J., Clubb, F.J. & Frazier, K.S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356 (2012).

    Article  CAS  Google Scholar 

  16. Fernández-Portales, J., Sun, F., Crisóstomo, V., Báez, C. & Pérez de Prado, A. Modelos animales en el aprendizaje de cardiología intervencionista. Rev. Esp. Cardiol. 13, 40–46 (2013).

    Google Scholar 

  17. Dondelinger, R.F. et al. Relevant radiological anatomy of the pig as a training model in interventional radiology. Eur. Radiol. 8, 1254–1273 (1998).

    Article  CAS  Google Scholar 

  18. Zaragoza, C. et al. Animal models of cardiovascular diseases. J. Biomed. Biotechnol. 2011, 497841 (2011).

    Article  Google Scholar 

  19. Braun, A. et al. Effects of an alpha-4 integrin inhibitor on restenosis in a new porcine model combining endothelial denudation and stent placement. PLoS One 5, e14314 (2010).

    Article  CAS  Google Scholar 

  20. Won, H. et al. Serial changes of neointimal tissue after everolimus-eluting stent implantation in porcine coronary artery: an optical coherence tomography analysis. Biomed. Res. Int. 2014, 851676 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Tahara, S., Chamié, D., Baibars, M., Alraies, C. & Costa, M. Optical coherence tomography endpoints in stent clinical investigations: strut coverage. Int. J. Cardiovasc. Imaging 27, 271–287 (2011).

    Article  Google Scholar 

  22. Schwartz, R.S. et al. Drug-eluting stents in preclinical studies: updated consensus recommendations for preclinical evaluation. Circ. Cardiovasc. Interv. 1, 143–153 (2008).

    Article  Google Scholar 

  23. Schwartz, R.S. et al. Preclinical evaluation of drug-eluting stents for peripheral applications: recommendations from an expert consensus group. Circulation 110, 2498–2505 (2004).

    Article  Google Scholar 

  24. Massoud, T.F., Guglielmi, G., Ji, C., Viñuela, F. & Duckwiler, G.R. Experimental saccular aneurysms. I. Review of surgically-constructed models and their laboratory applications. Neuroradiology 36, 537–546 (1994).

    Article  CAS  Google Scholar 

  25. Maynar, M. et al. An animal model of abdominal aortic aneurysm created with peritoneal patch: technique and initial results. Cardiovasc. Intervent. Radiol. 26, 168–176 (2003).

    Article  Google Scholar 

  26. Guglielmi, G. et al. Experimental saccular aneurysms. II. A new model in swine. Neuroradiology 36, 547–550 (1994).

    Article  CAS  Google Scholar 

  27. Murayama, Y. et al. Development of the biologically active Guglielmi detachable coil for the treatment of cerebral aneurysms. Part II: an experimental study in a swine aneurysm model. AJNR Am. J. Neuroradiol. 20, 1992–1999 (1999).

    CAS  PubMed  Google Scholar 

  28. Murayama, Y., Viñuela, F., Tateshima, S., Viñuela, F. Jr. & Akiba, Y. Endovascular treatment of experimental aneurysms by use of a combination of liquid embolic agents and protective devices. AJNR Am. J. Neuroradiol. 21, 1726–1735 (2000).

    CAS  PubMed  Google Scholar 

  29. Takao, H. et al. Endovascular treatment of experimental aneyrysms using a combination of thermoreversible gelation polymer and protection devices: feasibility study. Neurosurgery 65, 601–609 (2009).

    Article  Google Scholar 

  30. Ding, P. et al. Horner syndrome after carotid sheath surgery in a pig: anatomic study of cervical sympathetic chain. Comp. Med. 61, 453–456 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hughes, G.C., Post, M.J., Simons, M. & Annex, B.H. Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J. Appl Physiol. 94, 1689–1701 (2003).

    Article  Google Scholar 

  32. Arenal, A. et al. Noninvasive identification of epicardial ventricular tachycardia substrate by magnetic resonance-based signal intensity mapping. Heart Rhythm 11, 1456–1464 (2014).

    Article  Google Scholar 

  33. Hughes, H.C. Swine in cardiovascular research. Lab. Anim. Sci. 36, 348–350 (1986).

    CAS  PubMed  Google Scholar 

  34. Kraitchman, D.L., Bluemke, D.A., Chin, B.B. & Heldman, A.W. A minimally invasive method for creating coronary stenosis in a swine model for MRI and SPECT imaging. Invest. Radiol. 35, 445–451 (2000).

    Article  CAS  Google Scholar 

  35. Gálvez-Montón, C. et al. Comparison of two preclinical myocardial infarct models: coronary coil deployment versus surgical ligation. J. Transl. Med. 12, 137 (2014).

    Article  Google Scholar 

  36. Crisóstomo, V. et al. Development of a closed chest model of chronic myocardial infarction in swine: magnetic resonance imaging and pathological evaluation. ISRN Cardiol. 2013, 781762 (2013).

    Article  Google Scholar 

  37. Gálvez-Montón, C. et al. Post-infarction scar coverage using a pericardial-derived vascular adipose flap. Pre-clinical results. Int. J. Cardiol. 166, 469–474 (2013).

    Article  Google Scholar 

  38. Eldar, M. et al. Percutaneous multielectrode endocardial mapping during ventricular tachycardia in the swine model. Circulation 94, 1125–1130 (1996).

    Article  CAS  Google Scholar 

  39. Klein, H.H., Schubothe, M., Nebendahl, K. & Kreuzer, H. Temporal and spatial development of infarcts in porcine hearts. Basic Res. Cardiol. 79, 440–447 (1984).

    Article  CAS  Google Scholar 

  40. Pérez de Prado, A. et al. Closed-chest experimental porcine model of acute myocardial infarction-reperfusion. J. Pharmacol. Toxicol. Methods 60, 301–306 (2009).

    Article  Google Scholar 

  41. Schuleri, K.H. et al. The adult Gottingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp. Med. 58, 568–579 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sasano, T., Kelemen, K., Greener, I.D. & Donahue, J.K. Ventricular tachycardia from the healed myocardial infarction scar: validation of an animal model and utility of gene therapy. Heart Rhythm 6, S91–S97 (2009).

    Article  Google Scholar 

  43. McCall, F.C. et al. Myocardial infarction and intramyocardial injection models in swine. Nat. Protoc. 7, 1479–1496 (2012).

    Article  CAS  Google Scholar 

  44. Crisóstomo, V. et al. Delayed administration of allogeneic cardiac stem cell therapy for acute myocardial infarction could ameliorate adverse remodeling: experimental study in swine. J. Transl. Med. 13, 156 (2015).

    Article  Google Scholar 

  45. Fu, Y. et al. Fused X-ray and MR imaging guidance of intrapericardial delivery of microencapsulated human mesenchymal stem cells in immunocompetent swine. Radiology 272, 427–437 (2014).

    Article  Google Scholar 

  46. Malliaras, K. et al. Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation 128, 2764–2775 (2013).

    Article  CAS  Google Scholar 

  47. Johnston, P.V. et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120, 1075–1083 (2009).

    Article  CAS  Google Scholar 

  48. Usón-Gargallo, J., Pérez-Merino, E.M. & Usón-Casaús, J.M. Sánchez-Fernández, J. & Sánchez-Margallo, F.M. Modelo de formación piramidal para la enseñanza de cirugía laparoscópica. Cir. Cir. 81, 420–430 (2013).

    PubMed  Google Scholar 

  49. Bouzeghrane, F., Naggara, O., Kallmes, D.F., Berenstein, A. & Raymond, J. In vivo experimental intracranial aneurysm models: a systematic review. AJNR Am. J. Neuroradiol. 31, 418–423 (2010).

    Article  CAS  Google Scholar 

  50. Namba, K., Mashio, K., Kawamura, Y., Higaki, A. & Nemoto, S. Swine hybrid aneurysm model for endovascular surgery training. Interv. Neuroradiol. 19, 153–158 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Juan Maestre, María Borrega, Alejandra Usón and Helena Martín for their outstanding technical assistance during experimental work. We also thank Carmen Calles-Vazquez, PhD and Javier Fernandez-Portales, PhD, for their excellent technical help during the creation of various models.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisóstomo, V., Sun, F., Maynar, M. et al. Common swine models of cardiovascular disease for research and training. Lab Anim 45, 67–74 (2016). https://doi.org/10.1038/laban.935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.935

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing