Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies

Abstract

Membrane proteins with transmembrane domains (TMDs) that contain polar residues exposed to the lipid bilayer are selectively sorted into multivesicular bodies (MVBs) and delivered to the yeast vacuole. Sorting of some, although not all, proteins into these structures is mediated by ubiquitination. We have identified a transmembrane ubiquitin ligase, Tul1, that is resident in the Golgi apparatus and is required for the ubiquitination of proteins with polar TMDs, including vacuolar proteins such as carboxypeptidase S. We suggest that Tul1 provides quality control, identifying misfolded membrane proteins and marking them for transport to endosomes and degradation in the vacuole.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A polar TMD residue induces ubiquitination of Pep12.
Figure 2: Requirements for entry into vacuoles.
Figure 3: TMD discrimination depends on Tul1.
Figure 4: Requirements for ubiquitination.
Figure 5: The Tul1 RING-domain binds Ubc4.
Figure 6: Localization of Tul1.
Figure 7: Sorting of proteins in the Golgi.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sato, K., Sato, M. & Nakano, A. Rer1p as common machinery for the endoplasmic reticulum localization of membrane proteins. Proc. Natl Acad. Sci. USA 94, 9693–9698 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonifacino, J. S., Cosson, P., Shah, N. & Klausner, R. D. Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J. 10, 2783–2793 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Munro, S. Localization of proteins to the Golgi apparatus. Trends Cell Biol. 8, 11–15. (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lewis, M. J., Nichols, B. J., Prescianotto-Baschong, C., Riezman, H. & Pelham, H. R. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol. Biol. Cell 11, 23–38 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheiffele, P., Roth, M. G. & Simons, K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16, 5501–5508 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zaliauskiene, L. et al. Down-regulation of cell surface receptors is modulated by polar residues within the transmembrane domain. Mol. Biol. Cell 11, 2643–2655 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reggiori, F., Black, M. W. & Pelham, H. R. Polar transmembrane domains target proteins to the interior of the yeast vacuole. Mol. Biol. Cell 11, 3737–3749 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato, K., Sato, M. & Nakano, A. Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J. Cell Biol. 152, 935–944 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munro, S. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 14, 4695–4704 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rotin, D., Staub, O. & Haguenauer-Tsapis, R. Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J. Membr. Biol. 176, 1–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Beck, T., Schmidt, A. & Hall, M. N. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J. Cell Biol. 146, 1227–1238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Helliwell, S. B., Losko, S. & Kaiser, C. A. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J. Cell Biol. 153, 649–662 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Reggiori, F. & Pelham, H. R. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J. 20, 5176–5186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Urbanowski, J. L. & Piper, R. C. Ubiquitin Sorts Proteins into the Intralumenal Degradative Compartment of the Late-Endosome/Vacuole. Traffic 2, 622–630 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Black, M. W. & Pelham, H. R. A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins. J. Cell Biol. 151, 587–600 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Becherer, K. A., Rieder, S. E., Emr, S. D. & Jones, E. W. Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. Mol. Biol. Cell 7, 579–594 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Odorizzi, G., Babst, M. & Emr, S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Ellison, M. J. & Hochstrasser, M. Epitope-tagged ubiquitin. A new probe for analyzing ubiquitin function. J. Biol. Chem. 266, 21150–21157 (1991).

    CAS  PubMed  Google Scholar 

  20. Swaminathan, S., Amerik, A. Y. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol. Biol. Cell 10, 2583–2594 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Causton, H. C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. VanDemark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M. & Wolberger, C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105, 711–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Galan, J. & Haguenauer-Tsapis, R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO. J. 16, 5847–5854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169–78 (2001).

    Article  CAS  Google Scholar 

  27. Dunn, R. & Hicke, L. Domains of the Rsp5 ubiquitin-protein ligase required for receptor- mediated and fluid-phase endocytosis. Mol. Biol. Cell 12, 421–435 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, G. et al. Localization of the Rsp5p ubiquitin-protein ligase at multiple sites within the endocytic pathway. Mol. Cell Biol. 21, 3564–3575 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wooding, S. & Pelham, H. R. The dynamics of Golgi protein traffic visualized in living yeast cells. Mol. Biol. Cell 9, 2667–2680 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vida, T. A. & Emr, S. D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128, 779–792 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Babst, M., Sato, T. K., Banta, L. M. & Emr, S. D. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J. 16, 1820–1831 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lewis, M. J., Rayner, J. C. & Pelham, H. R. A novel SNARE complex implicated in vesicle fusion with the endoplasmic reticulum. EMBO J. 16, 3017–3024 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jelinsky, S. A. & Samson, L. D. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc. Natl Acad. Sci. USA 96, 1486–1491 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Roth, F. P., Hughes, J. D., Estep, P. W. & Church, G. M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnol. 16, 939–945 (1998).

    Article  CAS  Google Scholar 

  36. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Gardner, R. G., Shearer, A. G. & Hampton, R. Y. In vivo action of HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell. Biol. 21, 4276–4291 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Letourneur, F. & Cosson, P. Targeting to the endoplasmic reticulum in yeast cells by determinants present in transmembrane domains. J. Biol. Chem. 273, 33273–33278 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Involvement of the Ubiquitin/Proteasome System in Sorting of the Interleukin 2 Receptor beta Chain to Late Endocytic Compartments. Mol. Biol. Cell 12, 1293–1301 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shih, S. C., Sloper-Mould, K. E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Hettema for the ubiquitin–GFP construct, and R. Haguenauer-Tsapis, M. Lewis, M. Black, S. Siniossoglou and K. Madura for advice and reagents. F. R was supported by the Swiss National Science foundation and by the European Molecular Biology Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh R. B. Pelham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reggiori, F., Pelham, H. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nat Cell Biol 4, 117–123 (2002). https://doi.org/10.1038/ncb743

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing